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Highlights:  20 

i) Climate warming shortened vegetative period, but not for reproductive 21 

period 22 

ii) Global warming tended to increase yield in the north, but decrease in the 23 

south 24 

iii) Elevated CO2 could offset the negative impacts of increasing temperature 25 

mostly 26 

iv) Total production will increase by 2.8% and 8.3% under 1.5°C and 2.0°C 27 

scenarios 28 

v) Most of potential wheat production increase was observed in the north 29 

subregions 30 

 31 
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32 

Abstract 33 

Keeping global temperatures below 2.0°C above pre-industrial condition and 34 

pursuing efforts toward the more ambitious 1.5°C goal in the late 21st century was the 35 

main target from the Paris Agreement in 2015. Here we assessed the likely challenges 36 

for the China’s winter wheat production under 1.5°C and 2.0 °C increase of global 37 

temperature, with four wheat crop models (CERES-Wheat, Nwheat, WheatGrow, and 38 

APSIM-Wheat) and the latest climate projections from the Half a degree Additional 39 

warming, Projections, Prognosis and Impacts project (HAPPI). Instead of using 40 

average “winter type” wheat cultivar, and same management and soil inputs for whole 41 

region, location-specific winter wheat cultivars with local agronomic information 42 

were calibrated for each of the representative wheat growing area of China, allowing a 43 

better spatial agronomic representation of the whole wheat planting area. The mean 44 

growing season temperature (GST) during the winter wheat vegetative stages was 45 

projected to increase by 0.6 to 1.4°C for the 1.5°C scenario, and 0.9 to 1.8 °C for the 46 

2.0°C scenario, while during the reproductive stage was decreased between 0 and 47 

0.9°C for the 1.5°C scenario and -0.3 and 1.1°C for the 2.0°C scenario. Growing 48 

season duration (GSD) for the whole period was shortened by 6 to 15 days for the 49 

1.5°C scenario and 8 to 18 days for the 2.0°C scenario, as a result of higher GST 50 

under global warming. Increase in GST and decrease in GSD was more obvious in the 51 

Southwest Subregion (SWS) than subregions in the north. The shortening GSD for the 52 

whole wheat growth period was mostly from the shortening vegetative period, as no 53 

appreciable difference in number of days from anthesis to maturity was found for the 54 

whole regions. Although there is variability among models, the indication is that 55 

wheat yields were projected to increase in the North Subregion (NS), the Huang-Huai 56 
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Subregion (HHS), and the Middle-lower Researches of Yangzi River Subregion 57 

(MYS), but to decrease in the SWS under two warming scenarios. The effects of 58 

elevated CO2 concentration were mostly beneficial and tended to offset the negative 59 

impacts of increasing temperature at both global warming scenarios, with a rate of 60 

7-14% yield increase per 100-ppm, except for locations with GST of baseline higher 61 

than 11°C. Aggregating to regional wheat production, the total winter wheat 62 

production of China was projected to increase by 2.8% (1.6% to 3.0%, 25th percentile 63 

to 75th percentile) and 8.3% (7.0% to 9.6%, 25th percentile to 75th percentile) under 64 

1.5°C and 2.0°C scenarios, and most of increase was observed in the north subregions 65 

due to the largest wheat planting area. Our results will lay the foundation for 66 

developing adaptation strategies to future climate change to ensure China and global 67 

wheat supply and food security. 68 

 69 

Key words 70 

Winter wheat; Crop model ensemble; Potential yield changes; Growing season 71 

duration; Total production, Climate change impacts  72 
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1. Introduction 73 

With the increase in greenhouse gas emissions during past decades, continuous 74 

global warming resulted in record-breaking global temperature increase (Anderson 75 

and Kostinski, 2011; Coumou et al., 2011; Coumou et al., 2013; Parry et al., 2007; 76 

Zhao et al., 2017). In order to keep global temperatures from rising further, the Paris 77 

Agreement signed in 2015 aims at achieving an overall increase of 2.0°C with an 78 

ambition threshold of 1.5°C (UNFCCC, 2016). Crop production is one of the sectors 79 

that is mostly impacted by climate variability, and the projected climate changes could 80 

cause further vulnerability for achieving global food security (Field et al., 2014). 81 

Assessing the potential 1.5°C and 2.0°C warming impacts on global or regional crop 82 

production can help to addressing food security and agricultural adaptation more 83 

effectively. 84 

A large number of studies have attempted to explore the effects of climate 85 

change on wheat phenology, growth and yield through various methods including 86 

field experiments, statistical analysis methods, and crop simulation models (Asseng et 87 

al., 2015; Challinor et al., 2014; Liu et al., 2016a; Schauberger et al., 2017; Wall et al., 88 

2011; Wang et al., 2015; Zhao et al., 2017). As observed in warming experiments, 89 

increasing air temperature usually shortened wheat growth period, especially for 90 

vegetative stage, but the impacts on crop yield depends on the latitude of the 91 

experiments (Asseng et al., 2015; Asseng et al., 2019; Fang et al., 2015; Hou et al., 92 

2012; O'Leary et al., 2015; Tian et al., 2012). When warming temperature exceed the 93 

crop threshold temperature, the impacts of temperature increase on physiological 94 

processes and yield formation of wheat could be detrimental (Asseng et al., 2011; 95 

Porter and Gawith, 1999), such as on leaf area development (White et al., 2012), 96 

growth rate (Ottman et al., 2012), photosynthetic rate (Ciais et al., 2005), canopy 97 
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senescence (Farooq et al., 2011; Kadam et al., 2014), and root elongation (Tahir et al., 98 

2010). Higher temperature will accelerate the grain filling rate, and lead to a decrease 99 

in grain weight (Dias and Lidon, 2009). Otherwise, warming temperature could be 100 

beneficial for biomass accumulation and yield formation of wheat in cooler 101 

environments (Grant et al., 2011; Ottman et al., 2012). In addition, higher 102 

temperatures can cause water stress due to the increase of soil evapotranspiration and 103 

crop water demand, which causes reduced stomatal conductance, resulting in 104 

decreased CO2 absorption (Barnabás et al., 2008; Bell et al., 2010; Hatfield et al., 105 

2011). The fertilizer effect of elevated CO2 concentration mainly through enhanced 106 

crop photosynthesis, as observed in free-air CO2 enrichment (FACE) systems (Cai et 107 

al., 2016; Erbs et al., 2015; O'Leary et al., 2015; Verrillo et al., 2017), would also alter 108 

the climate change impacts on wheat growth and yield.  109 

Process-based crop models providing an implementation of crop physiological 110 

growth process and its interactions with genotype, soil, management, and weather 111 

conditions (Cao, 2008; Lobell et al., 2009; Sumberg, 2012; van Ittersum et al., 2013), 112 

have been widely used to simulate crop growth and development from the local up to 113 

global scales to assist in climate change impact assessments (Chenu et al., 2017). For 114 

example, Wang et al. (2015) found that the flowering date of spring wheat and winter 115 

wheat will be advanced 10 days for RCP 4.5 and 18 days for RCP 8.5 and delayed 2 116 

days for RCP 4.5 and 14 days for RCP 8.5 respectively due to reduced cumulative 117 

vernalization days in eastern Australia. Using WheatGrow model and downscaled 118 

outputs from three GCMs, Lv et al. (2013) assessed the effects of climate change on 119 

wheat yields in the main wheat production regions of China under scenarios of A2 (a 120 

high greenhouse-gas-emission scenario), A1 (a low-emissions scenario) and B1 (a 121 

medium-emission scenario), and found that the flowering date was advanced and the 122 
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potential yield was increased in most of wheat planting area under three warming 123 

scenarios. Climate projections of 1.5°C and 2.0°C increase, like the “Half a degree 124 

Additional warming, Prognosis and Projected Impacts” (HAPPI), have been made 125 

since the Paris Agreement (Mitchell et al., 2017). These projections allow us to 126 

compare against current conditions and evaluate climate impacts on crop production. 127 

Several studies found that an ensemble of crop models was a better way to 128 

reproduce crop growth and grain yield formation under various climate sensitivity 129 

studies (e.g. increasing temerature, elevated CO2, post-anthesis chronic warming and 130 

heat shock) (Asseng et al., 2013; Asseng et al., 2019; Martre et al., 2015). With an 131 

ensemble of 30 different wheat models and 30 global representative locations, Asseng 132 

et al. (2015) found that a 1ºC increase of temperature would cause a 6% reduction in 133 

wheat production at global scale. However, it has been found that there is no need to 134 

have such a large ensemble to be confident in the usefulness of it. Rosenzweig and 135 

Hillel (2015) showed how a mini-ensemble of two crop models could be used to 136 

quantify the impact of climate change on smallholders systems of Sub-Saharan Africa.  137 

China is the world's largest wheat producer, which accounts for 18% of global 138 

wheat production (FAO, 2018). Quantifying the projected impacts of 1.5oC and 2.0oC 139 

warming on wheat production is essential for ensuring stable wheat supply and food 140 

security in China and even the world. Liu et al. (2019) assessed impacts of 1.5oC and 141 

2.0oC warming on global wheat production with a global network of 60 eco-sites, 142 

which included 5 representative locations from China. As a widespread cultivated 143 

crop in China, wheat is subjected to different regional climates, cultivar types, and 144 

management practices in the whole country. Therefore, detailed local-specific model 145 

inputs including cultivar, soil and management (e.g. sowing date, planting density, 146 

fertilizer application, irrigation strategy), which usually lacked in previous studies are 147 
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important for reliable country-scale climate change assessments. The spatial variation 148 

in climate condition during wheat growth period across whole wheat planting area of 149 

China could result in highly divergent warming impacts on wheat growth and yield 150 

(Ruane et al., 2018; Tao et al., 2017b; Tao et al., 2014). In addition, quantifying the 151 

impacts of global warming on total wheat production of China, which has been rarely 152 

studied, is another key aspect for national agriculture policy. 153 

In this study, an ensemble of four wheat models was used to study the impacts of 154 

1.5oC and 2.0oC increase in air temperature on winter wheat phenology and grain 155 

yield across the main growing areas of China. The objectives of this study were: (1) to 156 

quantify the changes of growing season temperature and growth duration under 1.5oC 157 

and 2.0oC increases in global average temperature; (2) to determine the spatial 158 

variation of projected impacts of 1.5oC and 2.0oC global warming on wheat yield and 159 

total regional wheat production in different wheat planting subregions of China.  160 
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2. Materials and methods 161 

2.1 Study region  162 

The study region included 13 provinces ranging from south to north in the main 163 

winter wheat production region of China. Wheat planting area and production in the 164 

study region account for more than 83% of the whole wheat planting area, and more 165 

than 88% of total wheat production in China (National Bureau of Statistics of China, 166 

2015) (Fig. 1a). The whole study region was divided into four subregions according to 167 

the eco-climate condition and geographical location (Jin, 1996), including the North 168 

Subregion (NS), the Huang-Huai Subregion (HHS), the Middle-Lower Reaches of 169 

Yangzi River Subregion (MYS), the Southwest Subregion (SWS) (Fig. 1a). Due to 170 

large spatial scale of each subregion, there are still obvious differences in topography 171 

and climate within each subregion. Therefore, each subregion was divided into two or 172 

three eco-zones in wheat production system (Fig. 1b). There are 10 different 173 

eco-zones in the whole study region. In order to better reproduce the spatial variation 174 

of the actual winter wheat production, 129 meteorological stations located across the 175 

study region were used (Fig. 1b).  176 

 177 

2.2 Data sources 178 

Observed daily climate data at 129 meteorological stations during baseline period 179 

(31 years from 1980 to 2010) came from the China Meteorological Data Sharing 180 

Service System (http://data.cma.cn/), including daily maximum and minimum air 181 

temperatures, sunshine hours and precipitation. Climate scenarios of global warming 182 

1.5oC and 2.0oC above pre-industrial level came from the Half a degree Additional 183 

warming, Projections, Prognosis and Impacts project (HAPPI) (Mitchell et al., 2017). 184 

The daily climate data for each station were generated from the two warming 185 

http://data.cma.cn/
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scenarios (named as 1.5oC and 2.0oC scenarios), combined with the local baseline 186 

climate data, according to the method from previous studies (Ruane et al., 2015; 187 

Ruane et al., 2018). Four global climate models (GCMs), including CanAM4, CAM4, 188 

MIROC5, and NorESM1, were used for each global warming scenario due to data 189 

availability at the time when the study was conducted. Observed sunshine hours were 190 

converted to daily solar radiation (Pohlert, 2004), since some crop models need solar 191 

radiation as model input. Following the HAPPI guidelines, CO2 concentration used in 192 

this study was 390ppm, 423ppm and 487ppm for baseline, 1.5oC and 2.0oC scenarios, 193 

respectively. 194 

The crop data came from agro-meteorological experimental network operated by 195 

the China Meteorological Administration. Crop data were available at the 129 stations, 196 

including wheat phenology (including sowing, emergence, flowering, and maturity), 197 

cultivar information, grain yield, and management practice. There were obvious 198 

spatial differences of sowing date at 129 stations, as shown in Fig. S1. Different 199 

cultivar types were used for different eco-zones within a subregion, and the planted 200 

wheat cultivars in each station have changed over the 1980-2010, due to better 201 

cultivars available. Therefore, 1 to 3 commonly used cultivars were selected for each 202 

eco-zone as representative cultivars, based on the planting times (e.g. they were 203 

planted at least for six growing seasons to obtain sufficient observed data for model 204 

calibration and evaluation) (Table S1). In total, 19 representative wheat cultivars from 205 

41 stations were selected in the whole study region (Fig. 2). Generally, the stations 206 

where the representative cultivars located scattered across the whole winter wheat 207 

planting region, which means that the representative cultivars here have good spatial 208 

representation of the cultivar types in each of the main wheat production area of 209 

China. All these cultivars were from field experiments in 1990s and 2000s to 210 
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represent the current typical cultivar types.  211 

Soil data used for model calibration and evaluation at the 129 agro-meteorological 212 

stations were matched with the observed soil data at the nearest sites from the second 213 

national soil census data set in China, including soil type, soil depth, number of layers, 214 

structure of particle size, organic carbon, pH, cation exchange capacity, total nitrogen 215 

concentration, bulk density (Fig. S2), which was obtained from the Soil Science Data 216 

Center (http://soil.geodata.cn/) (Soil Data Center). The data of winter wheat planting 217 

area in China came from MAPSPAM (http://mapspam.info), and it was raster data 218 

with 5 arc-minute grid cells (Fig. 1a). 219 

 220 

2.3 Crop models 221 

Four wheat growth models were used for this study, including 222 

DSSAT-CERES-Wheat, DSSAT-Nwheat, WheatGrow and APSIM-Wheat. 223 

CERES-Wheat and Nwheat were integrated in DSSAT framework (v4.7), and a 224 

typical crop model in DSSAT consists of a Soil module, a Crop Template module 225 

which can simulate different crops by defining species-specific input files, a Weather 226 

module, and a module for dealing with competition for light and water among the soil, 227 

plants, and atmosphere (Jones et al., 2003). WheatGrow model (v3.0) mainly consists 228 

of five submodules, including apical development and phenological development 229 

(Yan et al., 2000), photosynthesis and biomass production (Liu et al., 2003), dry 230 

matter partitioning and organ establishment (Liu et al., 2001), yield and quality 231 

formation (Pan et al., 2007; Pan et al., 2006), and soil water and nutrient balance (Hu 232 

et al., 2004; Yang, 2004). In WheatGrow, physiological development time was used 233 

for quantifying the development stage, and the dynamic of wheat development and 234 

growth was simulated by daily time steps. The APSIM modelling framework (v7.9) 235 

http://soil.geodata.cn/
http://mapspam.info/
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includes modules for a diverse range of crops, pastures and trees, soil processes and a 236 

full range of management controls. APSIM-Wheat is one of the crop modules, which 237 

give process-based simulations of wheat growth and development, dry matter 238 

accumulation, and yield formation by daily steps (www.apsim.info) (Keating et al., 239 

2003). CERES-Wheat, WheatGrow, Nwheat, and APSIM-Wheat have been widely 240 

used in the estimation of wheat yield potential around the world (Asseng et al., 2015; 241 

Asseng et al., 2011; Deihimfard et al., 2018; Lv et al., 2013; Paymard et al., 2018; 242 

Rivington and Koo, 2011). 243 

 244 

2.4 Model calibration and evaluation 245 

133 and 122 records from the 19 representative cultivars at 41 stations were used 246 

for calibration and evaluation, respectively. The details of observed data used in 247 

model calibration and evaluation can be found in Table S1. Management practices, 248 

including sowing date, sowing density, water and nitrogen application recorded at 249 

each station were used as model inputs. Observed anthesis and maturity dates, and 250 

grain yield were used for calibration and evaluation of the crop models. Crop 251 

phenology (time to anthesis and maturity) was calibrated first, by adjusting the crop 252 

parameters that dealt with crop development. Next, grain yield was calibrated by 253 

adjusting parameters that models’ use for simulating grain yield (Table S2). During 254 

the calibration, a trial-and-error method was used to adjust parameters of each cultivar 255 

for four models to minimize the error between the simulated and observed anthesis 256 

date, maturity date, and grain yield (Figure S3). 257 

The fitness between observed and simulated anthesis date, maturity date and 258 

grain yield were assessed with root mean square error (RMSE): 259 

http://www.apsim.info/
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RMSE = √
∑ (𝑂𝑖 − 𝑆𝑖)2𝑁
𝑖=1

𝑁
 260 

where Oi and Si were the observed and simulated values, respectively; N was the total 261 

number of samples. 262 

 263 

2.5 Impact assessment 264 

To evaluate the impact of climate change on wheat production, the crop models 265 

were run without water or nutritional stresses (because the impact of temperature and 266 

CO2 were the main factors to be analyzed) across the 129 stations. The models were 267 

run using the baseline weather (1980-2010) and the 1.5oC and 2.0oC scenarios. For 268 

stations which used the representative cultivars during the baseline period, the 269 

corresponding representative cultivars were used for two warming scenarios, and for 270 

stations without any of the 19 representative cultivars, the nearest representative 271 

cultivar in each eco-zone was used. The sowing date for 1.5oC and 2.0oC scenarios 272 

was same as baseline sowing date, as no adaptation through shifting sowing date was 273 

considered here. In addition, the planting density was 500 plants·m-2 for each scenario, 274 

and the CO2 concentration used in the simulations for baseline, 1.5oC and 2.0oC 275 

scenarios was 390ppm, 423ppm and 487ppm, respectively. 276 

The projected impacts of climate warming on growing season temperature (GST), 277 

growing season duration (GSD) and potential grain yield were analyzed. The GST and 278 

GSD during the whole growth period (from sowing to maturity, GST-w and GSD-w), 279 

vegetative period (from sowing to anthesis, GST-v and GSD-v), and reproductive 280 

period (from anthesis to maturity, GST-r and GSD-r) were calculated from the 281 

simulated phenology (including anthesis and maturity date) for each crop model under 282 

baseline and different GCMs. Then the mean GSTs and GSDs for 1.5oC and 2.0oC 283 
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scenario were determined as average GSTs and GSDs from the four wheat models and 284 

four GCMs. The spatial characteristics of impacts on GST, GSD and potential yield 285 

from 129 stations in the whole study region were displayed with ArcGIS 10.4 286 

software. And the integration process was the inverse distance weighted method 287 

(IDW). 288 

In order to quantify the impacts of elevated CO2 concentration on wheat grain 289 

yield, the four wheat models were run both with and without CO2 fertilization effects 290 

for the whole study region. The impacts of elevated CO2 on potential yield were 291 

determined as the differences between simulated potential yield with and without CO2 292 

fertilization effects. 293 

We assessed the impacts on total regional wheat production (for different 294 

subregions and whole study region) as well as on wheat yield, because the impacts on 295 

total regional production was conductive to further analysis of self-sufficiency for 296 

China’s wheat production under global warming and could provide critical 297 

information for national scale adaptation strategies for food security in the future. The 298 

climate impacts on potential grain yield were first simulated at each station. Then, the 299 

local impacts were interpolated into a 0.5o×0.5o grid, which is the same resolution of 300 

wheat planting area in MAPSPAM (http://mapspam.info) across the whole region 301 

with inverse distance weighted (IDW) method. The yield impacts for each grid were 302 

aggregated into regional production impacts for different subregions and whole region 303 

using the planting area in MAPSPAM as a weight factor. The upscaling of impacts 304 

from local to regional scales was done in ArcGIS. The impact upscaling was done for 305 

each model and GCMs first, and then they were averaged for all wheat models and 306 

GCMs. 307 

308 

http://mapspam.info/
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3. Results 309 

3.1 Model evaluation 310 

Comparison of simulated and observed anthesis date, maturity date, and grain 311 

yield in model evaluation for four models were shown in Figure 3. 19 representative 312 

wheat cultivars were validated using 122 records, with an average of more than 6 313 

records for each cultivar. Phenology was well simulated by all the models, with a 314 

RMSE between 7 to 9 days. But some models showed a larger divergence on grain 315 

yield with a RMSE between 1.1 to 1.7 t·ha-1. 316 

 317 

3.2 Changes in wheat growing season temperature under 1.5oC and 2.0oC 318 

scenarios  319 

Distinct spatial differences across the whole study region in mean growing season 320 

temperature (GST) and its changes under 1.5oC and 2.0oC scenarios were shown in 321 

Figure 4. The mean GST during vegetative (GST-v) and whole stage (GST-w) were 322 

warmer in the south (MYS and SWS) and cooler in the north (NS and HHS) under all 323 

scenarios, while GST at reproduction stage (GST-r) was warmer in the north and 324 

cooler in the south, mostly due to the obvious spatial differences in wheat phenology 325 

(Table S1 and Fig. S4). For the baseline period, average GST-w, GST-v and GST-r for 326 

the whole wheat growing region were 9.6oC (between 5.8oC and 13.0oC), 7.6oC 327 

(between 3.5oC and 11.4oC), and 20.8oC (between 18.8oC and 22.3oC), respectively. 328 

The NS had the coolest GST-v, with an average of 5.9oC (between 3.5oC and 7.1oC), 329 

and the warmest GST-v was found in SWS, with an average of 9.2oC (between 7.0oC 330 

and 11.4oC). At reproductive period, the northern subregions experienced warmer 331 

growing temperature than the southern subregions, with the highest GST-r of 22.3oC 332 

in eastern NS. The differences in GST-w between the northern and the southern 333 
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subregions were less than the differences in GST-v (Fig. 4 a, d, g). 334 

The spatial distribution of GST changes under 2.0oC scenario were similar with 335 

that under 1.5oC scenario, but the more obvious changes under 2.0oC scenario were 336 

found in the southern subregions (Fig. 4). GST-w and GST-v under 1.5oC scenario 337 

were projected to increase by 0.5 to 1.2oC and 0.6 to 1.4oC, while GST-r was 338 

projected to decrease by 0 to 0.9°C in most of wheat growing area. GST-w, GST-v, 339 

and GST-r changes were 0.8 to 1.4oC, 0.9 to 1.8oC, and -1.1 to 0.3oC under 2.0oC 340 

scenario, respectively. Higher increase in GST-w and GST-v and larger decrease in 341 

GST-r were found in parts of SWS than other regions under both warming scenarios.  342 

 343 

3.3 Changes in growing season duration under 1.5oC and 2.0oC scenarios 344 

The spatial distribution characteristics of the ensemble mean value of simulated 345 

growing season duration (GSD) was shown in Figure 5. Under baseline period, the 346 

average growth duration for vegetative period (GSD-v), reproductive period (GSD-r), 347 

and whole growth period (GSD-w) were 197 days, 36 days, and 233 days across the 348 

whole region. Generally, GSD-v and GSD-w were shorter in the south subregions 349 

than in the north subregions, while longer GSD-r was found in the south subregions 350 

than the north subregions. For example, GSD-v and GSD-w were about 52 days and 351 

48 days longer in NS than in SWS, while GSD-r was about 4 days longer in SWS than 352 

in NS (Fig. 5 a, d, g). 353 

Global warming reduced GSD-v and GSD-w in the whole wheat growing region 354 

under two warming scenarios, and the spatial distribution of GSD changes were 355 

similar for GSD-v and GSD-w (Fig. 5). Under 1.5oC and 2.0oC scenarios, GSD-v was 356 

shortened by about 12 and 15 days in SWS, and 8 and 10 days in other three 357 

subregions, respectively. As shown in Figure 5, 1.5oC and 2.0oC scenarios almost had 358 
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no effect on growth duration at reproductive period in the whole wheat growing 359 

region. For example, GSD-r in NS, HHS, and MYS were shortened about 0.2 days, 360 

while it was prolonged about 0.7 days in SWS under 2.0oC scenario. Therefore, the 361 

shortening of growth duration for whole growth period was mostly attributed to the 362 

shortening in vegetative period among four subregions. 363 

 364 

3.4 Impacts of 1.5°C and 2.0oC scenarios on winter wheat yield and regional 365 

production of China 366 

The simulated wheat potential yield and impacts of increasing temperature and 367 

elevated CO2 concentration were shown in Figure 6. The wheat potential yield for 368 

whole study region from individual models showed large inter-model variations, 369 

owing to large uncertainties between different crop models. But the spatial patterns of 370 

simulated wheat potential yields were consistent for four models (Fig. 6). Wheat 371 

potential yields for all four models were higher in the north and lower in the south 372 

(Fig. 6 a-e). Highest potential yields were observed in NS and HHS, especially in 373 

their east, with an average of 9.0 t·ha-1 and 9.3 t·ha-1, respectively. The potential 374 

yields were the lowest in SWS with 6.5 t·ha-1. The projected effects of increasing 375 

temperature and elevated CO2 concentration showed increase on wheat potential 376 

yields significantly in NS, HHS and MYS, especially in HHS, while it showed 377 

decrease in SWS. The projected effects of increasing temperature and elevated CO2 378 

concentration differed among the models, and the effects from high to low were 379 

CERES-Wheat, WheatGrow, APSIM-Wheat, and Nwheat. The average changes of 380 

wheat potential yield in the four subregions which is NS, HHS, MYS and SWS were 381 

4.5% (2.8% to 6.7%), 3.8% (1.6% to 5.9%), 0.3% (-1.4% to 1.6%), and -7.2% (-18.1% 382 

to 3.9%) under 1.5oC scenario, and 10.7% (8.7% to 13.7%), 9.6% (6.6% to 12.4%), 383 
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4.8% (2.8% to 6.6%), and -3.6% (-15.9% to 8.0%) under 2.0oC scenario, respectively.  384 

Without CO2 fertilization effect, global warming of 1.5oC and 2.0oC scenarios 385 

projected to increase grain yield at most of stations from NS and HHS with cooler 386 

growing season temperature, but to decrease grain yield at all stations from MYS and 387 

SWS with warmer growing season temperature. For example, grain yield at most 388 

stations of NS was projected to increase about 0 to 0.2 t·ha-1 (0 to 2.7%) and 0 to 0.3 389 

t·ha-1 (0 to 3.3%) under 1.5oC and 2.0oC scenarios, with vary small spatial variability, 390 

but grain yield in SWS was projected to decrease about 0 to1.3 t·ha-1 (0 to 23.7%) and 391 

0.2 to 1.5 t·ha-1 (2.0% to 28.4%), with large spatial variability. As shown in Fig. 7, the 392 

effects of elevated CO2 concentration were mostly beneficial and tended to increase 393 

grain yield by 0.2 to 0.4 t·ha-1 and 0.6 to 1.0 t·ha-1 under 1.5°C and 2.0°C scenarios, 394 

respectively. The relative impacts of elevated CO2 from 390ppm to 423ppm under 395 

1.5°C scenario were 3.3%, 3.3%, 3.3%, 4.0% in NS, HHS, MYS and SWS, 396 

respectively. Under 2.0°C scenario, about 6.0% higher CO2 effects can be expected in 397 

the whole planting area averagely than that under 1.5°C scenario. After taking CO2 398 

effects into account in the assessment, the CO2 fertilization effect tended to offset the 399 

negative effect with increasing temperature in MYS, especially under 2.0°C scenario. 400 

The relationship between the growing season temperature (GST-w) under baseline 401 

and impacts on potential yield under two warming scenarios was shown in Fig. 8. 402 

Generally, the negative impacts of 1.5oC and 2.0oC global warming would be fully 403 

cancelled out by the positive effects of elevated CO2 at locations with a GST-w larger 404 

than 11°C. 405 

The impacts of climate change under 1.5°C and 2.0°C scenarios on regional 406 

winter wheat production were similar with the impacts on grain yield. Without CO2 407 

effect, the winter wheat production was projected to increase slightly in NS and HHS, 408 
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but to decrease in MYS and SWS (Fig. 9). With CO2 effect, the potential winter wheat 409 

production in NS, HHS, and MYS showed an enormous improvement under two 410 

global warming scenarios, but still showed a slight decrease in SWS. However, due to 411 

the differences of planting area between four subregions (Fig. 1a), impacts on regional412 

potential wheat production showed distinct spatial differences across the whole region 413 

(Fig. 9). For example, although similar relative impacts on grain yield and regional 414 

production were found in NS and HHS, the HHS experienced the largest absolute 415 

increase of 4.6×106 t and 11.7×106 t in potential production among four subregions 416 

under 1.5°C and 2.0°C scenarios with CO2 effect, as HHS has the largest wheat 417 

planting area (Fig. 1a). When aggregated to the whole wheat growing region of China, 418 

the simulated potential winter wheat production was 172×106 t for the existing winter 419 

wheat planting area of China under baseline, and the total regional potential wheat 420 

production was projected to increase by 2.8% (1.6% to 3.0%, 25th percentile to 75th 421 

percentile) and 8.3% (7.0% to 9.6%, 25th percentile to 75th percentile) under 1.5°C 422 

and 2.0°C scenarios with CO2 effect, but to decrease by 0.5% (-1.2% to 2.6%, 25th 423 

percentile to 75th percentile) and 0.7% (0.3% to 3.7%, 25th percentile to 75th percentile) 424 

under 1.5°C and 2.0°C scenarios without CO2 effect, respectively.  425 

 426 
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4. Discussion 427 

Model inputs, model parameters and model structure could be the source of 428 

uncertainty in crop model-based climate change impact assessments (Tao et al., 429 

2017a). As an important source for uncertainties in model parameters, selection of 430 

cultivars used for a specific region in crop models is important for the regional 431 

impact assessment. Most previous studies usually used a “winter type” wheat 432 

cultivar for a large geographical region (e.g. one cultivar for each province in Chen 433 

et al. (2018) and Lv et al. (2013)). Here in this study, local cultivar-specific 434 

information for model calibration and evaluation were collected, and the cultivars 435 

used here were mostly the actual cultivars recommended by the local agricultural 436 

extension department and have been widely planted during last decades in each 437 

eco-subregion. In addition, detailed management and soil information for each 438 

station were available, allowing a better spatial agronomic representation of the 439 

wheat planting area. As wheat is widespread (mainly from 26o13’N to 40o68’N) in 440 

China and covers different regional climates and production conditions, there were 441 

large spatial variation in cultivar types, soil, and management practices. For example, 442 

observed differences in wheat phenology date (e.g. jointing, heading, and maturity) 443 

across the study region can be more than two month (Liu et al., 2014; Xiao et al., 444 

2018), and result in significant differences among locations in responses to climate 445 

change, because different cultivar types could have substantial variations in their 446 

responses to changes in climate variables under different production systems (Tao et 447 

al., 2014). Therefore, it is worthwhile to use multiple cultivars across the whole 448 

study region in order to better determine the diverse responses of actual wheat 449 

production system to climate change, even there is a slightly large discrepancy 450 

between observed and simulated yield. Though more observed records from different 451 
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stations than previous impact assessment studies (Chen et al., 2018; Lv et al., 2013), 452 

were used to calibrate the parameters of representative cultivars. We still recognized 453 

the potential uncertainties in model parameters for multiple cultivars when 454 

calibrating them with observed yield records, and this could lead to large 455 

uncertainties in projected impacts (Liu et al., 2018). In addition, as key model inputs, 456 

climate projections for the target scenarios (1.5oC and 2.0oC scenarios) could also 457 

affect projected impacts. Thus, climate projections of an ensemble of four GCMs 458 

were used here to reduce the uncertainty due to different GCMs (Fig. S7 and Fig. 459 

S8). 460 

Uncertainties due to crop models, which were usually ignored in most pervious 461 

regional impact assessments for China, have been shown here with the simulated 462 

yields and projected impacts from the four wheat models. As powerful tools to 463 

project climate impacts on crop yields, the differences of crop models in simulated 464 

yields and projected impacts can be contributed to model structure or model 465 

algorithms, and parameters among the four wheat models (Rosenzweig et al., 2014; 466 

Wallach et al., 2018).The multi-model ensemble has been suggested as a reliable 467 

approach to decrease impact uncertainty of crop model structure in several crops 468 

(Asseng et al., 2013; Asseng et al., 2019; Bassu et al., 2014; Li et al., 2015; Palosuo 469 

et al., 2011; Wallach et al., 2018). Here, an ensemble of four wheat models was 470 

applied to assess the impacts of 1.5oC and 2.0oC warming scenarios under the latest 471 

IPCC special report on wheat production in China. Although differences were found 472 

between four wheat models, similar general spatial pattern of climate warming 473 

impacts across the whole study region can be observed (Lv et al., 2017). Higher 474 

variations of climate impacts among crop models than GCMs (Fig. S8) indicated that 475 

the uncertainty due to crop models could be the main source of uncertainty in 476 
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assessment results here, in line with previous studies (Asseng et al., 2013 & 2019). 477 

In addition, the projected impacts on total wheat production for the whole study 478 

region might carry uncertainties from upscaling method. There have two main 479 

upscaling methods in the regional application of crop models, including aggregation 480 

from sampling and grid-scale simulations (Ewert et al., 2014; Nendel et al., 2013; 481 

Xu et al., 2020; Zhao et al., 2015). The main challenge for grid-scale simulations is 482 

the limited quality of input data (e.g. weather, soil profile, crop management, and 483 

yield observations) for each grid. In this study, sampling method which assumed the 484 

simulated impacts from selected points to represent an area was used for upscaling 485 

impacts, and uncertainties due to upscaling were not inevitable because the resultant 486 

impact data uses one value to represent many other (Zhao et al., 2015). However, the 487 

characteristic of this method is that when accurate data collected based on the 488 

sampling point to represent an area, the uncertainty from sampling decreases with 489 

increasing number of sampling points (van Bussel et al., 2015; Zhao et al., 2016). 490 

Here, we used 129 stations (e.g. sampling points) and 19 representative cultivars 491 

across the whole study region, and this could help to reduce the uncertainty in the 492 

impact upscaling. 493 

The larger uncertainty of simulated yield and yield impacts in SWS than other 494 

subregions could be mainly due to crop models. As shown in Fig. S7, simulated 495 

wheat yields and yield impacts under different GCMs by the same model were 496 

similar, but the wheat yields simulated under same GCM by different models had a 497 

large variation, especially for CERES-Wheat model (Fig. S8 and Fig. S9). 498 

Temperature affects many processes of wheat growth such as phenology and yield 499 

formation and the algorithms of temperature affecting crop growth in different model 500 

could be different (Asseng et al., 2011; Jones et al., 2003; Keating et al., 2003; Liu et 501 
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al., 2016b; Pan et al., 2007; Pan et al., 2006; Yan et al., 2000). In fact, a previous 502 

study by Asseng et al (2015) has indicated that larger variations among models could 503 

be expected under higher growing season temperatures. In addition, Wang et al. 504 

(2017) has shown that more than 50% of uncertainty in simulating grain yields was 505 

due to variations in modelling crop responses of physiological processes to 506 

temperature in 29 wheat models for growing season temperature from 14oC to 33oC. 507 

The baseline growing season temperature in SWS was the highest and temperature 508 

changes under two warming scenarios were also the largest among four subregions. 509 

Therefore, the larger variation of simulated yield and yield impacts in SWS could be 510 

due to its higher growing season temperature. These results agree with the findings 511 

of Asseng et al. (2013) who found that the largest models’ divergence to temperature 512 

changes happened in the hotter environment of Australia. 513 

The impact of global warming on the productivity of cereal crops in the future 514 

has received widespread attention. However, existing studies mostly predicted the 515 

impact of cereal crops based on the previous Coupled Model Intercomparison 516 

Project phase 5 (CMIP5) climate scenario (Mueller et al., 2015; Shin et al., 2017; 517 

Urban et al., 2015; Wang et al., 2017a), and most of them have almost investigated 518 

the impact of global warming >2.0oC, which means previous impact assessments 519 

lacked details for <2.0 oC of warming, especially for China. Those results cannot be 520 

reliably translated into impacts for the 1.5oC and 2.0oC warming scenarios, because a 521 

scenario includes changes not only in temperature, but also in CO2 concentration, 522 

rainfall and other climate variables, all of which can affect crop production. In 523 

keeping with the global nature of the Paris Agreement, it is important to evaluate 524 

impacts of the new scenarios for the largest wheat producer-China. In this study, 525 

1.5oC and 2.0oC global warming scenarios which include 4 GCMs provided by 526 
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HAPPI and four wheat growth models were used to assess the climate warming 527 

impacts on wheat growing season temperature (GST), growing season duration 528 

(GSD), and potential grain yield at 129 stations across the main winter wheat 529 

planting area of China. In addition, many previous studies did not focus sufficiently 530 

on national scale’s responses under climate change. Therefore, in term of food 531 

security, it is important to analyze the effect of the new scenarios on the China’s 532 

regional wheat production and this could provide critical information for adaptation 533 

strategies for food security in the future. Combining wheat yield impacts with 534 

existing winter wheat planting area, winter wheat production of China was projected 535 

to increase by 2.8% (1.6% to 3.0%, 25th percentile to 75th percentile) and 8.3% (7.0% 536 

to 9.6%, 25th percentile to 75th percentile) under 1.5oC and 2.0oC scenarios, which 537 

was quite similar with previous projections by different approaches (Liu et al., 2019, 538 

Rosenzweig et al., 2018). For example, based on a 31-wheat model ensemble and 60 539 

global representative locations, global warming was projected to increase wheat 540 

grain production of China by 3.4% and 6.5% under 1.5oC and 2.0oC scenarios, 541 

respectively (Liu et al., 2019). 542 

Increasing temperature advances the flowering date as a result of phenological 543 

development accelerated (Wang et al., 2015), and this has been observed worldwide 544 

under warming scenarios in field warming experiments (Cai et al., 2016; Fang et al., 545 

2013; Tan et al., 2018; Tian et al., 2014), long-term observations (Liu et al., 2014; 546 

Wang et al., 2013) and the model-based simulations (Asseng et al., 2004; Lv et al., 547 

2013; Wang et al., 2015; Wang et al., 2013). In this study, flowering date was 548 

projected to advance obviously (e.g. about 10 days in southern subregions under 549 

2.0oC scenarios), and more advancement was observed projected for southern 550 

subregions than northern subregions. It was similar to the study of Cai et al. (2016), 551 
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in which increasing growing season mean temperature 1.3-2.0oC notably shortened 552 

wheat pre-heading duration around 10 days from the FACE experiment in a location 553 

from MYS. In another field warming study in a location from NS, wheat flowering 554 

date was advanced by 15-17 days under 2.5-2.8oC warming in growing season 555 

temperature (Tan et al., 2018). Phenology of some crops like winter wheat was not 556 

only affected by temperature also day length. With detailed response functions for 557 

temperature and day length, the four process-based wheat crop models used here can 558 

simulate the effects of both temperature and day length on wheat phenology. For 559 

example, the multi-model ensemble can reproduce wheat anthesis and maturity 560 

under various growing season temperature in T-FACE experiments in Arizona, U.S 561 

(Asseng et al., 2015). However, we were unable to separately quantify the changes in 562 

photoperiod and temperature to explain the reason for advanced flowering date here, 563 

because climate warming have changed growing season temperature and 564 

photoperiod conditions simultaneously. 565 

The projected reduction in whole wheat growing season duration was mostly 566 

due to the shortening vegetative period. Shortening vegetative period due to climate 567 

warming could shift the wheat reproductive stage into a cool period, resulting in no 568 

obvious changes in GST for reproductive period under 1.5oC and 2.0oC scenarios. 569 

Therefore, wheat reproductive period, even with climate warming, tended to be 570 

stable in most of locations or even prolonged slightly at parts of locations in SWS. 571 

Similar findings could be observed in field warming experiments (Cai et al., 2016; 572 

Fang et al., 2013; Tian et al., 2014) and the model-based simulations (Asseng et al., 573 

2004; Lv et al., 2013). 574 

As changes of solar radiation under 1.5oC and 2.0oC scenarios were small for 575 

crop production (-0.9% to 0.3%), the quantified impacts on wheat production here 576 
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could be mainly attributed to increasing temperature and elevated CO2 concentration. 577 

Different climate conditions across the main wheat planting area resulted in 578 

divergent responses of wheat growth and grain yield to climate warming. Without 579 

CO2 fertilization, wheat potential yield tended to increase in the cooler northern 580 

regions, while it tended to decrease in the warmer southern regions under both 581 

climate scenarios. In Australia, Wang et al (2017) also indicated that climate 582 

warming could benefit for the cooler wheat growing regions, but damage the wheat 583 

production in hot growing area. Similar responses could be found at global-scale 584 

simulations for wheat (Balkovič et al., 2014) and soybean (Ramirez-Cabral et al., 585 

2016). The divergent yield responses between different subregions could be a result 586 

of tradeoff between shortening growth period and increasing biomass growth rate 587 

during vegetative period. While increasing temperature shortened wheat vegetative 588 

period, wheat biomass growth rate could increase under climate warming, as the 589 

average temperature during vegetative period under baseline period were much 590 

lower than the optimal temperatures for biomass growth, especially in northern 591 

subregions, and increasing temperature could be beneficial for biomass accumulation 592 

in these regions (Fig. 4). For example, in northern subregions, increasing potential 593 

wheat biomass accumulation at anthesis under two warming scenarios indicated that 594 

the improved biomass growth rate could offset the negative effects of shortening 595 

growth period (Fig. S5 and Fig. S6). However, for the southern subregions, wheat 596 

vegetative period was shortened more than the northern subregions, and the increase 597 

in biomass growth rate could not mitigate the negative effects of shortening wheat 598 

growth period, result in a decreased potential wheat biomass accumulation at 599 

anthesis under two warming scenarios (Fig. S5 and Fig. S6).  600 

Testing the crop models before applying them for projecting crop production 601 
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under future scenarios is essential for the confidence in our projections. The 602 

algorithms related to high temperature with high CO2 in several wheat models were 603 

developed and improved by using observations from free-air CO2 enrichment 604 

experiments (Asseng et al., 2013; Long et al., 2006). Asseng et al. (2019) and 605 

O'Leary et al. (2015) have shown that the predictions from the tested multi-model 606 

ensemble reproduced observed impacts on biomass and yield (especially for relative 607 

changes of grain yields and biomass) well under changing climate conditions, 608 

including heat shock, high temperatures and elevated CO2 concentration (up to 609 

550ppm). As the four models used have been tested for CO2 effects in these previous 610 

studies, we didn’t conduct further model validation under elevated CO2 conditions. 611 

Similar with several previous studies which used crop models to evaluate crop 612 

productivity under higher CO2 concentration scenarios (Asseng et al., 2004; Liu et 613 

al., 2019; Rosenzweig et al., 2018; Schauberger et al., 2017; Schleussner et al., 2018; 614 

Tao et al., 2009; Wang et al., 2019; Wang et al., 2017b), we combined GCMs and 615 

crop models to assess the future wheat productivity in China under 1.5 and 2.0oC 616 

scenarios with the corresponding atmospheric CO2 concentration range. Generally, 617 

similar CO2 fertilization effects can be observed across the whole wheat planting 618 

area in China. Among most of locations, the impacts of elevated CO2 under 1.5oC 619 

and 2.0oC scenarios would be 0.2 to 0.4 t·ha-1 and 0.6 to 1.0 t·ha-1 yield increases, 620 

respectively, indicating a rate of 7-14% and 7-12% yield increase per 100-ppm. This 621 

is consistent with field observations and simulation results from a wide range of 622 

growing environments (Challinor et al., 2014; Kimball, 2016; O'Leary et al., 2015). 623 

Comparing wheat yield impacts with and without CO2 effects, most of positive yield 624 

impacts can be attributed to the elevated CO2, and similar conclusion was indicated 625 

by Liu et al. (2019). However, the fertilization effects of elevated CO2 can’t totally 626 
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offset the negative impacts of 1.5oC and 2.0oC global warming at locations with 627 

higher growing season temperature (>11°C), and similar conclusion can be found 628 

from the simulations at 60 global representative wheat locations under the same 629 

warming scenarios, but with a higher growing season temperature threshold of 15oC 630 

(Liu et al., 2019). 631 

Studies have shown that wheat yield in 56% of China's wheat planting areas is 632 

stagnant recently (Ray et al., 2012). This study shows that under 1.5oC and 2.0oC 633 

scenarios without any adaptation measures, potential yield will be improved in 634 

northern China slightly, but significant negative impact will be experienced in 635 

southern China. A limitation of simulated potential yield is that the changes in spatial 636 

and temporal pattern of precipitation were not considered, because this study focused 637 

on impacts of increasing temperature and elevated CO2 on yield potential, and winter 638 

wheat production in the study area is usually irrigated in northern China or 639 

experiencing high rainfall during growing season in southern China. However, 640 

projected decrease in precipitation in northern China under climate warming (Fang et 641 

al., 2013), will be challenging for the wheat irrigation, which is essential for 642 

maintaining high yield level in about 90% of wheat production in northern China 643 

currently.  644 

Adaptation strategies, including shifting sowing date, breeding new cultivars 645 

with better heat resistance, and adjusting wheat planting area (Challinor et al., 2007; 646 

Gouache et al., 2012; Jingsong et al., 2012; Tao et al., 2012) have been proposed in 647 

order to better deal with climate changes. In addition, region-specific adaptation 648 

strategies should be provided according to the climate and production scenarios in 649 

different subregions. For instance, wheat growth duration was projected to be 650 

affected more in southern regions than northern regions, which suggested that 651 
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adaptation strategies to maintain wheat phenology (e.g. shifting sowing date and 652 

breeding new cultivars with different thermal requirements) will be more needed in 653 

southern subregions. The climate warming impacts on wheat production were 654 

quantified without considering the changes of land use. Climate warming may 655 

increase thermal resources for crop production, especially in northern China, which 656 

could lead to expansion of crop planting area. For example, the expansion of 657 

northern boundary of crop planting have resulted in a 2.2% increase in national 658 

production of three major crops (maize, wheat, and rice) from 1981 to 2010 in China 659 

(Yang et al., 2015). This indicates that the increasing available wheat planting area in 660 

the north region where irrigation facilities have high availability could be a high 661 

priority for ensuring higher national wheat production under climate change in China, 662 

due to the projected positive climate warming impacts on wheat potential yield here. 663 

 664 

5. Conclusion 665 

Global warming was projected to reduce GSD, especially in vegetative period, 666 

due to higher GST under global warming 1.5°C and 2.0°C scenarios in China. 667 

Without CO2 fertilization, wheat potential yield tended to increase in both cooler 668 

northern subregions, while it tended to decrease in both warmer southern subregions 669 

under both climate scenarios. The effects of elevated CO2 concentration were mostly 670 

beneficial and tended to offset the negative impacts of increasing temperature 671 

especially in MYS at both global warming scenarios. The total regional winter wheat 672 

production of China was projected to increase by 2.8% (1.6% to 3.0%, 25th 673 

percentile to 75th percentile) and 8.3% (7.0% to 9.6%, 25th percentile to 75th 674 

percentile) under 1.5°C and 2.0°C scenarios, and most of increase was observed in 675 

the north subregions due to the largest wheat planting area. Adaptation strategies, 676 
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including shifting sowing date, breeding new cultivars with better heat resistance, 677 

and increasing available wheat planting area in the north region where irrigation 678 

facilities have high availability could be a high priority for ensuring higher national 679 

wheat production under climate change in China.  680 
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Figure legend 1003 

Figure 1. (a) Wheat planting area of China. Red lines indicated study region. (b) 1004 

Study region, eco-zones and agro-meteorological stations. Blue lines indicated the 1005 

four main subregions of winter wheat production in China, and the colorful blocks 1006 

indicated the 10 eco-zones. Red points were the 129 agro-meteorological stations. 1007 

 1008 

Figure 2. Stations used for calibration of genetic parameters for representative 1009 

cultivars. 1 to 3 commonly used cultivars were selected for each eco-zone as 1010 

representative cultivars, based on the planting times. 1011 

 1012 

Figure 3. Comparison of simulated and observed anthesis date (a-d), maturity 1013 

date (e-h), and grain yield (i-l) in model evaluation for CERES-Wheat (a, e and 1014 

i), Nwheat (b, f and j), WheatGrow (c, g, and k) and APSIM-Wheat (d, h, and l). 1015 

Red lines are linear regression lines and black lines are 1 to 1 lines. DOY: day of 1016 

year. 1017 

 1018 

Figure 4. Spatial distribution of ensemble mean of growing season temperature 1019 

(GST, oC), under baseline (a, d and g) and changes of growing season 1020 

temperature under 1.5oC (b, e and h) and 2.0oC (c, f and i) scenarios. GST 1021 

during vegetative (GST-v, oC), reproductive (GST-r, oC), and whole growing season 1022 

(GST-w, oC) periods were the average temperatures from sowing to anthesis, from 1023 

anthesis to maturity, and from sowing to maturity, respectively. GST for 1.5oC and 1024 

2.0oC scenarios was the mean value of four global climate models (GCMs), 1025 

including CanAM4, CAM4, MIROC5, and NorESM1. 1026 

 1027 
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Figure 5. Spatial distribution of ensemble mean value of simulated growing 1028 

season duration (GSD, days) under baseline (a, d and g) and changes of 1029 

simulated GSD under 1.5oC (b, e and h) and 2.0oC (c, f and i) scenarios. 1030 

Vegetative (GSD-v), reproductive (GSD-r), and whole growing season (GSD-w) 1031 

duration were days from sowing to anthesis, from anthesis to maturity, and from 1032 

sowing to maturity, respectively. The simulated GSD for 1.5oC and 2.0oC scenarios 1033 

was the mean value of four global climate models (GCMs), including CanAM4, 1034 

CAM4, MIROC5, and NorESM1. 1035 

 1036 

Figure 6. Spatial distribution of simulated potential yield under baseline (a-e) 1037 

and relative changes of potential yield under 1.5oC (f-j) and 2.0oC (k-o) 1038 

scenarios for CERES-Wheat (a, f, k), Nwheat (b, g, l), WheatGrow (c, h, m), 1039 

APSIM-Wheat (d, i, n) and the ensemble (e, j, o) mean value of four models 1040 

with CO2 fertilization effects. The potential yield changes for 1.5oC and 2.0oC 1041 

scenarios were the mean value of simulated potential yield changes from four global 1042 

climate models (GCMs), including CanAM4, CAM4, MIROC5, and NorESM1. CO2 1043 

concentration was 390ppm, 423ppm and 487ppm for Baseline, 1.5oC and 2.0oC 1044 

scenarios, respectively. 1045 

 1046 

Figure 7. The boxplot of ensemble mean changes of potential wheat yield under 1047 

1.5oC and 2.0oC scenarios without (a, c) and with (b, d) CO2 effect from four 1048 

crop models including CERES-Wheat, Nwheat, WheatGrow, and 1049 

APSIM-Wheat. CO2 concentration was 390ppm, 423ppm and 487ppm for baseline, 1050 

1.5oC and 2.0oC scenarios, respectively. (a) and (b) indicated the absolute changes of 1051 

potential yield, (c) and (d) indicated the relative changes of potential yield. NS: the 1052 
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North Subregion; HHS: the Huang-Huai Subregion; MYS: the Middle-Lower 1053 

Researches of Yangzi River Subregion; SWS: the Southwest Subregion. 1054 

 1055 

Figure 8. Relationship between growing season temperature (GST-w, oC) under 1056 

baseline and relative changes of potential yield under 1.5oC (a) and 2.0oC (b) 1057 

scenarios at 129 stations. The potential yield changes for 1.5oC and 2.0oC scenarios 1058 

were the mean of four crop models and four global climate models (GCMs), 1059 

including CanAM4, CAM4, MIROC5, and NorESM1. CO2 concentration was 1060 

390ppm, 423ppm and 487ppm for Baseline, 1.5oC and 2.0oC scenarios, respectively. 1061 

 1062 

Figure 9. Projected absolute (a, b) and relative (c, d) changes of regional 1063 

potential wheat production in different subregions of winter wheat planting 1064 

area of China under 1.5oC and 2.0oC scenarios without (a, c) and with (b, d) 1065 

CO2 effects. The regional wheat productions for 1.5oC and 2.0oC scenarios were the 1066 

mean of four crop models and four global climate models (GCMs), including 1067 

CanAM4, CAM4, MIROC5, and NorESM1. CO2 concentration was 390ppm, 1068 

423ppm and 487ppm for Baseline, 1.5oC and 2.0oC scenarios, respectively. NS: the 1069 

North Subregion; HHS: the Huang-Huai Subregion; MYS: the Middle-Lower 1070 

Researches of Yangzi River Subregion; SWS: the Southwest Subregion. 1071 


