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Acronyms and Abreviations

CRÈME: Cosmic Ray Effects on Micro-Electronics Code
GSN: Goal Structuring Notation
JWST: James Webb Space Telescope
MBMA: Model-Based Mission Assurance
MBE: Model-Based Engineering
MOSFET: Metal Oxide Field Effect Transistor
MRQW: Microelectronics Reliability & Qualification Workshop
NASA: National Aeronautics and Space Administration
R&M: Reliability & Maintainabiltiy
R-GENTIC: Radiation GuidelinEsfor Notional Threat Identification and Classification
RESIM Radiation Effect System Impact Modeling
RHA: Radiation Hardness Assurance
SEAM: System Engineering and Assurance Modeling
SEB: Single Event Burnout
SiC: Silicon Carbide
STD: Standard
SysML: System Modeling Language
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Radiation Assurance Approaches for Space Systems

Conventional:
• Widespread use of radiation-

hardened components
• Deep knowledge of components
• Several heavy-ion beam test 

campaigns
• Informed use of physics-based 

radiation modeling tools
• Relatively high budget and long-

term development schedule
• Formal documentation of test 

procedures and results

“New, Commercial Space”
• Widespread, if not 100% use of 

COTS parts
• Little insight into components
• Minimal testing, possibly only 

proton testing of sub-systems
• Little use of radiation modeling 

tools
• Low budget, accelerated 

development schedule
• Little formal documentation or 

evidence of radiation behavior 
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Radiation Assurance for Space Systems

Conventional:
• Widespread use of radiation-

hardened components
• Several heavy-ion beam test 

campaigns
• Relatively high budget and long-

term development schedule

“New, Commercial Space”
• Widespread, if not 100% use of 

COTS parts
• Minimal testing, possibly only 

proton testing of sub-systems
• Low budget, accelerated 

development schedule

What can we do early in the development of the 
project, other than formal modeling or ion-beam 
testing, to “buy down” risk of radiation-related 
failures?
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Platform for Creation of a Radiation Assurance Case

Useful radiation reliability assurance platform 
characteristics:

• Model-based approach=digital representation of objects
• Tolerant of uncertainty, various levels of model fidelity
• Flexible as new info/design changes become available
• Qualitative arguments about why the system will work
• Quantitative estimates for reliability and location of 

weak links
• Systematically covers known faults (not ad hoc) 
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System Engineering and Assurance 
Modeling (SEAM) Platform

• Web-browser based
• Can access as guest 

or create account
• Creates system 

model diagrams and 
argument for radiation 
assurance case

• Maintained by 
Vanderbilt University

• Contains examples 
and tutorial 
information

https://modelbasedassurance.org/
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Overall System Reliability Characterization Flow 

SysML: Diagramatic
System Architecture
Part rad faults
System functions
Specifications

GSN: Text Based
Specifications
Environment info
Goal/Strategy/Evidence
Assurance Argument

Fault Trees
Tied to system functions
Create FT structure
Export to FT Eval tools

Bayesian Nets
Identify a function
Create BN graph
Export to BN Tool

RESIM/Questa [1,2]
Quantitative 
Based on rad data
Mixed Signal Sim
Functional models

[1] A. F. Witulski, et al, RADECS, Sept. 2018. 
[2] A. F. Witulski, et al, Trans. Nucl. Sci., August, 2019.

System Waveforms
Electrical +Rad sims
Timing diagrams
Probability distributions

SEAM 
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Systems Engineering Assurance and Modeling (SEAM)

Program History
• FY16: Started as collaboration of NASA OSMA, HQ, NEPP 

• Work on Goal Structuring Notation Safety Cases
• Single events on SRAM CubeSat application

• FY17: collaboration of NASA OSMA, HQ, NEPP 
• Added SysML and Bayesian Nets (BN) to platform
• JPL sponsors application to C&DH board

• FY18: NASA OSMA, HQ, NEPP, JPL
• Coverage Checks, Start work on Requirements, 

Compatibility with Magic Draw, Fault Trees
• FY19: NASA OSMA, HQ, NEPP, JPL

• Requirements, Fault Trees
• Initial import of radiation modeling tools
• Application of SEAM to development lifecycle
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Radiation Reliability Assessment of CubeSat 
SRAM Experiment Board
• Assessment completed on 

REM
- 28nm SRAM SEU

experiment
• Reasons for integrated 

modeling
1. Use commercial off-the-

shelf (COTS) parts
2. System mitigation of 

SEL
3. System mitigation of 

SEFI on microcontroller Courtesy of AMSAT

SRAM
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System-level RHA:
Block Diagram of 28nm SRAM SEU Experiment

Logic 
Translation

Core Regulator

I/O Regulator

Logic Regulator

Addr, Data, 
Control

uController

Load 
Switch AWDT

WDI

WDO

SRAM

Load Switch B

Load Switch B

Load Switch B

Quad 
Flip-Flop

Load 
Switch A

Addr, Data, 
Control

Power Domain Color Key:
Blue: Spacecraft 3V
Green: 3V_uC

Orange: 3V_switch
Red: SRAM Voltages

“REM Board”

Main Concern: Single Event Latchup
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Functional Model: Count Upsets in SRAM

Top Level Function: Count Upsets 

Radiation effect
Mitigation Functions

Components

Electrical Functions 

Functional models associate functions with components

Modelbasedassurance.org
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Architectural Model of REM Board

Power(red lines)

Signal (green lines)

Architectural 
Models capture 
the structure 
and 
interconnection 
of the system 
and fault 
propagation

Modelbasedassurance.org
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Component Fault Propagation Model

Fault Propagation 
Models show how fault 
effects originate in 
components  and 
propagate from the 
component through 
the structure of the 
system

Modelbasedassurance.org
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Component Fault Propagation Model: Fault

Fault Propagation 
Models show how fault 
effects originate in 
components  and 
propagate from the 
component through 
the structure of the 
system

Originating 
fault:
TID, SEE 
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Component Fault Propagation Model: Anomaly

Fault Propagation 
Models show how fault 
effects originate in 
components  and 
propagate from the 
component through 
the structure of the 
system

Anomaly:
Effect of a 
Fault
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Component Fault Propagation Model: Port

Fault Propagation 
Models show how fault 
effects originate in 
components  and 
propagate from the 
component through 
the structure of the 
system

Port: 
Passes anomalies to 
other components
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Goal Structuring Notation (GSN)

Goal=Claim
Strategy=Inference
Solution=Evidence
Context=Background
Justification=Rationale
Assumption=Unsub-
stantiated Claim

Benefits of GSN
Makes assumptions explicit
Connects assurance case to 
models of system
Shows how argument is 
supported by evidence
Context shows spacecraft 
environment and requirements[1] GSN Community Standard Version 1 2011 

Colors/Shapes Denote Function
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GSN Assurance REM SEU Experiment Board

• Top Goal states overall 
objective

• Mission constraints 
can be radiation 
environment, 
performance 
requirements, cost 
constraints, etc. 

• Top-level goals and 
strategies track NASA 
R&M template

To Strategy 2 
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Mission Assurance over the Development Lifecycle

• Create radiation assurance case early in the 
development cycle-find radiation problems earlier

• ”Time-Varying” Radiation Assurance Case
• R. A. Austin, R. D. Schrimpf, A. F. Witulski, N. Mahadevan, G. Karsai, B. D. 

Sierawski, and R. A. Reed, “Capturing and Modeling Radiation 
Hardness Assurance throughout the Project Lifecycle,” 
27th Annual Single Events Symposium, La Jolla, CA, 2019.

• Interaction of requirements, component knowledge, and 
system design information
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The Parts Engineer

• Starting point: Single-event Burnout Requirement 
• End work product: The approved part list
• Information needed: Mission orbit and lifetime (can change), parts currently in the 

system (can change), how the parts are used in the system (can change)
- How can I keep up to date with system changes?
- How can I capture my analysis?

Northrop Grumman NASA
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The Parts Engineer

• Starting point: Single-event Burnout Requirement 
• End work product: The approved part list
• Information needed: Mission orbit and lifetime (can change), parts currently in the 

system (can change), how the parts are used in the system (can change)
- How can I keep up to date with system changes?
- How can I capture my analysis?

Northrop Grumman NASA

Part Status Comment
Microcontroller Passed
SiC power 
MOSFET

Passed with 
comments

Probability of failure of 2% at derating of 50% 
with current shielding Reliability 

Calculation

Happens over the lifecycle
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The Parts Engineer

• End work product: The approved part list
• Information needed: Mission orbit and lifetime (can change), parts currently in the 

system (can change), how the parts are used in the system (can change)
- How can I keep up to date with system changes?
- How can I capture my analysis?

• Solution: Model-Based 
Mission Assurance (MBMA)
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NASA Project Lifecycle Phases

• The reliability tests and analysis required to verify the requirement take place during 
several life-cycle phases
- In addition, the analysis requires the system to mature and will have to be re-evaluated if 

the system or mission changes
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NASA Project Lifecycle Phases

• The reliability tests and analysis required to verify the requirement take place during 
several life-cycle phases
- In addition, the analysis requires the system to mature and will have to be re-evaluated if 

the system or mission changes

Requirement Defined
Environment Definition, 

Worst Case Analysis

Radiation 
tests

Reliability predicted
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Today’s Example: Single Event Burnout 
Requirement

• Beginning of Phase B: 
GSN template for part assurance
- Generic goals generated from 

part assurance templates
- Framework for planning RHA 

activities

• Requirement: The probability of failure from SEB
shall be less than 1%

Requirement Defined
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Today’s Example: Single Event Burnout 
Requirement

• Beginning of Phase B: 
GSN template for part assurance
- Generic goals generated from 

part assurance templates
- Framework for planning RHA 

activities

• Requirement: The probability of failure from SEB
shall be less than 1%

In 
Phase 

B

Requirement Defined
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Today’s Example: Single Event Burnout 
Requirement

• Information about system needed in order to 
perform test:
- Mission length, orbit, and shielding → 

Inputs to environment tool
- Part use in system →

Inputs to determine 
parametric failure levels

- Outputs from environment 
tool and part failure 
analysis → Inputs for 
radiation test
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Today’s Example: Single Event Burnout 
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Today’s Example: Single Event Burnout 
Requirement

• Information about system needed in order to 
perform test:
- Mission length, orbit, and shielding → 

Inputs to environment tool
- Part use in system →

Inputs to determine 
parametric failure levels

- Outputs from environment 
tool and part failure 
analysis → Inputs for 
radiation test

Happens over the course of phase B

Radiation Test Performed
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Today’s Example: Single Event Burnout 
Requirement

• Information about system needed in order to 
perform test:
- Mission length, orbit, and shielding → 

Inputs to environment tool
- Part use in system →

Inputs to determine 
parametric failure levels

- Outputs from environment 
tool and part failure 
analysis → Inputs for 
radiation test

In 
Phase 

C

Radiation Test Performed
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Today’s Example: Single Event Burnout 
Requirement

• Requirement: Mission shall meet a reliability level

• End of Phase C
- Probability calculation
- Assuming nothing changed about the system from Phase B

Reliability Predicted
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Today’s Example: Single Event Burnout 
Requirement

• Requirement: Mission shall meet a reliability level

• End of Phase C
- Probability calculation
- Assuming nothing changed about the system from Phase B

• Reliability calculation attached to solution

Reliability Predicted
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Conclusions

• MBMAis a function of time
- Captures the evolution of mission assurance as the system is developed

• MBMAenables concurrent engineering of reliability and design engineering
- Argument structure show how a requirement is verified and how it is derived

• MBMAenables intelligent mission-specific requirements
- Illustrates the creation of reliability requirements as more about the mission is known
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Fault Tree Generation Capability Added to SEAM

• Fault tree captures logical 
relationships between events

• Inputs are probabilities of 
events

• System information in SEAM 
SysML model can be used to 
generate fault trees for various 
system functions

• Fault tree structure can be 
exported in standard format to 
other reliability tools
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Example: Fault Tree for Temperature Control Loop 
of a Command and Data-Handling Board

Generated from Functional 
& Architectural Model in 
SEAM

Component failure modes

System Function Failure
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Activities for SEAM Development in Coming Year

• Promote visibility and adoption of SEAM, e.g., University 
Nanosat program at AFRL, S3VI at NASA, AAQ at 
Auburn, NASA  MBx community 

• Lower the barriers to learning and using SEAM-identify 
required prior knowledge and skills and make that 
information explicit

• Develop more libraries and templates of common 
spacecraft components, functions, assurance arguments
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