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Entry: Inflatable Aeroshe

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
Relative Scales of HIAD Missions

A deployable aeroshell consisting of an Inflatable Structure that maintains shape
during atmospheric flight and flexible and a Flexible Thermal Protection System - m
that protects the entry vehicle through hypersonic entry

* Inflatable decelerator technology: LOFTID (6m)

ST

— Deploys a large aeroshell before atmospheric interface
— Enables landing more payload mass and/or at higher altitudes \-!u g
HEART (8.3m)

— Reduces peak heat flux by decelerating more in less dense upper
reaches of the atmosphere
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— Allows payloads to use full diameter of the launch vehicle fairing
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LOFTID Technology Demonstration Missio

Low-Earth Orbit Flight
Test of an Inflatable
Decelerator (LOFTID)

Orbital entry (7-11 km/s)
flight test of HIAD
technology to mature
inflatable aeroshell for
NASA heavy down-mass
missions and commercial
applications
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Low-Earth Orbit Flight Test of an Inflatable
Decelerator (LOFTID) Mission Highlights

- Orbital reentry flight demonstration
- Validates structural and thermal performance Collision
- Launches from Vandenberg AFB as a secondary

- Limited data (trajectory, performance, orientation)

- Performance data recorded onboard, unit jettisoned

of advanced inflatable aeroshell
Centall Reentry Demonstration

(Spin-Stabilized

against mission relevant flight conditions Avoidance Ballistic Trajectory)

payload on an Atlas V flight
received in real time through Iridium network

before RV splashes into the ocean.




Descent: Retropropulsio

Supersonic Retropropulsion (SRP)

Use of rocket propulsion for the primary purpose of
decelerating the vehicle in atmospheric flight,
beginning at supersonic speeds

« Powered descent technology:
9y Complex retropropulsion exhaust plumes

— Replaces supersonic parachutes in heritage EDL systems
— Enables landing more payload mass
— Provides additional control authority during descent and landing

— Potential for significant aerodynamic effects on vehicle and
impacts to sensor performance
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Vehicle decelerates towards the surface of Mars



Landing: Retropropulsion

Rocket Plume-Surface Interaction (PSI)

The lander environment due to the impingement of hot
rocket exhaust on the regolith of planetary bodies

* Plume effects can lead to vehicle instability before touchdown
and localized heating on the lander

« Cratering can lead to vehicle instability and tilt

« Ejecta can obscure sensors and damage hardware and
surface assets

MSL Skycrane Plume Induced Surface Cratering

Sleepy Dragon
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Moon to Mars

« Coming years will see an uptick in lunar landing
attempts, all of which will use powered descent

« Commercial lunar landers are a key component of
technology demonstration

* Points of departure for:
— Long-term cryogenic storage
— Engine performance
— GNC with retropropulsion
— Plume-surface interaction
— Sensors and onboard instrumentation

All phases of EDL at Mars are critically impacted by
the presence of an atmosphere




« Human-scale EDL at Mars requires new technology for all
phases of flight, including:
— Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
— Retropropulsion for descent and landing
— Precision landing and hazard avoidance
— New Guidance, Navigation, and Control (GN&C) approaches

« EDL is challenged by constraints from the larger human
exploration architecture

* Ground testing, computational analysis, terrestrial flight
testing, robotic Mars science missions, and Lunar
exploration all bring us closer to boot prints on Mars

Mach 1.4




See you on Mars!
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