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• Enables:
– Adopting condition-based maintenance strategies, instead of time-based 

maintenance
– Optimally scheduling maintenance
– Optimally planning for spare components
– Reconfiguring the system to avoid using the component before it fails
– Prolonging component life by modifying how the component is used (e.g., 

load shedding)
– Optimally plan or replan a mission

• System operations can be optimized in a variety of ways

Prognostics
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Current Approaches
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Results tend to be 
intuitive
Models can be reused
If incorporated early 
enough in the design 
process, can drive 
sensor requirements 
Computationally 
efficient to implement
Model development 
requires a thorough 
understanding of the 
system
High-fidelity models can 
be computationally 
intensive
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Pros
Easy and Fast to implement

Several off-the-shelf packages are available for data mining
May identify relationships that were not previously considered

Can consider all relationships without prejudice
Cons

Requires lots of data and a “balanced” approach
Most of the time, lots of run-to-failure data are not available
High risk of “over-learning” the data
Conversely, there’s also a risk of “over-generalizing”

Results may be counter- (or even un-)intuitive
Correlation does not always imply causality!

Can be computationally intensive, both for analysis and implementation

Example techniques
Regression analysis
Neural Networks (NN)
Bayesian updates
Relevance vector machines (RVM)

Data-Driven Methods



Description of a system’s underlying physics using suitable representation
Some examples:

Model derived from “First Principles”
Encapsulate fundamental laws of physics

§PDEs
§Euler-Lagrange Equations

Empirical model chosen based on an understanding of the dynamics of a system
Lumped Parameter Model
Classical 1st (or higher) order response curves

Mappings of stressors onto damage accumulation
Finite Element Model
High-fidelity Simulation Model

Something in the model correlates to the failure mode(s) of interest

Physics-Based Methods



Pros
Results tend to be intuitive

Based on modeled phenomenon
And when they’re not, they’re still instructive (e.g., identifying needs for more fidelity or unmodeled effects)

Models can be reused
Tuning of parameters can be used to account for differences in design

If incorporated early enough in the design process, can drive sensor requirements (adding or removing)
Computationally efficient to implement

Cons
Model development requires a thorough understanding of the system
High-fidelity models can be computationally intensive

Examples
Paris-Erdogan Crack Growth Model
Taylor tool wear model
Corrosion model
Abrasion model

Physics-Based Models



Model-based prognostics

11

xk = Axk�1 +Buk�1 + wk�1

yk = Hxk + vk

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{�̃, ⇥̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

Accelerated 
Aging

Degradation 
Modeling

Training 
Trajectories

Test 
Trajectory

Parameter 
Estimation

State-space 
Representation

Prognostics

Dynamic
System

Realization

Health State 
Estimation

RUL 
Estimation

{�̃i, ⇥̃i}

D

D

• State vector includes dynamics of normal and 
degradation process

Offline

Online

• EOL defined at time in which performance 
variable cross failure threshold

R(tp) = tEOL � tp



• Tracking of health state based on 
measurements

• Forecasting of health state until failure 
threshold is crossed

• Compute RUL as function of EOL 
defined at time failure threshold is 
crossed

Model-based prognostics
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Algorithm and Model Development TRL
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Machine Learning underlying physics 
parameter

Understanding and Learning underlying  
Physics  for Complex Systems

Advanced Composites

Tiltrotor Test Rig 
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Prior Work

(Hanachi et al., 2017). A particle filter is
used as a fusion mechanism to
aggregate the diagnostic results from
measurement signals and degradation
models.

Overall architecture of the residual-based 
hybrid diagnostics in (Rausch et al., 2005). 
Feature engineering is carried out for the 
residuals between Kalman Filter estimates
and sensor readings and are used as input to 
an SVM classifier.



Deep Learning + Physics Model Calibration
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Overall architecture of the hybrid prognostics 
framework fusing physics-based and deep 
learning models. 

The deep learning prognostics model 
receives as input the scenario-descriptor 
operating conditions (w), sensor 
readings (x̂s), estimates of the sensor 
readings (x̂s) and the virtual sensors (x̂v) 
and unobservable model parameters (θ̂)

Feedback arrow to the system 
model represents the 
calibration process for updating 
unobservable model 
parameters .

Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) : True and predicted
RUL of the baseline model (top) and the
proposed hybrid approach (bottom) for each
test unit



Physics + RNN (Nascimento & Viana, 2019)
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Overall architecture of the 
physics-informed recurrent
neural network in

Y. A. Yucesan and F. A. C. Viana, "A physics-informed neural network for wind turbine main bearing fatigue," 
International Journal of Prognostics and Health Management, Vol. 11 (1), 2020. (ISSN: 2153-2648).



Next Steps : Looking Ahead
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Physics
• System 

Complexity
• Model 

Granularity

ML
• Data Spectrum
• Offline
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