

Electrified Aircraft Propulsion Systems: Gas Turbine Control Considerations for the Mitigation of Potential Failure Modes and Hazards

Paper GT2020-16335

Donald L. Simon NASA Glenn Research Center 21000 Brookpark Road Cleveland, OH, 44135 Joseph W. Connolly NASA Glenn Research Center 21000 Brookpark Road Cleveland, OH, 44135

ASME Turbo Expo 2020 September 21-25, 2020 Virtual Conference, Online

Outline

- Electrified Aircraft Propulsion (EAP) Systems
 - Background • Failure Modes and Failure Mitigation
- Example: Turbomachinery Control Considerations for Failure Mitigation Identification of Failure Modes and Effects Reversionary Control Modes for Failure Mitigation
 - Simulation Results
- Summary

Electrified Aircraft Propulsion (EAP) Background

- EAP relies on the generation, storage, and transmission of electrical power for aircraft propulsion
- Enables aircraft designs that apply advanced propulsion concepts such as distributed electric propulsion and boundary layer ingestion fans
- Benefits include a potential reduction in emissions, fuel burn, noise, and cost

NASA Aeronautics Strategic Implementation Plan

Example NASA EAP Concept Vehicles

Aircraft System Development and Certification Process

of Failure Condition

Probability

NASA

- Any potential hazards in the design must be identified and appropriately mitigated
- Development includes a functional hazard assessment (FHA) conducted to identify all potential functional failures, and classify those failures according to their hazard severity
- The more severe a function's failure condition classification, the greater the development assurance level (DAL) required for the function to ensure that the probability of the hazard is acceptably low

Consequence of Failure Condition

Relationship Between Failure Probability and Failure Hazard Category

Overview of EAP System Components

Generic EAP System Architecture

NASA Glenn Research Center

EAP System Components

- Supervisory Control: Interface between vehicle and propulsion system.
- Gas Turbine Engines: Turbomachinery that converts fuel into mechanical power.
- Gearboxes and Mechanical Drives: Used for transferring mechanical power throughout EAP system.
- Electric Machines: Generators and motors. Used for converting mechanical power into electricity or vice versa.
- Power Electronics and Power Distribution Systems: Handles switching, power conversion, and transmission of electrical power throughout system.
- Energy Storage Systems: Systems for the storage of electrical energy such as batteries and supercapacitors.
- **Propulsors**: Motor driven propellers or fans used to generate thrust.
- Thermal Management Systems: Provide system cooling and heat dissapation 5

An Example of Turbomachinery Control Considerations for the Mitigation of EAP System Failures

NASA <u>Single-aisle Turboelectric</u> <u>AiRC</u>raft with <u>Aft Boundary Layer</u> propulsor (STARC-ABL)

STARC-ABL Overview

NASA Single-aisle Turboelectric AiRC raft with Aft Boundary Layer propulsor (STARC-ABL)

- Two wing-mounted geared turbofan engines (GTFs) produce thrust and supply mechanical offtake power to generate electricity
- · Generators and rectifiers convert mechanical power into electricity
- Electricity transferred over two parallel direct current power buses
- Inverters and motors convert electricity into mechanical power supplied to tailfan propulsor
- Tailfan propulsor applies boundary layer ingestion for increased propulsive efficiency NASA Glenn Research Center

STARC-ABL Subsystem Failure Modes and Coupled Effects

STARC-ABL Architecture

		Failed Subsystem				
		GTF1 Failed	GTF2 Failed	Power System 1 Failed	Power System 2 Failed	Tailfan Failed
pled Failure Effects on Other Subsystems	GTF1	Failed	Increased HPX	No HPX	Increased HPX	No HPX
	GTF2	Increased HPX	Failed	Increased HPX	No HPX	No HPX
	Power System 1	No Electric Power	Increased Electric Power	Failed	Increased Electric Power	No Electric Power
	Power System 2	Increased Electric Power	No Electric Power	Increased Electric Power	Failed	No Electric Power
Cou	Tailfan	Reduced Electric Power	Reduced Electric Power	Reduced Electric Power	Reduced Electric Power	Failed

STARC-ABL Failure Modes and Effects Matrix

Failure Effects on Turbomachinery:

- GTFs: Experience either an increase or elimination of horse power extraction (HPX)
- Tailfan: Experiences a reduction in available electrical power

NASA Glenn Research Center

STARC-ABL Propulsion System Simulation

Coded in MATLAB[®] Simulink[®]

- Turbomachinery coded in Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
- Electrical component coded using a power flow modeling approach
- Separate controllers for each GTF and the Tailfan

GTF and Tailfan Controllers

	GTF Control	Tailfan Control		
Power schedule	 Power Lever Angle (PLA) commands target fan speed (N1) 	 Power Lever Angle (PLA) commands target fan speed (N1) 		
Primary control loop	 Modulates fuel flow (Wf) to achieve target N1 	Modulates motor power to achieve target N1		
Transient control schedule	• Wf/Ps3 vs N1	N1dot vs N1		
Variable geometry	 Variable Area Fan Nozzle (VAFN) Variable Bleed Valve (VBV) 	 Variable Area Fan Nozzle (VAFN) 		
Control limits	• Speeds, fuel flow, Wf/Ps3	Speed, motor power		
NASA Glenn Research Center				

STARC-ABL GTF and Tailfan Acceleration Response: Nominal Response versus Unmitigated Failure Response

- Idle to maximum power throttle command introduced at the 25k feet, 0.6 Mach flight condition ٠
- Response evaluated under nominal conditions and with a failure in Power System 1

STARC-ABL Reversionary Control Logic for Failure Mitigation

NASA

Tailfan Reversionary Control Geared Turbofan (GTF) GTF 2 Mode: Pwr Sys 2 **Reversionary Control Modes:** PLA schedule and acceleration Tailfan VBV schedule updates to schedule updates to maintain maintain LPC operability GTF compressor operability Fuel controller updates to • Pwr Sys 1 GTF 1 and symmetric acceleration maintain HPC operability and response symmetric acceleration STARC-ABL Architecture response Variable Bleed Valve (VBV) maintains low pressure compressor (LPC) operability Fuel controller ensures safe, Wbleed reliable engine transient operation Electric Motor 2 Gearbox Generator N1 Electric LPT Motor 1 нрт Gear FAN VAFN Power extracted from low pressure Motor controllers control tailfan shaft for electrical power generation speed and transient operation

NASA Glenn Research Center

Power Extraction Fault Mitigation (cont.) (Revised GTF and Tailfan Control Logic)

(results shown at Altitude = 25k feet, Mach = 0.6 operating condition)

1. Revised GTF Variable Bleed Valve (VBV) Schedule

Power Extraction Fault Mitigation (cont.) (Revised GTF and Tailfan Control Logic)

(results shown at Altitude = 25k feet, Mach = 0.6 operating condition)

3. Revised Tailfan Power Lever Angle (PLA) to Fan Speed Schedule 4. Revised GTF and Tailfan Acceleration Schedules

STARC-ABL GTF and Tailfan Acceleration Response: Nominal Response versus Mitigated Failure Response

 Reversionary Control Modes Enable Turbomachinery to Continue to Operate and Produce Thrust in the Presence of a Failure!

NASA Glenn Research Center

Summary

- Electrified Aircraft Propulsion (EAP) system failure mitigation
 - EAP systems present novel failure modes and hazards beyond those found in conventional propulsion designs
 - Mitigation of these failures requires a system-level approach
 - Turbomachinery controls will play a key role in the mitigation of those failures
- Future steps:
 - Incorporate failure detection logic
 - Extend to cover full envelope transient operation
 - Demonstrate failure mitigation in EAP test facilities

Acknowledgements

 This work was conducted under the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project

