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ABSTRACT 

 
Multiscale failure simulations have been performed for a Three-dimensional woven composite 

unit cell considering five, or more, length scales spanning the woven composite mesoscale to the sub-
microscale voids.  The multiscale recursive micromechanics approach, which enables recursive 
integration of general micromechanics theories over an arbitrary number of length scales, has been 
employed within the NASA Multiscale Analysis Tool.  The multiscale model uses both the 
generalized method of cells and Mori-Tanaka micromechanics theories, and considers failure in the 
constituent materials using a simple damage model.  Baseline results, containing distributed voids, 
are compared to uniaxial experimental data for an AS4 carbon fiber/ RTM6 epoxy matrix 3D 
orthogonal woven composite with good agreement in terms of global stiffness and global failure 
stress.  The simulations demonstrate that the 3D woven composite exhibits damage tolerance through 
sustaining increasing axial load far beyond the first initiation of damage.  The multiscale model is 
used to examine the nonlinear response of the material to other loading conditions. Case studies, 
motivated by X-ray computed tomography data, are presented on the effects of manufacturing 
induced voids and cracks. 
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INTRODUCTION 
 

Three-dimensional (3D) woven carbon fiber reinforced polymer (CFRP) composites are 
emerging as a viable aerospace material because of their observed damage tolerance and enhanced 
through-thickness properties, as compared to traditional layered composites [1-8].  Moreover, 
structures containing thick sections and/or complex geometries can fabricated using a single 3D 
woven preform that is infused with resin. Oftentimes, many morphological features, such as voids, 
cracks, disbonds, wrinkling/waviness of tows, variability in cross section of tows and tow 
misalignment, can be observed within the microstructure of the composites [9-12]. However, it is 
unclear whether these features are defects that affect the parts performance or if the overall response 
of the component is insensitive to the presence of these features. NASA’s Composites Technology 
for Exploration (CTE) project, and other projects, have focused on both experimental and analytical 
campaigns to better understand these materials and improve the technology readiness level (TRL) of 
the materials as a replacement for heavy metallic ring-frames used to join adjacent stages in launch 
vehicles [12, 13].  

As with most composite materials, the ability to perform virtual testing on 3D woven composites 
is highly beneficial to the overall development of the materials themselves and the design of structures 
utilizing these materials.  The advantages of a virtual testing platform for 3D woven composites are 
compounded over traditional, laminated composites because of the ability to tailor the weave (meso-
structure) and generate advanced geometries.  Therefore, simulation tools for design, analysis, and 
manufacturing of 3D woven structures must be developed. 

Progressive failure analysis (PFA) of 3D woven composites remains a challenge due to the 
complex geometry or the extremely fine meshes required to accurately capture the local fields.  Thus, 
the extent of PFA simulations in the open literature is limited.  Repeating unit cell (RUC) and mosaic 
FEM models of an idealized 3D weave geometry were used to predict the tensile strength in the warp-
direction of notched and un-notched coupons with three different weaves [14, 15]. It has been shown 
that, an accurate representation of the mesoscale geometry can yield more accurate predictions [16]. 
A coupled multiscale model, wherein the tow is modeled with the N-layers concentric cylinder 
(NCYL) model, was used to predict progressive failure of a 3D woven composite under flexural 
loading [17]. Later, a similar multiscale model was used to model the tensile stress-strain response of 
a 3D woven dogbone specimen assuming different methods for creating the representative volume 
element (RVE) [18].  All the PFA models here predicted the strengths of un-notched coupons with 
good accuracy.  However, significant error was observed in the strength predictions for the notched 
coupon [14].  It has been shown that tow misalignment has an effect on the compressive strength of 
3D woven composites, and the digital element method was used to generate a realistic RVE 
containing imperfection in the tow paths and geometry which improved the predictions [19, 20].  An 
idealized representation of the mesostructured using a voxel mesh was used to model the failure of 
3D woven bolted joints [21].  Recently, the progressive failure of a T-Joint was modeled using a 
mesoscale approach [22].  Finally, there has been some work to predict the response of 3D woven 
composites under loading conditions other than quasi-static, such as low velocity impact and high-
rate loading [23-25]. Many of the models only considered the meso-architecture, and did not consider 
microstructure of the tows, even though matrix cracking in the tows can manifest into other relevant 
failure mechanisms such as tow splitting and/or disbonding.  

Modeling of process induced defects or cracks has been limited.  Hierarchical multiscale modeling 
utilizing the finite element method has been employed to study the effects of void content on the 
effective properties of the composite by reducing of randomly selected elements in the micro- and 



mesoscales [26].  A thermal cooldown was applied to a 3D woven RVE and the resulting stress 
concentrations, due to mismatch in the coefficients of thermal expansion, we correlated to 
microcracks in an Xray-CT image [10].  A hierarchical multiscale modeling strategy has been used 
to capture the residual stresses due to the resin curing process [27]. The influence of tow crimp in 3D 
woven composites was studied using analytical rod and spring-based models [28]. 

Thus far, the trend in model development has been to increase the geometric fidelity of the model, 
which is on the critical path for development of a virtual testing platform for 3D woven composite 
structures [16, 18, 19, 29-35]. However, the computational cost of these models can be exorbitant as 
many the models contain upwards of hundreds of thousands, or even millions, of degrees of freedom. 
Of equal importance is the development of rapid engineering tools for material and structural design.  
With such tools, parametric and statistical studies can be conducted incorporating a variety of loading 
scenarios and levels of imperfections.  Recently, the engineering constants for a 3D woven RUC were 
predicted utilizing the multiscale generalized method of cells (MsGMC) and were compared to voxel 
FEM model and experimental data—showing reasonable agreement with both [12].   

The focus on the current work is to develop and validate a multiscale modeling tool capable of 
ultra-efficient analysis of a 3D woven composite RUC containing defects, including voids and cracks.  
The NASA Multiscale Analysis Tool (NASMAT), developed at the NASA Glenn Research Center, 
is the multiscale platform used to conduct the analysis [36].  Within NASMAT, the multiscale 
recursive micromechanics (MsRM) framework is employed which allows for the deployment of any 
of a variety of micromechanics theories, with a wide range of fidelity, at an arbitrary number of 
coupled length scales.  To maintain ultra-efficiency in the computational cost, the generalized method 
of cells and Mori-Tanaka micromechanics theories to model the constituents and RUCs at the various 
scales in the model [37, 38]. 

The manuscript is organized as follows.  First, there is a brief overview of the 3D woven 
composite experimental program of the CTE project which utilizes a building block approach. Next, 
details on the theoretical development of MsRM is presented.  This is followed by a succinct 
description of NASMAT.  Then, details are given on the multiscale model of the 3D woven RUC 
including defects. Finally, the results and discussion are presented, followed by future work.  

 
 

EXPERIMENTAL PROGRAM 
 

The objective of NASA’s recent CTE project, under the Game Changing Development (GCD) 
program, within the Space Technology Mission Directorate (STMD), is to increase the TRL of 
bonded composite joints through testing and analysis. One focus of CTE is on 3D woven CFRP 
materials as a potential lighter-weight, damage tolerant, replacement for metallic ring-frames used to 
join the vertical stages of a launch vehicle. 

A building block approach is taken towards the development of a 3D woven CFRP composite 
joint.  Figure 1 one shows the tests conducted under this building block approach.  Figure 1a shows 
an X-Ray CT image of a flat panel from which coupon specimens were cut and tested under tension 
and compression, room temperature/dry and elevated temperature/wet conditions, and single shear 
bearing [12].  In addition, acid digestion tests were conducted to ascertain the overall fiber volume 
fraction and void content.  Figure 1b displays the C-chanel tension/compression test specimen that 
was designed to represent a relevant structural configuration containing a key engineering feature in 
a joint design, i.e., a bend with a sharp radius.  Finally, the CAD model of the largest test specimen 
in the building block, the C-Joint sub-element, is presented in Figure 1c.  The C-joint sub-element 
contains a honeycomb sandwich panel (blue) which represents the acreage of the launch vehicle 



structure. This panel is bonded to the 3D woven C-rep flat section (magenta), which serves as a 
surrogate for the web in the C-channel, with a resin infused, 3D woven pi-preform and film adhesive 
(green).  The C-joint sub-elements were tested at the NASA Marshall Space Flight Center (MSFC) 
under tension and compression.  The specimen was mounted to an aluminum test stand and the load 
was introduced through an aluminum insert colored gray and yellow in Figure 1c, respectively. 

 

a.)     b.)           c.)  
 
Figure 1. Building block approach for testing 3D woven composite structures.  a.) Flat panel coupons. b.) C-channel. c.)  
C-joint sub-element containing honeycomb sandwich panel (blue), 3D woven C-rep panel (magenta), and 3D woven pi-

preform (green). 

Warp-direction 
 

 
 

Figure 2. Pre-test X-Ray CT images of cross-section and through-section of 3D woven CFRP flat panel (SN005) 
exhibiting manufacturing-induced defects.   

The CTE experimental program includes a thorough non-destructive evaluation (NDE) 
component which utilizes digital image correlation (DIC), X-Ray CT, acoustic emission (AE), and 
high-speed cameras to observe and monitor damage and manufacturing defects before, during and 
after testing. Figure 2 shows X-Ray CT images of the cross- and through-sections the SN005 flat 
panel which is the basis for the analysis in this work. Several manufacturing defects can be observed 
in Figure 2 including misaligned tows, variability in the cross-section (X-sec) of the tows, cracking 
in the bulk matrix near the binder tows, and splitting cracks in the binder tows.  In Figure 3, two cross-



sectional images of the same C-channel specimen are displayed, and additional manufacturing defects 
are seen including voids, tow debonding, resin rich areas and surface cracks. For the C-channel, the 
most severe defects are found near the web to flange transition.  It is clear from Figure 2 and Figure 
3, that the manufacturing-induced defects in these 3D woven composites are substantial.  However, it 
is ambiguous as to the effect of these anomalies on the overall behavior of the component.  As 
described previously, very little computational modeling has been conducted to understand these 
effects.  A focus of the present work is to understand the effects of some of these manufacturing 
induced irregularities. 

 

 
Figure 3. Pretest X-Ray CT images of cross-section of C-channel coupon specimen exhibiting manufacturing-induced 

defects. 

 
MULTISCALE RECURSIVE MICROMECHANICS 

 
 The MsRM approach for modeling materials with multiscale microstructures is shown 
schematically in Figure 4. The computational implementation of this approach relies on recursive 
procedures, subroutines, and data structures that allow an arbitrary number of scales to be defined and 
seamlessly pass data between each other.  The approach admits any micromechanics theory that 
provides a strain concentration tensor ( )i

i
αA , which relates the local strains within subvolumes in the 

material to the global strains, with the subvolumes (at a given scale, i) denoted in general by αi, and 
the number of subvolumes by

i
Nα   This concentration tensor provides the local strains in the 

subvolumes in terms of the average (global) strains, ,  
 

iε
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Substituting Eq. (1) into the local constitutive equation,  
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The average (global) stress tensor is given by,  
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Figure 4. Schematic of the Multiscale Recursive Micromechanics (MsRM) approach wherein micromechanics models 
are embedded within each other to model microstructure at any number of length scales. 

 
 
where 

i
vα   is the volume fraction of subvolume αi.  Eqs. (3) and (4) lead to, 
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and recognizing that the effective elastic constitutive equation at level i is given by, 
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Eqs. (5) and (6) indicate that the effective stiffness tensor, , at level i is given by, 
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In MsRM, the scales are linked by equilibrating the homogenized average stress, strain, and 
stiffness tensors at Level i to the local stress, strain, and stiffness tensors of a given subvolume at 
Level i-1  (with appropriate transformation to account for the potential coordinate system change from 
scale to scale).  That is, 
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where  and  are the appropriate second and fourth order coordinate transformation tensors, 
respectively.  Hence, it is clear that starting with the lowest scale (k) microstructure (see Figure 1), 
whose subvolumes contain only monolithic materials, the effective stiffness tensor can be calculated 
using any standard micromechanics theory.  This stiffness tensor (after appropriate coordinate 
transformation) then represents the homogenized material occupying one of the subvolumes within a 
composite material at the next higher length scale.  Given the transformed effective stiffness tensors 
of all subvolumes at this next higher length scale, the effective stiffness tensor of the composite at this 
level can be determined.  This stiffness tensor can then be transformed and passed along to the next 
higher length scale, and the process repeats until the highest length scale considered (0) is reached.   

As an example, for an MsRM analysis considering three length scales (0, 1, and 2), the overall 
effective stiffness tensor can be written using Eqs. (7) and (8) as, 
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Note that in Eq. (9), the superscript on the bracketed terms indicates that all variables within the 
brackets are a function of the subvolume indices from the next higher length scale (including lower 
scale volume fractions and subvolume indices).  The intent of this notation is to fully define the 
subvolume at a given scale as one progresses down the length scales.  For example, using this notation, 
the effective stiffness tensor at level 2, from Eq. (8), can be written as, 

( ){ }( ) ( ){ }( )
( ){ }( )0 0 01 1 12

2 4 1

α α αα α α∗   =   C T C  (10) 

as there are distinct ∗
2C  values for every level 1 subvolume, while there are distinct level 1 composites 

present within each level 0 subvolume. 
Converse to this multiscale homogenization procedure, MsRM can perform multiscale 

localization of the stress and strain tensors.  The multiscale localization is needed for inclusion of 
nonlinearity from damage (and inelasticity).  For the three length scale example, the local strain tensor 
in an arbitrary lowest scale (level 2) subvolume can be written using Eqs. (1) and (8) as, 
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Again, the superscript on the bracketed terms indicates that all variables within the brackets are a 
function of the subvolume indices from the next higher length scale.  The stress tensor for any 
subvolume at any length scale can be similarly determined through localization, or by simply using 
the strain tensor, along with the constitutive equation (2), at the appropriate length scale.  Note that, 
although not shown here for simplicity, the MsRM implementation in NASMAT includes thermal 
stresses as well.  Because of its ability to handle multiple length scales in a single analysis, MsRM is 
ideal for multiscale modeling of materials such as 3D woven composites that exhibit identifiable 
microstructures across multiple length scales. 
 
 
MULTISCALE MODEL OF 3D WOVEN COMPOSITE UNIT CELL IN NASMAT 
 

The recent development of NASMAT has focused on modularity, upgradability and 
maintainability, interoperability, and utility [36].  The various operations of the code are 
compartmentalized into a finite set of procedures each of which is accompanied with a library of 
modules.  Specific modules can be swapped, in and out as needed, to solve the particular multiscale 
problem of interest.  Numerous procedures, and the subroutines used within the modules, are 
recursive. Moreover, recursive data types are used extensively to handle the large quantities of data 
associated with each length scale.  The recursive nature of the NASMAT procedures and data enabled 
the development of the MsRM framework capable of supporting massively multiscale modeling (M3) 
on high performance computing systems (HPC). Finally, application program interfaces (APIs) have 
been developed to support communication between NASMAT and other external programs. 
 
MsRM Hierarchy of baseline SN005 3D woven model 
 

 
 
Figure 5. Idealized geometry of 3D woven SN005 RUC used to generate MsRM model in NASMAT.  Only the warp 
(red), weft (green), and binder (blue) tow representations are displayed and the bulk matrix is omitted. 

A multiscale model of the SN005 3D orthogonal woven RUC was generated in NASMAT using 
the idealized geometry given in Figure 5, where the bulk matrix is omitted to display the red warp, 
green weft, and blue binder tows, and analyzed with the MsRM implementation  Figure 6 shows the 
overall MsRM RUC hierarchy deployed to model the 3D woven RUC.  It can be seen that the analysis 
spans six length scales.  Since NASMAT facilitates an integrated approach, homogenization and 
localization occurs across all scales at each time step to compute the macroscopic non-linear response 



of the RUC.  Far field applied strains are passed down from above.  Periodic boundary conditions are 
assumed for every RUC at every scale, and homogenization is performed at every scale to provide 
the mechanical properties for the appropriate material point at the higher scale.   

The MsRM framework is agnostic with respect to the specific micromechanics theory used.  
Hypothetically, any micromechanics theory can be used at any scale in an MsRM analysis.  This 
allows for tailoring of the solution methodology to optimize the balance between efficiency and 
fidelity.  Here a mixture of the doubly-periodic GMC, triply periodic GMC, and MT were utilized, as 
shown in Figure 6 [37, 38]. 
 

 
 

Figure 6. MsRM RUC hierarchy deployed to model the SN005 3D woven CFRP within NASMAT. Level 0 – 
Macroscale. Level 1 – Mesoscale.  Level 2 – Stack-scale. Level 3 – Microscale.  Level 4 – Constituent-scale. Level 5 – 

Subscale. 

Referring to Figure 6, Level 0 which is the highest scale represent the macroscale of the 
composite. NASMAT computes the effective properties, as well as the fully 3D macroscopic stress 
and strain tensors considering the nonlinear effects from all the scales below.  

The homogenization of the mesoscale is separated into two steps, called double-homogenization.  
At the next scale, Level 1, the mesoscale details of the 3D woven composite are represented with a 
single subcell through the thickness of the RUC and the effective properties from Level 2. Triply-
periodic GMC is used to homogenize Level 1. At the stack-scale, Level 2, the details of the 3D weave 
are represented, and triply-periodic GMC is again used for the homogenization.  Double-
homogenization is employed to compensate for the lack of shear-normal coupling in GMC [39].  By 
homogenizing the stacks in Level 2 first, the effective properties in the subcells at Level 1 are 
anisotropic.  Therefore, the normal-shear coupling is retained at Level 1 as an effect of the local 
constitutive response, as opposed to the arrangement of constituents. 

Levels 1 and 2 are used to represent the idealized geometry presented in Figure 5.  One advantage 
of using GMC is that the theory is insensitive to refinements in the discretization of the unit cell, for 
a fixed geometry. Therefore, the subcell grid with the least amount of subcells needed to represent the 



desired geometry can be utilized.  This is because the continuity conditions used to formulate the 
strain concentration matrix, which maps the global strains to the local strains, is enforced in an 
average, integral sense.  This results in the directional volume fractions being the contributing factor 
in the homogenization, not local spatial location [40].  Thus, some the challenges normally associated 
with meshing these complex architectures are eliminated for an idealized geometry [41].  Imperfect, 
or “non-ideal,” geometries a can be considered by altering the idealized RUC, as appropriate. 

The effective constitutive properties of the subcells in the stacks are computed via the 
homogenization of the bulk matrix containing voids, using MT, and the homogenization of a 4 x 4 
RUC of hexagonally packed fibers in tow, using doubly-periodic GMC, at Level 3 – the microscale. 
Stress concentration due to the presence of the square fiber in the 4x4 RUC are not captured for the 
same reasons that GMC is not sensitive to grid refinement.  At Level 4 (the constituent scale), the 
material properties of the base fiber constituent at the current time are provided to Level 3 along with 
the effective properties of the inter-tow matrix, obtained using MT.  In addition, the effective 
properties of the base matrix constituent, and the spherical void, are provided to the Level 3 MT model 
of the bulk matrix.  Details of how the properties of the void are treated are given in the “Material 
Properties” subsection.  Finally, the Level 5 subscale consists of just the base matrix and void 
constituents, the properties of which are used in the Level 4 MT model of the inter-tow matrix. 

The baseline MsRM NASMAT model contains a total of 6,672 GMC subcells and 27,114 MT 
phases (voids or matrix). A total of 14,760 homogenizations are performed each time step, 13,557 of 
which use MT. The model is subjected to six uniaxial load cases with the specified uniaxial strain 
being applied over 100 time steps.  The average computation time for each simulation using a single 
CPU on a Windows machine is on the order of ~30 seconds. 

 
Subcell Failure Model 
 

Material non-linearity is introduced into the model in the form of material failure.  Maximum 
stress and maximum strain failure criteria were specified for the fiber constituent that considers only 
the normal components of stress or strain. 
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, fX ε are the stress and strain allowables for the fiber.  For the matrix, a maximum stress criterion was 
also applied, but all stress components were considered. 
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where ( )m m m

i
α β γσ  and ( )m m m

ij
α β γτ  are the normal and shear stresses in a matrix subcell, and Xm and Ym are 

the normal and shear stress allowables for the matrix.  Upon satisfaction of Eq. (12) or (13), a very 
simple “subvolume elimination” damage model has been used, wherein, the stiffness of the failed 



subcell is set to a very low value (in all directions).  Only constituent materials, which are at the lowest 
scales (Levels 5 and 6) in the MsRM hierarchy (see Figure 6) are allowed to fail. The local failure 
event is discrete.  Yet, the effective damaging response at the macroscale is progressive as the subcell 
failure advances locally, and the nonlinear effects of failure percolate up the scales through the 
homogenized stiffness tensors. 
 
Geometry Details and Material Properties 
 

The SN005 panel was composed of AS4-6k carbon fiber tows and RTM6 epoxy matrix. The 
minimum number of elastic constants used to compute the stiffness tensor of these phases is given in 
Table I.  The stiffness for the void was given an extremely low value. The failure criterion allowables 
for the fiber and matrix used in Eq. (12) and (13) are given in Table II. 

 
TABLE I. ELASTIC PROPERTIES OF AS4 FIBER AND RTM6 MATRIX. 

AS4 Fiber Property  RTM6 Matrix Property   
E11 (GPa) 231 E 2.89 
E22 (GPa) 15.0 ν 0.35 

ν23 0.3   
ν12 0.21   

G12 (GPa) 15.8   
 

TABLE II. FAILURE CRITERION ALLOWABLES. 
Allowable  

fX (GPa) 3.35 

fX ε  0.015 
Xm (MPa) 75.0 
Ym (MPa) 49.1 

 
The local fiber volume fraction used in the GMC RUC tows at Level 3 (see Figure 6) is 80% which 
results in a global fiber volume fraction of 50.3%.   X-Ray CT images of the flat panels in Figure 2 
do not indicate that voids are relevant manufacturing-induced defects.  However, the results from acid 
digestions tests suggest that the void content is 0.4%, and therefore must be in the form of distributed 
voids or porosity.  The local void content of the MT models is prescribed to be 0.805% which yields 
a global 0.4% distributed void content in the 3D woven RUC.  Due to the idealization of the geometry, 
the global fiber volume fraction does not exactly match the fiber volume content measure from the 
acid digestion tests; however the global void content is accurate [12]. 
 
Modeling Localized Voids with MsRM 
 

It is apparent from Figure 3 that, more complex geometries can result in localized voids arising 
in the as manufactured part.  One focus of the current work is to use NASMAT to estimate the 
sensitivity of the stress-strain response to such defects.  A location were the formation of voids is 
observed in Figure 3 is in the matrix regions between tows.  To simulate the effects of these localized 
voids a matrix subcell, in the middle of two tows within a Level 2 (see Figure 6) stack, is chosen, and 
the volume fraction of the spherical void in the Level 3 MT model linked to this subcell is substantially 
increased.  To isolate the effects of the localized void, the distributed voids ae removed from the 
model.  The local volume fraction of the voids in the remaining MT model is increased to 46% such 
that the global void content remains at 0.4%.   



Two cases are considered: A localized void between two warp tows or between two weft tows.  
The same stack definition is linked to multiple subcells at the Level 1 mesoscale to represent the 
idealized weave pattern. Thus, there are numerous localized voids distributed throughout the MsRM 
model.  When the void is placed between two warp tows, the repetitive use of of the stack definition 
is such that there are 12 local voids. There are eight local voids when it is located between two weft 
tows.  Since the voids are not distributed, the global volume fraction is not the measure controlling 
the response of the RUC. But rather, it is the driving by the local void content. Therefore local void 
content is kept constant for the two scenarios.  
 
Modeling Through-thickness Binder tow Disbonds with MsRM 
 

As mentioned previously, disbonding of the binder tows in the warp direction as they traverse the 
composite in the through-thickness (TT) direction, is a prominent observed defect in the 3D woven 
AS4/RTM6 composite.   Typical binder tow disbonds present in the as-manufactured AS4/RTM6 
composite are shown in Figure 2.  To model the effect of such preexisting disbonds on the mechanical 
response of the composite, a different GMC representation of the through thickness section of the 
binder tows has been defined.  That is, the binder tows running in the warp direction, at the top and 
bottom of the composite, have not been redefined.  The new TT binder tow definition includes a thin 
subcell (adjacent in the x3-direction) that traverses the entire thickness with very low mechanical 
properties. This disables the ability of the TT binder tow to transfer any traction in the x3-direction 
(warp), see Figure 6.  This has been applied to all six TT binder tows and thus represents an upper 
bound for the effect of the TT binder tow disbonds on the composite response.  In the context of the 
MsRM model of the composite, the thin void is added adjacent to the homogenized through-thickness 
stack of subcells representing the TT binder tow, essentially forming a new level between the 
mesoscale (Level 1) and the stack-scale (Level 2) where at the locations where there are binder tows, 
shown in Figure 5 and Figure 6.   
 
 
RESULTS AND DISCUSSION 
 
Baseline Prediction and Validation 
 

The baseline model contains a global void content of 0.4% distributed throughout the matrix in the 
MsRM hierarchy shown in Figure 6. The predicted warp-direction (x3, see Figure 5) stress/strain 
curve is compared to experimental data in Figure 7. Good agreement between the simulated and 
experimentally observed stress/strain curves were obtained with minimal analysis assumptions. The 
predicted warp-direction tensile modulus (59.3 GPa) and tensile strength (753 MPa) are both within 
3% of experimental data.  There is a sharp drop in the stress-strain curve at 343 MPa due to failure in 
bulk matrix. It is possible that an improved representation of the damage evolution in the subcells, via 
an energy-based continuum damage model, could slow the progression of failure in the bulk matrix 
and improve the ultimate strain to failure prediction. 
 



 
 

Figure 7. Warp-direction stress vs. strain prediction compared to experimental data. 

Six uniaxial, applied strain simulations were conducted to obtain six directional strength 
predictions for the 3D woven CFRP.  These strengths are summarized in Table III, and have yet to be 
validated (with the exception of the prediction of the ultimate stress in the warp-direction).  Two 
values are presented in Table III.  The damage initiation stress is the stress at which the stress-strain 
response predicted by the simulation deviates from linear, and the ultimate stress is the stress achieved 
in the entire global stress-strain history.  The results in Table III indicate the weft-direction exhibits a 
lower damage initiation stress than the warp-direction, but a higher ultimate stress.  The TT and in-
plane shear strengths are predicted to be significantly lower than the in-plane normal strengths, in 
which the fiber axis is the direction of the primary load path. 
 
TABLE III. PREDICTED STRENGTHS FOR 3D WOVEN COMPOSITE RUC WITH 0.4% DISTRIBUTED VOIDS. 

Loading Damage Initiation Stress (MPa)    Ultimate Stress (MPa) 
ε11 (through-thickness) 14.7 55.3 

ε22 (weft) 224 814 
ε33 (warp) 343 753 

γ23 (in-plane shear) 7.1 23.5 
γ13 (transverse shear) 38.2 38.2 
γ12 (transverse shear) 40.8 40.8 

 
In Figure 8, the stress strain curves predicted for all six loading scenarios are presented.  On the 

same axes, the volume of a failed constituent relative to the total volume of that constituent in the 
bulk matrix, warp tow, weft tow, and binder tow is plotted as a function of the applied strain.  The 
value of the relative failed volume does not indicate the severity of the damage because the 
relationship between failed volume and stiffness degradation is not one-to-one.  However, these plots 
provide a good qualitative sense of how the failure modes are evolving in the simulation. 

 
 



 

  

  
Figure 8.  Evolution of relative volume fraction of failed constituents and stress-strain response for 3D woven composite 

RUC containing 0.4% distributed voids. a.) Applied ε11 (through-thickness) strain. b.) Applied ε22 (weft) strain. c.) 
Applied ε33 (warp) strain. d.) Applied γ23 (in-plane shear) strain. e.) Applied γ13 (transverse shear). f.) Applied γ12 

(transverse shear). 

 
 

Figure 8a shows results for an applied strain in the through-thickness direction.  The simulation 
predicts that damage initiates due to cracking in the bulk matrix. Later warp matrix and weft matrix 
damage leads to a catastrophic drop in the load carrying capability of the composite.  The damage 
evolution is dominated by matrix cracking.  The fact that the binders do not contribute to the through-
thickness strength, is an artifact of GMC.  Once the bulk matrix subcell in the stacks containing the 
binders fail, those stacks can no longer sustain any load due to the lack of normal-shear coupling in 
GMC.   

(a)             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c)           (d) 
 
 
 
 
 
 
 
 
 
 
 
 
(e)           (f) 
 



The simulated non-linear behavior of the 3D woven unit cell, when loaded in the weft x2-direction, 
is displayed in Figure 8b.  Matrix failure starts in the binder, but does note manifest as a noticeable 
drop in the stress-strain curve until the warp matrix fails.  These two failure modes represent 
transverse cracking in the warp and binder tows.  Ultimate failure is governed by fiber failure in the 
weft tows, as expected. 

In the warp-direction, Figure 8c show that NASMAT predicts that matrix failure in the weft tow, 
binder tow, and intra tow region leads to an initial drop in the stress strain curve.  Just prior to the 
ultimate failure there is some more weft matrix cracking, and the specimen fails catastrophically when 
the warp tow fibers fail.  A similar failure mode evolution has been observed in multiscale finite 
element method simulations of similar 3D woven configurations [14]. 

Figure 8d shows the failure prediction under in-plane shear loading.  Matrix damage accrues in 
the binder, followed by the warp tow, and the weft tow.  The sudden loss of shear stiffness in the 
matrix results in the “saw-tooth” like pattern in the shear stress-shear strain curve.  The local use of a 
progressive damage model would results in a much smoother non-linear curve. 

The through-thickness shear response is exhibited in Figure 8e and Figure 8f.  The response of 
these curves is dominated by the first subcell failure for the same reasons as when the RUC is loaded 
in the x1-directon.  Once there is a failure in a stack, the through-thickness reinforcement in that no 
longer holds any stress.  Using the high fidelity GMC (HFGMC) to model the RUCs at the stack-
scale, see Figure 6, may be a viable solution to this problem because the normal shear coupling that 
is lost due to the first order displacement approximation used in GMC will be recovered [37]. 

 
Effect of Distributed Void Content 
 

TABLE IV. PERCENT DIFFERENCE IN STRENGTH BETWEEN 3D WOVEN COMPOSITE RUC WITH NO 
VOIDS AND BASELINE MODEL CONTAINING 0.4% DISTRIBUTED VOIDS. 

 
Loading %Diff. Damage Initiation Stress  %Diff. Ultimate Stress  

ε11 (through-thickness) 1.3 -1.1 
ε22 (weft) 0.083 0.056 
ε33 (warp) 0.083 0.027 

γ23 (in-plane shear) 0.87 1.4 
γ13 (transverse shear) 1.3 1.3 
γ12 (transverse shear) 1.3 1.3 

 
TABLE V. PREDICTED DIFFERENCE IN STRENGTH BETWEEN 3D WOVEN COMPOSITE RUC WITH 10X 

INCREASE IN VOID CONTENT AND BASELINE MODEL CONTAINING 0.4% DISTRIBUTED VOIDS. 
 

Loading %Diff. Initiation Stress  %Diff. Ultimate Stress  
ε11 (through-thickness) -11 -10 

ε22 (weft) -11 -0.41 
ε33 (warp) -7.6 1.8 

γ23 (in-plane shear) -7.7 -6.6 
γ13 (transverse shear) -8.5 -8.5 
γ12 (transverse shear) -7.2 -7.2 

 
The baseline model for the S500 coupon contained 0.4% void content distributed throughout the 

bulk and intertow matrix.  It is of interest to see if this amount of as-manufactured voids, or porosity, 
has any effect on the strengths of the material.  Simulations were conducted with MsRM RUCs that 
contained no voids by replacing the MT models at Levels 3 and 4 with pure matrix.  Table IV shows 
that there is less than 2% percent difference in the predicted strengths for the RUC with no voids 



compared to the baseline with 0.4% distributed void content.  Similarly, the removal of voids did not 
change the evolution of the damage mechanisms in any of the cases. 

 
 

  

  
Figure 9.  Evolution of relative volume fraction of failed constituents and comparison of stress-strain response of 3D 
woven composite RUC with 10x increase in void content to baseline simulation containing 0.4% distributed voids. a.) 
Applied ε11 (through-thickness) strain. b.) Applied ε22 (weft) strain. c.) Applied ε33 (warp) strain. d.) Applied γ23 (in-plane 
shear) strain. e.) Applied γ13 (transverse shear). f.) Applied γ12 (transverse shear). 

 
To discern if the composite strengths are sensitive to the presence of distributed voids, the global 

void content was amplified by an order of magnitude to 4% which required a local void content of 
8.05%.  A distributed void, or porosity content of 4% is plausible if the part geometry is complex 
and/or a different resin system is used. 

(a)             (b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c)           (d) 
 
 
 
 
 
 
 
 
 
 
 
 
(e)           (f) 
 



Table V summarized the difference in the predicted strengths between the baseline RUC and an 
RUC with 10 times the distributed void content.  This result in as high as ~10-11% change in the 
initiation and ultimate stresses.  The minimum difference in observed damage initiation stress was 
~7%. Yet, the increased porosity had no effect on the ultimate strength in the weft direction.  Most 
models exhibited a change of ~6-8% in the initiation and final strength.  All cases showed the 
increased porosity led to a decrease in the observed strengths, except for the ultimate strength in the 
warp direction. 

The complete stress-strain curves for all six uniaxial loading configurations are presented in 
Figure 9. It is clear that, for the cases with a substantial knockdown in ultimate strength, the difference 
is a result of change in the global stiffness due to the increased porosity. The strain to failure displays 
far less deviation from the baseline case.  None of the plots in Figure 9 show a difference in the 
evolution of the failure modes. 

 
Effect of Localized Voids 
 
Motivated by the X-Ray CT scans in Figure 2 and acid digestion tests, voids were modeled in the 
previous section as distributed porosity.  However Figure 3 shows that for more complex geometries, 
the manufacturing process results in large localized voids.  The predicted strengths of 3D woven 
RUCs containing localized voids is presented in this section. 

The six strengths of the RUC with localized voids between the weft tow predicted under uniaxial 
strains are summarized in Table VI.  The through-thickness strengths were the most influenced by the 
presence of the local voids, especially the transverse shear strengths.  The 12-shear strength exhibited 
a 44% reduction.  There is most likely significant error in the value of this reduction. Still, a marked 
reduction in the through-thickness shear strengths of a 3D woven composite is plausible, and 
expected, because the missing matrix adjacent to a weft tow would allow for easier rotation of that 
tow, inducing other local stresses throughout the material.  Localizing the void content did not 
significantly affect the progression of failure modes. Similar trends in the strengths (Table VII) are 
observed when the local voids are placed in between warp tows. However, the 13-shear strength is 
more significantly impacted than the 12-strength, opposite of the previous set of results. 

 
TABLE VI. PREDICTED PERCENT DIFFERENCE IN STRENGTH OF 3D WOVEN COMPOSITE RUC 
LOCALIZED VOIDS BETWEEN WEFT TOWS COMPARED TO BASELINE MODEL CONTAINING 

DISTRIBUTED 0.4% VOIDS. 
 

Loading %Diff. Damage Initiation Stress  %Diff. Ultimate Stress  
ε11 (through-thickness) 0.37 -4.8 

ε22 (weft) 0.07 -0.047 
ε33 (warp) 0.07 0.023 

γ23 (in-plane shear) 0.08 -6.0 
γ13 (transverse shear) -12 -12 
γ12 (transverse shear) -44 -44 

 
 
 
 
 
 



TABLE VII. PREDICTED PERCENT ERROR IN STRENGTH OF 3D WOVEN COMPOSITE RUC LOCALIZED 
VOIDS BETWEEN WARP TOWS COMPARED TO BASELINE MODEL CONTAINING DISTRIBUTED 0.4% 

VOIDS. 
 

Loading %Error Damage Initiation Stress  %Error Ultimate Stress  
ε11 (through-thickness) -0.08 -2.9 

ε22 (weft) 5.3 0.13 
ε33 (warp) -0.92 -1.0 

γ23 (in-plane shear) 0.71 1.1 
γ13 (transverse shear) -34 -34 
γ12 (transverse shear) -9.4 -9.4 

 
Effect of Disbonds in the Through-Thickness (TT) Binder Tow 
 
 The differences between the simulations with and without the TT binder tow disbond, in terms of 
the predicted damage initiation stress and ultimate stress, are shown in Table VIII.  Because the binder 
tow disbond is normal to the x3-direction (see Figure 2 and Figure 3), its effect on the through-
thickness (x1-) direction and the weft (x2-direction) direction normal stress-strain responses is minimal 
(see Figure 10a and Figure 10b).  As one would expect, the effect in the warp (x3-) direction (see  
Figure 10c) is more significant.  The initial warp-direction Young’s modulus is decreased by 8%, and 
the effect of the damage initiation event (partial failure of the weft matrix) is muted compared to the 
baseline case.  However, after this damage initiation event, the curve that includes the binder tow 
disbonding follows the baseline stress-strain curve closely, and the predicted ultimate stress, which is 
associated with warp fiber failure, is nearly identical.  Clearly, because the TT binder tows carry very 
little stress when the composite is loaded in the warp direction and the final is dictated by warp fiber 
failure, the TT binder tow disbond has minimal effect. 
 

TABLE VIII. PREDICTED PERCENT DIFFERENCE IN STRENGTH OF 3D WOVEN COMPOSITE RUC WITH 
TT BINDER TOW DISBONDING COMPARED TO BASELINE MODEL CONTAINING DISTRIBUTED 0.4% 

VOIDS. 
Loading %Diff. Initiation Stress  %Diff. Ultimate Stress  

ε11 (through-thickness) -1.8 -3.4 
ε22 (weft) -0.12 -0.051 
ε33 (warp) -11 0.15 

γ23 (in-plane shear) N.A. N.A. 
γ13 (transverse shear) -19 -19 
γ12 (transverse shear) -0.0072 -0.0072 

 
 
 
 
 



 

 

 
Figure 10. Evolution of relative volume fraction of failed constituents and comparison of stress-strain response of 3D 

woven composite RUC with TT binder tow disbonds compared to baseline simulation containing 0.4% distributed voids. 
a.) Applied ε11 (through-thickness) strain. b.) Applied ε22 (weft) strain. c.) Applied ε33 (warp) strain. d.) Applied γ23 (in-

plane shear) strain. e.) Applied γ13 (transverse shear). f.) Applied γ12 (transverse shear). 

 
 Figure 10d, indicates that adding the binder tow disbond through the entire thickness of the 3D 
woven composite completely eliminates the in-plane (x2-x3) shear stiffness.  As previously discussed, 
this is because of the well-known lack of shear coupling within the GMC theory being used at Level 
1 (see Figure 6) in the employed MsRM approach.  This is obviously unrealistic and can be overcome 
by reducing the extent of the disbond or employing the HFGMC micromechanics theory [37]. 
 The TT shear response curves are shown in Figure 10e and Figure 10f.  While the τ12-γ12 response 
(Figure 10f) is insensitive to the presence of the binder tow disbond, the τ13-γ13 response (Figure 10e) 
is significantly impacted.  The initial shear modulus is reduced by 28%, and the ultimate stress is 
reduced by 19%.  This is again due to the orientation of the disbond, normal to the x3-direction and 
the lack of normal shear coupling may be a contributor to the severity. 
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CONCLUSION 
 
The MsRM method utilizing GMC and MT was deployed using the NASMAT computational 
framework to predict the stress-strain response of a 3D woven CFRP woven unit cell containing as 
manufactured distributed voids and subjected to uniaxial loads.  The ultimate strength in the warp 
direction was predicted to within 3% of experimental data, and the evolution of the failure modes 
were aligned with those reported in the literature obtained using higher fidelity, multiscale FEM 
models.  The simulation results provide insight into the damage tolerant nature of 3D woven 
composites.  Although initial matrix damage occurs and can be observed in the global stress-strain 
response of the composite, the cracks are not allowed to progress and develop into critical flaws.  
Catastrophic failure does not occur until much later, as a result of fiber fracture. In addition, the in-
plane damage tolerance of the 3D woven material was demonstrated because of its ability to carry 
substantial load in the presence of porosity, voids,  and TT binder tow disbonds. 

Reasonable predictions for the weft and in-plane shear behavior of the 3D woven unit cell are 
presented.  However, these results still need to be validated experimentally.  The through-thickness 
strength predictions contain error due to the well-known lack of normal-shear coupling with GMC. 
This can be remedied by employing HFGMC selectively throughout the MsRM model without 
severely affecting the computational cost. 
 Parametric studies were conducted to ascertain the influence of increased porosity and localized 
voids.  There was no discernable difference between in the strengths when distributed voids were 
removed.  The void content was increased to 10 times the measured data which lead to a noticeable 
decrease in the damage initiation stress, but not the ultimate strength, in the warp and weft directions.  
However, it did affect both initiation and ultimate strengths under in-plane shear loading.  The effect 
of localized voids on the in-plane strengths were minimal.  Except when voids between the weft tows 
led to a 6% reduction in the in-plane ultimate shear strength, and voids between warp tows led to a 
5.3% increase in the weft direction damage initiation stress. 
 The effect of disbonding of the TT binder tows was also simulated. The in-plane (τ23-γ23) shear 
response did show sensitivity to the TT binder disbond but this simulations was not realistic because 
the simulated disbond spanned the entire composite thickness. Also, the fact that the employed GMC 
micromechanics theory lacks shear coupling increased the apparent severity of the disbond.  Omitting 
the through thickness strengths for aforementioned reasons, none of these defects had a significant 
effect on the warp or weft ultimate strengths of the material.  The warp tensile results were noteworthy 
as, in this case, even though the disbond was oriented normal to the loading direction and affected the 
initial slope and damage initiation stress, the ultimate stress prediction was not significantly affected.  
This is because, even without the disbond, very little stress is carried by the TT binder tows in response 
to in-plane normal loading.   
 The predictive capability of NASMAT combined with its speed provides an attractive tool for 
performing rapid engineering trade studies on complex composite systems. This example also 
demonstrates NASMAT’s flexibility by incorporating five separate levels of calculations and three 
distinct micromechanics theories under one platform.  This development addresses an apparent 
technological gap observed in the open literature. There exists very few modeling tools that can delve 
below the meso-scale of 3D woven composites; although, this may be a requirement necessary to 
capture the physics of damage at the appropriate length scale.  Deficiencies to predict the through-
thickness behavior of the 3D woven composite were identified in the specific MsRM strategy used 
for this work, and a solution involving the inception of HFGMC into the workflow has been proposed. 
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