

CENTER of EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

AM Industrialization and Automation 4th ASTM AM CoE Snapshot Workshop (Virtual)

Additive Manufacturing Developments for Rocket Engines: Applications, Advanced Materials and Large Scale Techniques

Paul Gradl, NASA Marshall Space Flight Center

Presenter Bio

ASIM

CENTER of EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

Paul Gradl

- Senior Engineer in Component Technology Development
- NASA Marshall Space Flight Center

Paul Gradl is a Senior Propulsion Engineer at NASA Marshall Space Flight Center (MSFC) in the Propulsion Division, Engine Components Development and Technology Branch. Mr. Gradl serves as principal investigator and leads several projects for additive manufacturing of liquid rocket engine combustion devices and supports a variety of development and flight programs over the last 16 years. He authored and co-authored over 40 conference and professional papers and journal articles; holds four patents in additive; and taught several classes in additive manufacturing for propulsion. Three of his papers were recognized as industryleading efforts in the field of additive manufacturing for propulsion. Gradl is the recipient of numerous NASA and industry awards including two NASA Exceptional Achievement Medals, NASA Exceptional Service Medal, MSFC Research and Technology, NASA Technology Transfer, Engineering Partnership Award, and NASA Space Flight Honoree to name a few. Mr. Gradl serves on several committees and chairs various sessions at leading conferences on additive manufacturing.

Introduction and Agenda

- Motivation for using AM in rocket engines
- Brief Case Study
- Overview of AM Techniques and Trades
- L-PBF and its limitations
- Large scale techniques and examples
- New material developments for AM
- Current focuses in AM for rocket engines

CENTER of

ADDITIVE MANUFACTURING

Hot-fire testing of bimetallic additively manufactured combustion chamber

Introduction and Motivation

- CENTER of EXCELLENCE Research to Standards
 - ADDITIVE MANUFACTURING

- Metal Additive Manufacturing provides significant advantages for lead time and cost over traditional manufacturing for rocket engines
 - Lead times reduced by 2-10x and cost reduced by more than 50%
- Complexity is inherent in liquid rocket engines and AM provides new design and performance opportunities
- Materials that are difficult to process using traditional techniques, long-lead, or not previously possible are now accessible using metal additive manufacturing

Case Study – Combustion Chambers

CENTER of EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

Traditional Manufacturing

AM Development

6-8 mos / \$200k*

Evolving AM

3-5 mos / \$125k**

12-18 mos / \$310k*

Focus of AM Techniques for Rocket Engines

EXCELLENCE **Research to Standards**

ADDITIVE MANUFACTURING

*Does not include all metal AM processes

Example of L-PBF for rocket applications

- Extreme environments, complex shapes, and new materials
 - Combustion Chambers (regen-cooled)
 - Injectors
 - Cryogenic Fluid Management
 - In-space thrusters
 - Turbomachinery (Fuel and LOX)
 - Pump and turbine ends of rotating
 - Nozzles
 - Ignition systems
 - Valves
 - Lines, ducts

AM solutions for large scale

CENTER of EXCELLENCE **Research to Standards**

ADDITIVE MANUFACTURING

Blown Powder DED

Wire Arc Deposition

Gradl, P. R., & Protz, C. S. (2020). Technology advancements for channel wall nozzle manufacturing in liquid rocket engines. Acta Astronautica. https://doi.org/10.1016/j.actaastro.2020.04.067

Example of blown powder DED for large-scale nozzles

Example of blown powder DED for large-scale nozzles

CENTER of EXCELLENCE Research to Standards

Example of large scale complex AM

Freedom in design and deposition strategies

RS25 Powerhead demonstrator under NASA SLS Artemis (Courtesy: RPMI)

Material Availability for Rocket Applications

EXCELLENCE Research to Standards

CENTER of

ADDITIVE MANUFACTURING

As available materials and processes continue to grow, so does complexity of characterization and standardization

Ni-Base	Fe-Base SS 17-4PH	Cu-Base GRCop-84	Refractory	Ti-Base	Bimetallic GRCop-84/IN625
Inconel 718	SS 15-5 GP1	GRCop-42	W-25Re	γ-ΤίΑΙ	C-18150/IN625
Hastelloy-X	SS 304	C-18150	Мо	Ti-6-2-4-2	
Haynes 230	SS 316L	C-18200	Mo-41Re		
Haynes 282	SS 420	Glidcop	Mo-47.5Re		
Haynes 188	Tool Steel	CU110	C-103	Co-Base	Al-base
Monel K-500	(4140/4340)		Та	CoCr	Fe-base
C276	Invar 36	Al-Base		Stellite 6,	Ni-base
Rene 80	SS347	AlSi10mg		21, 31	
Waspalloy	JBK-75	A205			
	NASA HR-1	F357 6061 / 4047	Industry Materials developed for L- PBF, E-PBF, and DED processes <i>(not fully inclusive)</i>		

AM Copper alloys for combustion chamber, GRCop-42 and GRCop-84

- Oxidation and blanching resistance during thermal and oxidation-reduction cycling
- A maximum use temperature around 800°C, depending upon strength and creep requirements
- Good mechanical properties at high use temperatures (2x of typical copper)
- NASA and industry partners working to mature the entire supply chain, characterization, properties and component application

Gradl, P., Protz, C., Ellis, D.C., Greene, S.E. "Progress in Additively Manufactured Copper-Alloy GRCop-84, GRCop-42, and Bimetallic Combustion Chambers for Liquid Rocket Engines." 70th International Astronautical Congress 2019. 21-25 October 2019. Washington, DC. United States. IAC-19.C4.3.5x52514

Element GRCop-42 Wt % GRCop-84 Wt % 3.1 - 3.46.2 - 6.8Cr 2.7 - 3.05.4 - 6.0Nb Target <50 ppm Target <50 ppm Fe Target <400 ppm Target <400 ppm 0 <50 ppm <50 ppm AI Si <50 ppm <50 ppm Cu Balance Balance **Cr:Nb Ratio** 1.12 - 1.151.12 - 1.15

CENTER of EXCELLENCE Research to Standards

Example of AM GRCop-alloys used in rocket engines

Multi-Alloy Additive

Combine L-PBF and DED

Using AM for NASA HR-1, Hydrogen Resistant Alloy

- AST
- CENTER of EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

- NASA HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion.
- "HR" stands for <u>Hydrogen-</u>Resistant (HEE resistant)
- Originally derived from JBK-75, developed at NASA MSFC in mid-1990's
- NASA-HR-1 is a unique alloy that extends the compositional range of existing HEE-resistant Fe-Nibase superalloys.

Katsarelis, C., Chen, P., Gradl, P.R., Protz, C.S., Jones, Z., Ellis, D.E., Evans, L. "Additive Manufacturing of NASA HR-1 Material for Liquid Rocket Engine Component Applications." Paper presented at 2019 JANNAF 11th Liquid Propulsion Subcommittee (LPS), December 9-13. Tampa, FL. (2019).

Examples of Additive NASA HR-1

CENTER of EXCELLENCE Research to Standards

ADDITIVE MANUFACTURING

Courtesy: RPM Innovations (RPMI)

Continued Developments in AM

- CENTER of EXCELLENCE Research to Standards
 - ADDITIVE MANUFACTURING

- Large scale, small feature resolution DED processes
- Supplemental processing and post-processing
 - Dissolvable supports
 - Surface Enhancement Technology
 - Inspection and in-situ monitoring
- Bimetallic and multi-metallic deposition with a variety of processes
 - Combining additive processes to achieve optimization
- New alloy development and/or with new processes
 - Refractory, Superalloys for specific environments
- Full material characterization and property development
- Standardization of post-processing
- Certification of AM processes for flight applications

Summary

- Rocket engines are a prime use of AM with the appropriate process approach
- Many metal AM processes are available and maturing – select based on component requirements
- New materials are being developed for harsh environments
- Large metal AM provides new opportunities with complex internal features
- Standards and certification of the process in-work
- AM is evolving and there is a lot of work ahead

CENTER of

