¹San José State University Research Foundation, Fatigue Countermeasures Laboratory, Moffett Field, CA, USA ²Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA

Introduction

- Waking from sleep, especially slow wave sleep (SWS), is associated with reduced alertness known as sleep inertia.
- Light alertness improves during deprivation and circadian misalignment.
- In this study, we assessed the efficacy of light to improve alertness and mood immediately after waking from SWS.

Methods

- Twelve participants (6 female; 23.3 ± 4.2 y) kept a sleep schedule of 8.5 h for 5 nights and 5 h for one night prior to the overnight laboratory visit (confirmed by actigraphy) (Fig. 1).
- During the lab visit, sleep was monitored using polysomnography. After at least 5 min of SWS, participants were awoken and exposed to either blue-enriched light (LIGHT) or dim, red light (CONTROL) for 1 h (Fig. 2).
- Karolinska Sleepiness Scale (KSS) and visual analogue scales (VAS) of mood were completed pre-sleep (baseline) and at 2 min, 17 min, 32 min, and 47 min after waking (Fig. 1, inset).
- Following testing, all lights were turned off and participants returned to sleep before being woken from SWS again and exposed to the opposite condition (LIGHT or CONTROL).

Light Improves Alertness and Mood during the SJSU Sleep Inertia Period following Slow Wave Sleep

sleep

Fig. 1: Study protocol showing at-home sleep schedule and inlaboratory testing. Times are approximate as participants kept their habitual bedtimes. Order of intervention and control was randomized.

Fig. 2: Examples of the test set up in the blue-enriched light intervention (LIGHT) and dim, red light condition (CONTROL). Participants were seated on the edge of the bed during the testing period.

<u>Cassie J. Hilditch¹</u>, Nathan H. Feick¹, Lily R. Wong¹, Nicholas G. Bathurst¹, Erin E. Flynn-Evans²

Statistics

condition*time, a

Results

Conclusion

- Exposure immediately
- performance.

Support

Naval Post-Graduate School Grant. NASA Airspace Operations and Safety Program, System-Wide Safety Project.

Data were analyzed using a linear mixed-effects model with fixed effects of condition, time, and intercept random by participant, and a covariate of the average of baseline tests bouts (pre-sleep).

Compared to the control condition, participants exposed to blue-enriched light reported feeling more alert (KSS: $F_{1.77}$ =4.955, p=.029; VAS_{alert}: $F_{1.77}$ =8.226, p=.005), more cheerful (VAS_{cheerful}: $F_{1.77}$ =8.615, p=.004), less depressed (VAS_{depressed}: $F_{1,77}$ =4.649, p=.034), and less lethargic (VAS_{lethargic}: F_{1,77}=5.652, p=.020) (Fig.3).

light blue-enriched to after waking from SWS during the biological night may help to improve subjective alertness and mood.

Future analyses will explore whether these findings extend to effects on cognitive