
Vadim F. Lvovich1 *, 

Rocco P. Viggiano1, Donald A. Dornbusch1, John W. Connell2, Yi Lin3

1 - NASA Glenn Research Center, Cleveland, OH 44135
2- NASA Langley Research Center, Hampton, VA 23681

3- National Institute of Aerospace, Norfolk, VA 23503 

Solid-state Architecture Batteries for 

Enhanced Rechargeability and Safety 

(SABERS)

5 September, 2020



The Problem

 Current batteries under development will always have fire 
safety challenges due to flammable electrolytes used

 Safety is required for aerospace applications
 SOA lithium ion batteries have caused a number of safety 

incidents on aircraft
 Parasitic weight from excess packaging and cooling is 

undesirable

Electric car Li-Ion Battery Fire

Boeing 787 Li-Ion Battery2006 UPS Cargo Flight Grounded

Battery Safety RequirementsBattery Performance Requirements

Vehicle Performance & Efficiency

McDonald, Uber Elevate, 2017

 NASA Battery Workshop 2017 and industry representatives 
state “The primary barrier to electric aviation is battery 
performance”

 SOA lithium ion batteries do not meet energy density 
requirements needed to enable electric aircraft designs

 Unique flight critical metrics (e.g. high power) required

Current SOA batteries are not designed to meet the unique performance & safety requirements of electric aircraft



 Current performance targets for the automotive sector are a battery pack with 
250 – 300 Wh/kg

5
0

0

3
0

0

2
0

0

Pack 
Specific Energy

(Wh/kg) 

Li-Ion 
SOA

4
0

0

1
0

0

3
5

0

Expansion of Electrified Aircraft Market

SABERS Focused on Electric Aircraft 

Current R&D Focus for 
Automotive Sector

SABERS

Initial UAM Introduction 
with Limited Capability

Desired Mission Capability for eVTOL and 
Market Expansion to Regional Aircraft

Uber UAM 
Goal



Aeronautics Challenges
 Can a battery be designed for electric aircraft, following system level analyses, 

that provides the combination of required properties?
 Safety
 Energy density
 Discharge rate
 Packaging design for minimal weight
 Scalability

SABERS Concept:  Design a battery using system level analyses to guide target properties, 
combine existing materials technologies, and a bi-polar stack design.



The Big Question
How do we meet ALL demanding battery needs of electric aircraft?

Packaging

SafetyPower

Scalability

Energy
State-of-the-art lithium-ion batteries
Lithium sulfur batteries
Solid state batteries

Electric Aircraft

Automotive Sectors



SABERS Transformative Technology

Combination of unique materials technologies to achieve performance goals
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Bi-Polar Stack Solid-State Battery

SSE-enabled bi-polar stack design minimizes safety containment in packaging

Bi-Polar Stack Packaging Enabled by SSE
 Contains no flammable liquids
 Enables a shared current collector (bi-polar)
 Reduces safety containment weight
 Minimal/passive cooling system possible
 Potential for higher power density and C-rates
 90% of cell specific energy can be retained in pack

Lithium-Ion Battery (SOA) Packaging
 Contains flammable electrolytes
 Requires heavy housing and cooling system
 The added pack weight reduces energy density

Safety

Packaging
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- Minimal cooling



Thermal/Weight Systems Level Analysis
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• SABERS operating temperature (150°C) versus for Li-
Ion chemistries (50-60°C)

• Thermal heat load well within SABERS temperature 
limits (simple passive system)

• Advanced Li-Ion batteries require:
 Active system: adds 20-30% weight, 30-50% 

volume, 1-3% of power used
 Semi-passive: system with phase change 

material: 10-20% weight and volume penalty

SABERS Bi-Polar Stack
 Effectively 10-30% less battery pack “overhead”
 Improved specific energy and power
 Critical enabling technology for all-electric, battery vehicles/missions



Holey Graphene Conductive Scaffold
Encapsulate S/Se with holey graphene hosts to maximize energy and power utilization

 Unique NASA-developed technology
 High conductivity, ultralightweight electrode scaffold
 Through-thickness ion transport enabling fast kinetics
 Enables universal dry electrode processing
 Scalable

Power

Scalability

Energy

Scale-Up to Production



Holey Graphene Fabrication and Performance

 Extremely facile: single-step, no mixing needed

 Widely applicable: S, Se, SexSy, Li2S

 Ultrahigh mass loading (>10 mg/cm2) cathodes from hG-enabled dry-press technique are advantageous 

toward cell- and pack-level performance.

 Addition of holey graphene significantly improves the initial discharge capacity of the cell

 High active material content (up to 90 wt%)

 High mass loading: high areal capacity

 Excellent current collector– cathode contact



A 0.4C Discharge Rate Exceeds 1100 Wh/kg for thicker electrode (2.8mAhcm-2)

 50 wt% Sulfur:Carbon with a liquid electrolyte able to achieve 1100 Wh/kg at 0.4C discharge rate
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Traditional SSB Manufacturing Approach vs. SABERS Approach

SABERS ApproachTraditional SSB Manufacturing Approach
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Multiscale Modeling Approach
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Length Scale

∼ 10 − 100 𝜇m

∼ 1 − 2 nm

• Ab initio simulations
• Material and transport properties
• Doping strategies

• Physics based continuum scale modeling: 
electrochemical and thermal models

• Experimental benchmarking

• Particle dynamics methods: electro-mechanical model
• Grain structure properties
• SE/CAM ratios, cathode utilization

Cathode material

Battery

Crystal lattice
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Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 

 Represents the cathode composite as 
a system of tightly packed spheres of 
different types and sizes with assigned 
specific Li+ and e- conductivities. 

 Calculates the total conductivities for 
Li+ and e- of the mixed powder 
composite as dependent on the 
particle size, density and composition 
ratio. 

+|

S-SeSE CLi+ conductor e- conductor 
neutral, or e-

conductor

+|

Li+

e-

Cathode Representative Volume Element (RVE)
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*Solid Electrolyte Sphere Approximation Model (SESAM) is pending NASA Release



Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 

Model construction:

 Generate particles of given type 
(SE, C, S) and given size distribution

 Fills the system box (or RVE) with 
particles of all types randomly

ElectrolyteElectrolyte

Sulphur

Electrolyte

Sulphur

Carbon Black

Cathode Representative Volume Element (RVE)
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Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 

Model construction:

 Generate particles of given type 
(SE, C, S) and given size distribution

 Fills the system box (or RVE) with 
particles of all types randomly

 Compress the powder composite

Cathode Representative Volume Element (RVE)
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Multiscale Modeling Approach
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Length Scale

∼ 1 − 2 nm

• Ab initio simulations
• Material and transport properties
• Doping strategies

• Continuum Scale
• Physics based modeling
• Experimental benchmarking

• Particle dynamics level
• Electromechanical and 

grain interaction model
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 SESAM takes input from experimental data and ab-initio QM simulations on material properties 

 SESAM predicts cathode ion and electron conductivities as input to mesoscale battery models 
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Conclusions
 Elevated temperature operation is a design parameter that can modified 

- If you increase operating temperature from 40 to 50 °C, energy is increased by 10%
 SABERS is a solid-state battery which enables high temperature operation (150 °C)

 Addition holey graphene improves cathode performance
- Holey graphene provides high electrical conductivity and binderless dry compressibility
 It increases cathode electrical conductivity and initial voltage discharge profile

 SABERS 1C-rate for lithium-sulfur (804 Wh/kg) is comparable to a 3C-rate for lithium-ion 
- The standards for electric aircraft are given in terms of lithium-ion batteries
 Different chemistries require defining unique standards

 Optimizing the composition ratio between SE, active material, and conductive agent can 
significantly improve battery performance
- Particle size has a significant effect on the ionic and electronic conductance
 The model suggests using large particles
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Electrified aircraft is 
a core NASA thrust

Excitement to partner with world
leader in aeronautics technology

 NASA is a “thought leader” in aeronautics
 Industry peers state NASA should lead feasibility assessment of 500 Wh/kg battery


