

Entry, Descent, and Landing Panel Humans to Mars Summit 2020

Ashley M. Korzun, NASA
Deputy PI, Entry Systems Modeling Project

Deputy PI, Plume-Surface Interaction Project

2 September 2020

Entry: Inflatable Aeroshell

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

A deployable aeroshell consisting of an Inflatable Structure that maintains shape during atmospheric flight and flexible and a Flexible Thermal Protection System that protects the entry vehicle through hypersonic entry

- Inflatable decelerator technology:
 - Deploys a large aeroshell before atmospheric interface
 - Enables landing more payload mass and/or at higher altitudes
 - Reduces peak heat flux by decelerating more in less dense upper reaches of the atmosphere
 - Allows payloads to use full diameter of the launch vehicle fairing

LOFTID Technology Demonstration Mission

- Low-Earth Orbit Flight
 Test of an Inflatable
 Decelerator (LOFTID)
- Orbital entry (7-11 km/s)
 flight test of HIAD
 technology to mature
 inflatable aeroshell for
 NASA heavy down-mass
 missions and commercial
 applications
- 6m diameter HIAD
- March 2022 launch from Vandenberg AFB

Descent: Retropropulsion

Supersonic Retropropulsion (SRP)

Use of rocket propulsion for the primary purpose of decelerating the vehicle in atmospheric flight, beginning at supersonic speeds

- Replaces supersonic parachutes in heritage EDL systems
- Enables landing more payload mass
- Provides additional control authority during descent and landing
- Potential for significant aerodynamic effects on vehicle and impacts to sensor performance

Complex retropropulsion exhaust plumes

Looking at the heatshield (orange) with engines firing

Landing: Retropropulsion

Rocket Plume-Surface Interaction (PSI)

The lander environment due to the impingement of hot rocket exhaust on the regolith of planetary bodies

- Plume effects can lead to vehicle instability before touchdown and localized heating on the lander
- Cratering can lead to vehicle instability and tilt
- Ejecta can obscure sensors and damage hardware and surface assets

Apollo 15 LEM camera views

- Coming years will see an uptick in lunar landing attempts, all of which will use powered descent
- Commercial lunar landers are a key component of technology demonstration
- Points of departure for:
 - Long-term cryogenic storage
 - Engine performance
 - GNC with retropropulsion
 - Plume-surface interaction
 - Sensors and onboard instrumentation

All phases of EDL at Mars are critically impacted by the presence of an atmosphere

Summary

- Human-scale EDL at Mars requires new technology for all phases of flight, including:
 - Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
 - Retropropulsion for descent and landing
 - Precision landing and hazard avoidance
 - New Guidance, Navigation, and Control (GN&C) approaches
- EDL is challenged by constraints from the larger human exploration architecture
- Ground testing, computational analysis, terrestrial flight testing, robotic Mars science missions, and Lunar exploration all bring us closer to boot prints on Mars

