Summertime Transport Pathways from Different Northern Hemisphere Regions into the Arctic

3

Cheng Zheng¹, Yutian Wu¹, Mingfang Ting¹, Clara Orbe², Xinyue Wang³, and Simone Tilmes³

- 6 ¹ Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- 7 ² NASA Goddard Institute for Space Studies, New York, NY, USA
- 8 ³ Atmospheric Chemistry Observations and Modeling Laboratory, National Center for
- 9 Atmospheric Research, Boulder, CO, USA
- 10
- 11 Corresponding author: Cheng Zheng (czheng@ldeo.columbia.edu)
- 12

13 Key Points:

- Identified fast, intermediate and slow transport pathways from various NH surface
 regions into the Arctic
- Midlatitude tracers are transported via the fast and intermediate pathways while low
 latitude tracers are transported by the slow pathway
- Analyzed and quantified dynamical processes, such as transient vs mean transport,
 associated with different pathways

20 Abstract

21 Trace gases and aerosols play an important role in Arctic chemistry and climate. As most 22 Arctic tracers and aerosols are transported from midlatitude source regions, long-range transport 23 into the Arctic is one of the key factors to understand the current and future states of Arctic 24 climate. While previous studies have investigated the airmass fraction and transit time 25 distribution in the Arctic, the actual transport pathways and their underlying dynamics and 26 efficiencies are yet to be understood. In this study, we implement a large ensemble of idealized 27 tagged pulse passive tracers in the Whole Atmosphere Community Climate Model version 5 to 28 identify and analyze summertime transport pathways from different Northern Hemisphere 29 surface regions into the Arctic.

30 Three different transport pathways are identified as those associated with fast, 31 intermediate and slow time scales. Midlatitude tracers can be transported into the Arctic in the 32 troposphere via the fast transport pathway (~8 days), which moves tracers northward from the 33 source region mainly through transient eddies. For the intermediate transport pathway, which 34 happens on 1~3 weeks' time scales, midlatitude tracers are first zonally transported by the jet 35 stream, and then advected northward into the Arctic over Alaska and northern North Atlantic. 36 Tropical and subtropical tracers are transported into the Arctic lower stratosphere via the slow 37 transport pathway (1~3 months), as the tracers are lifted upward into the tropical and subtropical 38 lower stratosphere, and then transported into the Arctic following the isentropic surfaces.

39

40 **1 Introduction**

41 The atmospheric composition of the Arctic, including trace gases and aerosols, has a 42 substantial impact on Arctic climate and chemistry. Black carbon, which can be deposited onto 43 ice and snow surfaces, or stay in the Arctic haze layer, increases the absorption of sunlight (e.g. 44 Quinn et al., 2007; Warren and Wiscombe 1980). The climate forcing due to black carbon is 45 suggested to be twice as large as that of carbon dioxide (Hansen and Nazarenko 2004) in the 46 Arctic region. Longwave radiative transfer over the Arctic can also be modulated by direct and 47 indirect aerosol effects, as the microphysical properties of clouds can be affected by aerosols (Garrett and Zhao 2006; Lubin and Vogelmann 2006; Coopman et al., 2018). The production of 48 49 tropospheric ozone in the Arctic, which acts as a greenhouse gas, is related to halocarbons 50 originating from midlatitudes (Atlas et al., 2003; Klonecki et al., 2003). Studies have shown that 51 the amount of aerosols (including black carbon) and trace gases (e.g. ozone precursors) in the 52 Arctic is largely contributed by transport from sources in the midlatitudes and the tropics (e.g. 53 Klonecki et al., 2003; Bottenheim et al., 2004; Stohl 2006; Law and Stohl 2007; Fisher et al., 2010; Kupiszewski et al., 2013). Thus, it is important to understand the long-range transport 54 55 from lower latitudes into the Arctic.

The distribution of aerosols and tracer species in the Arctic is determined by multiple factors including emissions, chemistry, transport and removal. The emissions, chemistry and removal processes differ for different species, making it difficult to understand the distribution of tracers. At the same time, understanding the transport processes, especially from different parts of the globe into the Arctic, can provide useful information about the contribution to Arctic air masses from different source regions. One way to isolate transport processes from emissions or chemistry is to implement idealized passive tracers into a model. The idealized tracers, which

63	have specified tracer removal time scales, are transported by the atmospheric flow in a model
64	without active chemistry involved. Therefore, these idealized tracers highlight the advective-
65	diffusive transport processes in the atmosphere, which are considered to be tracer-
66	independent (e.g., Holzer & Hall, 2000; Orbe et al., 2012).
67	Previous studies have explored transport pathways into the Arctic using idealized tracers.
68	Orbe et al., (2015a) investigated the Arctic airmass fractions using the Goddard Earth Observing
69	System Chemistry-Climate Model (GEOSCCM), in which they used tracers subject to steady
70	concentration boundary conditions over different regions in the planetary boundary layer (PBL)
71	and then integrated the model to reach a statistical equilibrium state. At equilibrium, the
72	concentrations of the tracers, therefore, reflected the fraction of air that last contacted the PBL in
73	different source regions. These so-called Arctic "airmass fractions" therefore represented the
74	relative contribution to Arctic tracer concentrations from different source regions. In particular,
75	they found that the airmass in the Arctic lower troposphere is dominated by air that last contacted
76	the PBL in the Arctic. By comparison, the air in the middle to upper troposphere of the Arctic
77	mostly originates from Northern Hemisphere (NH) midlatitudes, with the primary contribution
78	coming from the oceans during winter and from land during summer. Furthermore, they also
79	showed that the airmass in the Arctic upper troposphere and lower stratosphere (UTLS) mainly
80	originates from the tropics.
0.1	

Using a related but distinct approach, Orbe et al., (2016) examined the transit-time
distribution (TTD), derived from idealized pulse tracers, corresponding to transport from
midlatitudes to the Arctic. Using the National Aeronautics and Space Administration (NASA)
Global Modeling Initiative (GMI) three-dimensional chemistry transport model (CTM), they
found that during boreal summer, tracer concentrations in the Arctic upper troposphere peak

around 10 days after the tracers are released, and the peak is around 30 days in the Arctic lower troposphere. The TTD described in Orbe et al., (2016) and the airmass fraction analysis in Orbe et al., (2015a) suggest that tracers released during summer in the midlatitudes are preferentially drawn upward across isentropic surfaces within the midlatitudes before being transported toward the Arctic approximately along the isentropes.

91 In this study, we focus on the summertime transport pathways into the Arctic by 92 analyzing a large ensemble of passive pulse tracers (100 tracers), which is much larger than the 93 four pulse tracers considered in Orbe et al. (2016), to achieve good statistics representing the 94 summertime transport. Other studies have also shown the summertime transport into the Arctic 95 and the impacts on Arctic climate using different approaches. For example, Laliberte and 96 Kushner (2014) found that summertime midlatitude moisture, which can be transported into the 97 Arctic, can explain a large part of the Arctic tropospheric temperature variability. Summertime 98 black carbon concentrations over the Arctic, which mostly come from source regions at lower 99 latitudes (e.g. Xu et al., 2017; Liu et al., 2015), can also have large impacts on radiative balance, 100 which leads to increased warming in the Arctic (e.g. Bond et al., 2013; Hansen and Nazarenko 101 2004). In addition, studies have also linked the Asian summer monsoon circulation to the climate 102 and chemistry of the Arctic. Krishnamurti et al. (2015) examined a case study and argued that the 103 moisture outflow associated with the Asian summer monsoon circulation caused a rapid melting 104 of the Arctic sea ice during various monsoon heavy rainfall events in 2006-2012. Liu et al., 105 (2003) also found that variability in the monsoon can lead to the variations in pollution transport 106 into the Arctic. However, the role of the summer monsoon circulation on the Arctic transport is 107 not well established. Note that the idealized tracers in our study, which have a spatially uniform 108 source, are different from realistic tracer species that usually have large spatial variations in

109 terms of their source or emission. Our approach with idealized tracers is to focus on the transport 110 pathway, i.e. how the idealized tracers are transported into the Arctic and what atmospheric 111 circulation processes are involved. To attribute the Arctic concentration of any realistic chemical 112 species to different source regions, an approach considering the spatial variation of the source 113 distribution is required.

114 Several questions warrant further study in terms of summertime transport into the Arctic. 115 First, what are the similarities and differences in transport pathways and timescales among 116 different regions in the midlatitudes and the tropics? What are the physical processes involved in 117 transporting tracers from the tropics and midlatitudes into the Arctic? As pointed out by Orbe et 118 al., (2016), midlatitude tracers are preferentially lifted upward and then transported poleward 119 during summer. To this end, we ask here: a) What are the processes that lift up the tracers? By 120 convection or large-scale rising motion? b) What are the processes that transport the tracers 121 northward into the Arctic? What is the relative importance of transient eddies and the mean 122 atmospheric circulation? c) How do the timescales and processes differ for different midlatitude 123 regions? These questions will be the focus of this study. The model experimental design and 124 diagnostic methods will be introduced in section 2. The evolution of tracer distribution in the 125 Arctic will be discussed in section 3. Different transport pathways, as well as the atmospheric 126 circulations involved, will be explored in section 4. Discussions and conclusions will be 127 presented in section 5.

128

129 **2 Methods**

130 2.1 Model Simulations

131	The Whole Atmosphere Community Climate Model version 5 (WACCM5) is used in this
132	study. WACCM5 is the high-top atmospheric component of the Community Earth System Model
133	version 1 (CESM1; Hurrell et al., 2013). The WACCM5 used here has 110 vertical levels with a
134	horizontal resolution of 0.9° latitude and 1.25° longitude. The model physics for WACCM5 is
135	the same as the Community Atmospheric Model version 5 (CAM5) (Neale et al., 2010), with the
136	shallow convection scheme from Park and Bretherton (2009) and deep convection scheme
137	developed by Zhang and McFarlane (1995). We integrate the model with prescribed historical
138	sea surface temperatures and sea ice concentrations from January 1981 to December 1991.
139	The 110 vertical levels in WACCM5 greatly improve the vertical resolution from mid-
140	troposphere to lower stratosphere (Garcia and Richter, 2019). The high vertical resolution helps
141	to better simulate the temperature, wind and water vapor distribution in the UTLS (Wang et al.,
142	2018). Wu et al., (2020) used a similar setup of WACCM5 and found that the Asian summer
143	monsoon region is favorable for fast transport of tracers from the surface into the UTLS. Thus,
144	the 110-layer WACCM5 can be beneficial for understanding the tracer transport within the
145	UTLS and from Asian summer monsoon region to the Arctic (e.g. Ikeda et al., 2017; Koch and
146	Hansen 2005).

147 2.2 Idealized Tracers

The idealized tracers imposed in the model are similar to that in Wu et al., (2020). Here we use the "Boundary Impulse Response (BIR)", or simply "pulse" tracer approach (Holzer et al., 2000; Haine et al., 2008). The BIR can be interpreted as the time-evolving response $G(r, t|\Omega, t')$ at a location r and time t to a pulse of a conserved and passive tracer which is released in the source region Ω at time t'. BIR is tracer-independent as it does not involve any chemical processes or interior sources/sinks (e.g., Holzer and Hall, 2000; Orbe et al., 2012).

154	Therefore, the BIR provides a direct measure of transport properties from source regions into the
155	Arctic, which isolates the transport from chemistry processes. This approach has been used to
156	examine seasonal variations in stratospheric age spectra (Li et al., 2012; Ploeger and Birner,
157	2016), transport from the NH midlatitude surface to different regions around the globe (Orbe et
158	al., 2016), as well as transport from NH surface to UTLS (Wu et al., 2020). Note that the BIR
159	can be used to construct the TTD, which is one approach used in previous studies (Holzer &
160	Hall, 2000; Li et al., 2012; Orbe et al., 2016) to measure the transit time at r independent of
161	when (with respect to t') the tracer was last at the Earth's surface. Similar to Wu et al., (2020),
162	our focus here is on quantifying how the tracer distribution at time t and location r is related to
163	tracer source Ω conditioned on its release time.

164 Idealized pulse tracers are imposed in WACCM5 over different NH surface regions. The 165 regions are shown in Figure 1a. There are 5 NH midlatitude regions, including Asia (ASI), 166 Pacific (PAC), North America (NAM), Atlantic (ATL) and Europe (EUR). The northern 167 boundary of these regions is located at 60°N and the southern boundaries range from 20° to 168 25°N, which are similar to that in Orbe et al., (2015a). In addition, to highlight the role of the 169 Asian summer monsoon, we also tagged tracers that are released over the Tibetan Plateau (TP) 170 and North India (NI). Tracers that are released to the south of these regions in NH are tagged as 171 Tropics (TR). Note that although we also release tracers north of 60°N, we will not include this 172 case here as our focus is on long-range transport pathways into the Arctic. Tracers are released 173 uniformly at each source region during the first day. The tracer concentration is set to 1 mol/mol 174 at the surface during the first 24 hours within the source region, while outside the source region 175 the boundary concentration is set to 0. The tracers are transported freely in the atmosphere with 176 no loss as long as they do not touch the surface. The tracer concentration is set to 0 whenever

177	they are in contact with the surface after the first day. The transport of pulse tracers into the
178	Arctic, which can happen on relatively short time scales, likely have a high dependency on
179	meteorology. Thus, large variability in the transport is expected from tracer to tracer when they
180	are released at different times. To achieve more robust results, a large ensemble of tracers is
181	implemented in the model. A total of 10 tracers are released each summer, on days 3, 10, 17, 24,
182	and 31 in July and August, and repeated for all 10 summer seasons, 1981–1990. Therefore, we
183	have a total of 100 tracers for each source region. The choice of 100 tracers for each source
184	region is a compromise between maximizing the number of tracer ensembles and the
185	computational costs of the model experiments. Model outputs of daily means of meteorological
186	fields, as well as tracer concentrations and budget terms, are saved for further analysis.
187	Compared to Orbe et al., (2016), with a much larger number of tracers (100 vs 4) and multiple
188	midlatitude regions, the methods used in this study can provide information that potentially links
189	the Arctic tracer concentration to different NH source regions, as well as decomposes the
190	transport into transients and time-mean components (see section 2.3).
191	2.3 Diagnostics of Tracer Transport
192	The daily model output is interpolated to 28 pressure levels from 1000 to 50hPa prior to
193	any analysis. The intervals among the pressure levels are 50hPa from 1000 to 300hPa, 25hPa
194	from 300 to 100hPa, and 10hPa from 100 to 50hPa. As in Wu et al., (2020), the tracer budget can

195 be written as the contribution from different processes:

196
$$\frac{\partial \chi}{\partial t} = RD + VD + COND + CONS \qquad (1),$$

197 where χ is the concentration of the pulse tracer. *RD*, *VD*, *COND*, and *CONS* are the tracer 198 tendencies due to transport by model's resolved dynamics, vertical diffusion, deep convection 199 and shallow convection, respectively. The tracer concentration χ , as well as the four terms on the

rhs of (1) are all taken from the direct model outputs. Wu et al., (2020) showed that equation (1)

201 is well balanced by using the model outputs, and the balance is also well maintained after the

202 data is interpolated onto pressure levels (not shown). The transport of the tracers by resolved

203 dynamics *RD* is simply the advection of the tracers by the model's (resolved) circulation:

204
$$RD = -\vec{U} \cdot \nabla \chi \qquad (2),$$

where \vec{U} is the three-dimensional wind vector. In the pressure coordinates, as the divergence of the three-dimensional wind is zero $(\nabla \cdot \vec{U} = 0)$, (2) can be written as:

207
$$RD = -\nabla \left(\vec{U} \cdot \chi \right) \tag{3}$$

208 or,

209
$$RD = -\frac{\partial(u\cdot\chi)}{\partial x} - \frac{\partial(v\cdot\chi)}{\partial y} - \frac{\partial(\omega\cdot\chi)}{\partial p}$$
(4),

210 where u, v, and ω are zonal, meridional and vertical motion in pressure coordinates. Therefore, 211 the tracer tendency due to resolved dynamics equals the convergence of the three-dimensional 212 tracer flux by the resolved atmospheric circulation. As daily χ , u, v, and ω are available, we can 213 compute the contributions of tracer tendency by resolved dynamics in the zonal, meridional and 214 vertical directions explicitly. Note that model output *RD* is calculated on the model grid (hybrid 215 vertical levels) at each model time step, while we estimate each term on the rhs of equation (4) 216 by using daily mean values on pressure levels. Therefore, the estimation using the rhs of

equation (4) may contain some errors, which will be discussed in section 4.

When computing the tracer tendency using equations (1) and (4), we will only show the results for the ensemble mean of tracers, as tracer to tracer variability is not the focus of this study. However, tracer to tracer variability can provide information regarding the contributions from time-mean and transient flows. We analyze the variability from tracer to tracer by

222 considering the time series of the tracer concentration. Given N number of tracers that are released at $t' = t'_1, t'_2, ..., t'_N$ and at source region Ω , the tracer concentration of one particular 223 224 tracer (n) at location r at a fixed transit time (number of days after the tracers are released) $\xi =$ t - t' (where t is the current time when the tracer concentration is observed) can be written as: 225 226 $\chi(n,\xi,\Omega,r)$ where n = 1, 2, ..., N. As t' is only a function of n, and time $t = \xi + t'$, for fixed transit time ξ, t 227 and n is an injective function (one-to-one function). So, $\chi(n,\xi,\Omega,r)$ can also be written as. 228 229 $\chi(t(n,\xi),\xi,\Omega,r)$ 230 which can be considered as a time series. Note that the method here to consider an ensemble of 231 pulse tracers that are released at different time as a time series at fixed transit time ξ , is the same 232 as the method used in Holzer et al., (2003). This time series can be decomposed into the time 233 mean (averaging over *t*) and the deviation from time mean: $\chi(t(n,\xi),\xi,\Omega,\mathbf{r}) = \bar{\chi}(\xi,\Omega,\mathbf{r}) + \chi'(t(n,\xi),\xi,\Omega,\mathbf{r})$ 234 235 here the overbar denotes the time mean, and prime denotes the deviation from the time mean.

Again, for fixed transit time ξ , t and n is an injective function (one-to-one function), so

237 averaging over t is equivalent to averaging over n. Thus, the time mean $\bar{\chi}(\xi, \Omega, r)$ is equivalent

238 to ensemble mean of tracers at fixed ξ .

239 Similarly, the time series of circulation variables, such as the meridional wind v(t,r) can also be 240 decomposed in a similar way:

241
$$v(t(n,\xi),\mathbf{r}) = \bar{v}(\xi,\mathbf{r}) + v'(t(n,\xi),\mathbf{r})$$

242 To match the form of tracer concentration, both the time-mean meridional wind and the

243 deviation from time mean also depend on transit time ξ . Thus we can write the time mean of the

244 meridional flux of tracers as

245
$$\overline{v \cdot \chi} = \overline{v} \, \overline{\chi} + \overline{v' \chi'} \tag{5}$$

where the first term on the rhs of (5) is the transport by time-mean meridional wind (including both zonal mean meridional circulation and stationary waves), and the second term represents the transport by transients that includes all time scales shorter than the time mean.

Similar to equation (5), the vertical flux of the tracer transport by resolved dynamics canbe decomposed as:

251
$$\overline{\omega \cdot \chi} = \overline{\omega} \, \overline{\chi} + \overline{\omega' \chi'} \quad (6)$$

to evaluate the relative contribution from time-mean and transient components.

The analysis in this study will only focus on the ensemble mean of 100 tracers for each source region, which are released during July and August in 10 years. That means we only investigate the transport pathways in terms of climatological mean. Different transport pathways can have subseasonal, interannual and decadal variabilities, which are beyond the scope of this study and will be explored in the future.

258

3 Temporal Evolution of Tracer Concentration in the Arctic

We focus on the tracer concentration in the Arctic, which is defined as the region north of 70°N. When the pulse tracers are released, sharp horizontal gradients of tracer concentration are created at the boundaries of the tracer source regions (e.g., the northern boundary of midlatitude

263 source regions at 60°N in Fig. 1a). These sharp gradients can lead to artificially strong horizontal 264 transport of tracers locally due to diffusion or mixing (also see section 4.2). Thus, the southern 265 boundary of the Arctic is defined as 70°N, away from the northern boundary of the source 266 regions (60°N). The time evolution of tracer concentration for lower-to-mid troposphere (1000-267 600 hPa), mid-to-upper troposphere (600-200 hPa), and lower stratosphere (200-100 hPa) over 268 the Arctic is shown in Figures 1b-d respectively. Each color denotes the contribution from one 269 source region. The total tracer concentration from all source regions peaks at about 10 days in 270 the troposphere (Figs. 1b, c), but at around 100 to 120 days in the lower stratosphere (Figure 1d). 271 In the troposphere, most of the Arctic tracers originate from the 5 midlatitude regions: ASI, PAC, 272 NAM, ATL and EUR on relatively short time scales. Tracers from the tropics only contribute 273 significantly after days 20-30 from the day the tracers are released. In the lower stratosphere, 274 most of the contribution to the Arctic tracer concentration is from the tropics, as well as TP and 275 NI tracers, with ASI tracers having the largest contribution among the 5 midlatitude regions. The 276 Asian summer monsoon regions (TP and NI), which cover a relatively small area compared to 277 the tropical region TR (Figure 1a), have significant contributions to the tracer concentration in 278 the Arctic lower stratosphere (Figure 1d), showing that TP and NI tracers are transported into the 279 Arctic lower stratosphere very efficiently. Note that, these findings are consistent with the results 280 in Orbe et al., (2015a), in that most of the tracer concentration over the Arctic troposphere 281 originates from the midlatitudes, whereas the tropics has the largest contribution to the tracer 282 concentration in the Arctic lower stratosphere. However, our results cannot be quantitatively 283 compared to Orbe et al., (2015a) as the tracers are removed when they come in contact with the 284 surface after day 1, whereas tracers are retagged in Orbe et al., (2015a) when they touch the 285 surface. In addition, since a large number of tracers are removed at the surface (see section 4.2),

only a small portion of the tracers are transported into the Arctic. As tracer species and aerosols are not necessarily removed when they touch the surface in the real atmosphere, it is not very meaningful to quantify the exact tracer fraction that are transported into the Arctic in our experiment.

290 As the areas covered by different source regions differ, to better compare the efficiency 291 of the tracer transport from different regions, we normalized the tracer concentration by the area 292 of the source region. The normalized tracer concentration, which is measured by the Arctic tracer 293 concentration (ppbv) per unit area of source region (square kilometer), is shown in Figs. 1e-g. 294 Among the 5 midlatitude regions (ASI, PAC, NAM, ATL and EUR) that have most of the 295 contributions to the Arctic tracer concentration in the troposphere, ATL, EUR and NAM tracers 296 have sharp peaks with fast growth and decay: ATL and EUR tracers peak at around 6-9 days in 297 both lower and upper troposphere while NAM tracers at about 10 days. In comparison, ASI and 298 PAC tracers have flat peaks. Both ASI and PAC tracer concentration stays in high value during 299 day 10-20 in mid-to-upper troposphere (Figure 1f). ASI tracer concentration slowly increases 300 during day 10-30 in the lower troposphere, while PAC tracer concentration slowly decreases 301 during day 10-20 (Figure 1e). The growth rate of the tracer concentrations in the Arctic 302 troposphere (the slope of the normalized concentrations in Figure 1e-f) is the largest during the 303 first 6-8 days for ASI, PAC, ATL and EUR tracers, indicating that similar dynamical processes 304 are likely at play on the short timescales in these regions. We name this the fast transport 305 pathway. From days 8 to 20, the tracer concentrations tend to maintain at high values in the mid-306 to-upper troposphere for ASI and PAC tracers (Figure 1e, f). This will be referred to as the 307 intermediate transport pathway with a timescale of about 1-3 weeks. For NAM tracers, the peak 308 time is about 10 days, which is shorter than ASI and PAC and longer than EUR and ATL. Later

309 on, we will show that this is likely due to the combination of the fast and intermediate transport310 pathways.

311 For the Arctic lower stratosphere, although TR has the largest contribution to the total 312 concentration (Figure 1d), NI and TP tracers are more efficiently transported into the Arctic 313 when normalized by the surface areas, compared to other regions, with a peak time around 90-314 100 days (Figure 1g). The growth rate of the NI and TP tracers becomes large at about 20 days 315 after the tracers are released. This indicates the important role the Asian summer monsoon plays 316 in tracer transport into the Arctic lower stratosphere (Orbe et al., 2015b). ASI and TR tracers are 317 also transported into the Arctic on the 100-day to 150-day time scales, while the transports from 318 ATL, PAC, EUR, and NAM are negligible on the long time scales. It is interesting to note that 319 the 100-day time scale is much longer than that within the troposphere (Figure 1e-f). This will be 320 termed as the slow transport pathway in the rest of the study.

321 The three different transport pathways noted above, with fast (~1 week), intermediate 322 (1~3 weeks) and slow (1~3 months) time scales, are defined by analyzing the evolution of the 323 passive tracer concentration reaching the Arctic. In the real atmosphere, different tracer species 324 have different lifetimes. For example, the lifetime of butane is about 1 week, propane has a 325 lifetime of about 2 weeks, and ethane and carbon monoxide have averaged lifetimes of 326 approximately 2 months. Thus, the three transport pathways may play different roles in 327 transporting different tracer species. For example, the slow transport pathway may have little 328 contribution to short-lived species like butane and propane; while the fast transport pathway may 329 be relevant for tracer species of both short and long lifetimes. Note that these examples are just 330 used to illustrate that different pathways can be potentially important for different tracer species. 331 However, as our experimental design does not consider tracer loss via certain processes (e.g. wet

deposition, which can happen when tracer species are rained out), as such, it cannot completely
address the question of the relevance of different transport pathways for any specific tracer
species. In the following sections, we will explore the dynamical processes contributing to each
of the three transport pathways by using actual concentration of the tracer (not normalized
concentration).

337

338 4 Tracer Transport Pathways into the Arctic

339 4.1 The Role of Meridional Tracer Flux

Before going into details of the different transport pathways, we first consider the budget of the tracer concentration integrated over all grid points in the Arctic ($\iiint_{arctic}\chi$), from the surface to the top of the atmosphere and from 70°N to the north pole. Using tracer mass conservation, one can show that the budget of the total Arctic tracer concentration ($\iiint_{arctic}\chi$) can be written as:

345
$$\frac{\partial}{\partial t} \iiint_{arctic} \chi dV = \bigoplus_{70N} v \cdot \chi + (removal of tracer at Arctic surface)$$
(7).

346 Thus, the only way tracers can be transported into the Arctic from the midlatitudes or tropics is 347 through the poleward flux at the southern boundary, i.e. 70°N. The temporal and spatial 348 distribution of the meridional flux can thus determine the evolution of the tracer concentration 349 within the Arctic. To illustrate this, we show the vertically (1000-100 hPa) and zonally averaged 350 meridional flux of the five midlatitude regions (ASI, PAC, NAM, ATL and EUR,) in Figure 2 a-351 e. The strongest poleward flux at 70°N (dark green dashed line) is within the first 8 days for all 352 five regions. This is consistent with the largest growth rate of tracer concentration during the first 353 8 days in Figure 1 e-f (the fast transport pathway; see section 3), as implied by equation (7). The

354 meridional flux shifts to negative (black line indicates the zero line) after about day 7-9 for ATL 355 and EUR tracers, corresponding to the decrease of tracer concentration after 7-9 days (Figure 1e-356 f); the meridional flux stays positive with a small amplitude from about day 8 to 20 for ASI and 357 PAC tracers, which is also consistent with the tracer evolution during that period of time (Figure 358 le-f; the intermediate transport pathway). In addition, the meridional tracer flux shifts to 359 negative at around day 10 for NAM tracers, which coincides with the timing of the peak tracer 360 concentration of NAM tracers (Figure 1e-f). Therefore, the key to explain the tracer evolution 361 within the Arctic is to understand the spatial and temporal structure of the meridional tracer 362 fluxes, which will be the main focus in the following discussions about the fast and intermediate 363 transport pathways.

364 4.2 The Fast Transport Pathway

365 As discussed above, the meridional tracer flux is large during the first 8 days after the 366 tracers are released for all the midlatitude source regions. We show in Figure 2f-j the spatial 367 structure of the vertically integrated meridional tracer flux (shading in Figure 2) for ASI, PAC, 368 NAM, ATL and EUR,. The vertically integrated tracer concentrations, denoted by the black 369 contours, show the highest concentration located near where the tracers are released. Northward 370 flux into the Arctic is located in regions directly to the north of each source region. This indicates 371 that the fast transport pathway is mostly due to direct northward transport from the source region 372 into the Arctic by the atmospheric circulation.

To determine the vertical structure of the meridional transport, Figure 3 shows the zonally averaged tracer concentration and meridional flux over the local area outlined by the dark green lines as in Figure 2 for each region. These cross sections are plotted for days 1-2, 3-5

and 6-8 after the tracers are released for ASI, PAC, NAM, ATL and EUR tracers to betterillustrate the temporal evolution.

There are some similarities among the cross sections for tracers released in different 378 379 midlatitude regions. During day 1-2 (first column in Figure 3), strong northward transport can be 380 found near 60°N in the lower troposphere among all regions. As the northern boundary of the 381 tracer source regions is at 60°N, a strong meridional gradient of tracer concentration appears 382 immediately after the tracers are released. The maximum northward flux of tracers at 60°N in the 383 lower troposphere is expected (first column in Figure 3 and first column in Figure 2). In addition, 384 the northward transport in the upper troposphere is broader and weaker compared to the lower 385 troposphere during day 1-2. The tracer concentration (black contours) is higher in the lower 386 troposphere than in the upper troposphere, but a small amount of tracers have already been lifted 387 up into the upper troposphere during day 1-2. During day 3-5 (second column in Figure 3), 388 compared with day 1-2, the northward flux extends northward, with large northward transport in 389 both upper and lower troposphere. Although the tracer concentration generally decreases during 390 day 3-5 due to the surface removal process, the concentration is more evenly spread out in the 391 vertical, indicating further lifting of lower tropospheric tracers into the upper troposphere. Both 392 the tracer concentration and the northward flux become weaker during day 6-8 (third column in 393 Figure 3).

The northward flux going into the Arctic is the strongest during day 3-5, with strong transport in both the upper and lower troposphere among all 5 regions. The question is what processes are responsible for the upward tracer transport from the surface into the lower and upper troposphere. We apply the tracer budget analysis as in Eqs. 1 and 4 to address this question. The different terms on the right side of Eq. 1 are shown in Figure 4 averaged for 30°-

399 70°N region as in Figure 3, for the upper (200-500 hPa; first column) and lower troposphere 400 (500-950hPa; second column). Following Eq. (1), the tendency of the tracers can be separated 401 into contribution from deep convection (COND; red), shallow convection (CONS; orange), 402 vertical diffusion (VD; blue) and resolved dynamics (RD; green). With equation (4), the resolved 403 dynamics term can be further decomposed into transport by zonal wind (purple), meridional 404 wind (magenta) and vertical velocity (cyan). The three-dimensional decomposition of the 405 transport by resolved dynamics is crosshatched to distinguish them from the 4 terms in equation 406 (1). The sum of the three-dimensional convergence components is approximately equal to the 407 resolved dynamics term, as the residual (yellow shadings) is generally small. Note that the results 408 for all 5 midlatitude regions are qualitatively similar in Figure 4. During days 1-2 in the upper 409 levels (Figure 4a), deep convection (red) has the largest contribution. There is also significant 410 contribution from resolved dynamics (green), which mostly comes from the vertical transport 411 (crosshatched cyan). For days 3-5 in the upper troposphere (Figure 4c), there is little contribution 412 by diffusion or convection processes (COND, CONS, and VD). Instead there is a large positive 413 tracer tendency due to vertical transport by resolved dynamics, while at the same time, the 414 tracers are also transported out of the region by zonal and meridional fluxes. For days 6-8, the 415 tracer tendency in the upper levels is mostly from the zonal transport, which is transported 416 downstream out of the averaging region. In summary, tracers are transported into the upper 417 troposphere mostly by deep convection and resolved dynamics (specifically, vertical fluxes). If 418 we combine the contribution during both day 1-2 and 3-5, the net effect of vertical transport by 419 resolved dynamics is comparable to the contribution by deep convection in all 5 regions.

In the lower troposphere (second column in Figure 4), vertical diffusion contributes the
most, while deep and shallow convections have little contribution. Since the tracers are released

422 during day 1, the tracer concentration is high near the surface, creating a strong vertical gradient 423 in tracer concentrations and thus vertical diffusion can effectively bring the tracers up from the 424 surface to the lower troposphere during day 1-2 (Figure 4b). As the tracer concentration 425 decreases at the surface after day 1, the vertical gradient of tracer concentration reverses, and 426 vertical diffusion brings the tracers downward back to the surface (Figure 4d). Since deep 427 convection can bring tracers from the surface up into the lower troposphere (net gain of tracer 428 concentration in the lower troposphere), and also lift tracers from the lower troposphere into the 429 upper troposphere (net loss of tracer concentration in the lower troposphere), it plays little role in 430 the lower troposphere (Figure 4b and d). Shallow convection vertically redistributes the tracers 431 within the lower troposphere. This vertical redistribution has little net contribution to the tracer 432 concentration when averaged within the lower troposphere (500-950 hPa; Figure 4b, d, and f). 433 Also note that when the tracers are released on day 1, a large vertical gradient of tracer 434 concentration is created near the surface, which leads to a large upward flux due to the vertical 435 motion near the surface. This is the reason that the vertical transport by large-scale ascent leads 436 to a positive tracer tendency in both upper troposphere (Figure 4a) and lower troposphere (Figure 437 4b).

To explore the relative contributions of the time-mean and transient circulation to the meridional and vertical fluxes, we use equations (5) and (6) to further decompose these fluxes. We analyze the meridional tracer flux averaged over 50°-70°N within the cross sections in Figure 3 for all 5 midlatitude regions. Note that generally the strongest meridional flux is located between 50° and 70°N (Figure 3), and the meridional flux at this latitude band is likely to contribute to the transport into the Arctic. Also, though here the analysis is within the entire troposphere (200-950 hPa), we reach similar conclusions regarding the time-mean and transient

445 transport if upper and lower troposphere are analyzed separately (not shown). Note that, as 446 transient wind is defined as deviation from time-mean wind during 10 years in equations (5) and (6), transient transport includes contribution from variability on all different time scales 447 448 (interannual, month-to-month, sub-monthly). Our analysis shows that the transient transport is 449 dominated by contribution from short time scale variability (sub-monthly; not shown). The 450 decomposition of meridional flux (first column in Figure 5) shows that, consistently over the first 451 8 days, most of the northward flux is due to transients (blue) for EUR, ASI and NAM tracers, 452 while transport by time-mean wind (orange) and transients are both important for ATL and PAC 453 tracers. The transport by time-mean wind, which is likely due to the northward transport near the 454 exit of the Pacific and Atlantic jet, will be discussed in more detail in section 4.3. The 455 decomposition of vertical flux by resolved dynamics (second column in Figure 5), shows that 456 transients (cyan) are important for tracers released in all 5 regions, with the time-mean vertical 457 transport (green) also making a large contribution for ASI and NAM tracers. 458 In short, the fast transport pathway brings midlatitude tracers directly into the Arctic in

both the lower and the upper troposphere within about 8 days. Vertical diffusion brings tracers up into the lower troposphere, while deep convection and resolved dynamics bring tracers into the upper troposphere. The poleward transport of the tracers into the Arctic is dominated by transients for Asian, European and North American tracers, while both time-mean and transient transports are important for poleward transport of Pacific and the Atlantic tracers.

464 4.3 The Intermediate Transport Pathway

Now we investigate what circulation processes contribute to the intermediate time scale
transport pathway. As discussed in section 3 and 4.1, during day 9-20 after the tracers are
released, the meridional tracer flux continues transporting ASI and PAC tracers into the Arctic

468 substantially, which maintains or slightly increases the ASI and PAC tracer concentrations in the 469 Arctic. On the contrary, the meridional tracer flux becomes southward for EUR and ATL tracers. 470 To understand this, in Figure 6a-e, the day 9-20 vertically integrated (1000-100hPa) meridional 471 tracer flux (shadings) for ASI, PAC, NAM, ATL, and EUR tracers is shown respectively. The 472 tracer concentration, which is also averaged vertically during day 9-20, is plotted in black 473 contours. The source regions of tracers are cross-hatched in the map. In addition, the simulated 474 July to August climatological wind, averaged from 800 to 200 hPa, is shown in Figure 6f, with 475 meridional wind in shadings and zonal wind in contours, both comparing well with the 476 observational reanalysis (not shown). Note that, as the goal here is to understand the transport 477 into the Arctic, we will focus on the meridional transport in the high latitudes (around 50° - 70° N). 478 Details about tracer concentration and meridional flux in the mid-to-lower latitudes will not be 479 discussed. The amplitude of meridional flux depends on the concentration of the tracers during 480 day 9-20, while the concentration is determined by the amount of tracers released during day 1 481 and the amount of tracers removed throughout day 1-20. Since the amount of tracers that is 482 released and removed from different source regions can be different, we do not focus on 483 comparing the amplitude of concentration or meridional flux among different regions, but rather 484 focus on what the favorable locations are for tracers to be transported into the Arctic.

In Figure 6a-e, for tracers released in each source region, there are large tracer concentrations located downstream (eastward) of the source regions in the mid-to-high latitudes, consistent with zonal transport by the jet stream (Figure 6f) from days 9-20. The transport of tracers is westward in the subtropics and tropics. The downstream (eastward) long-range zonal transport of tracers from different emission regions (e.g. Asian, Europe and North America) has been investigated in previous studies by using both observations and model simulations (e.g.

491 Akimoto 2003; Chin et al., 2007; Duncan and Bey 2004; Fang et al., 2009; Hudman et al., 2004; 492 Huntrieser et al., 2005; Lewis et al., 2007; Li et al., 2002; Liang et al., 2004). For ASI tracers 493 (Figure 6a), the large tracer concentration extends from eastern north Pacific to North Atlantic, 494 with strong northward flux into the Arctic located over Alaska and northern North Atlantic. 495 Large tracer concentration is found over central to eastern North Pacific for PAC tracers, and 496 part of the PAC tracers have also been transported into the northern North Atlantic (Figure 6b). 497 The northward flux of PAC tracers into the Arctic is also located over Alaska and North Atlantic. 498 Note that the distribution of meridional tracer transport (both northward and southward transport) 499 for ASI and PAC tracers (Figure 6a-b) matches well with the distribution of the climatological 500 meridional wind (Figure 6f). This suggests that Alaska and northern North Atlantic, where the 501 climatological meridional wind is northward, are the favorable locations for tracers to be 502 transported into the Arctic. Note that, the transport into the Arctic over these two regions (Alaska 503 and northern North Atlantic) is not necessarily via the climatological wind only, since these two 504 regions are also favorable for northward transport by transient eddies as they are located at the 505 exit region of the Pacific and Atlantic storm tracks. Additional analysis shows that northward 506 transport over the northern North Atlantic is dominated by contribution from climatological 507 wind, while both climatological wind and transients are important for northward transport of 508 PAC tracers over Alaska (Figure S1).

509 The distribution of the meridional flux for NAM, ATL and EUR tracers (Figure 6c-e), 510 also corresponds well with the distribution of the climatological meridional wind (Figure 6f) 511 except for a much weaker magnitude for ATL and EUR tracers compared to other tracers. For 512 ATL and EUR tracers, a large proportion of the tracers is transported downstream into Eurasia. 513 With climatological wind generally flowing southward over eastern Europe and western Siberia

514 (around $60^{\circ}E$) as well as over eastern Siberia (around $150^{\circ}E$), the net meridional transport of 515 tracers is southward for ATL and EUR tracers. Therefore, ATL and EUR tracers are not 516 effectively transported into the Arctic during day 9-20. In Figure 6c, the NAM tracer is also 517 transported into the North Atlantic where it is favorable for northward transport into the Arctic. 518 This zonal transport can happen in relatively short time compared to ASI tracers being 519 transported to the eastern North Pacific or PAC tracers to the North Atlantic, because of the 520 closer proximity between North America and North Atlantic. Thus, the intermediate transport 521 pathway can happen rather quickly for NAM tracers, which is the reason why the meridional flux 522 into the Arctic is positive during the first 10 days for NAM tracers (Figure 2c). However, when 523 the NAM tracers are transported further downstream into Europe, where the climatological flow 524 is generally southward, the net meridional flux of NAM tracers turns negative. This explains why 525 the NAM meridional tracer flux shifts to negative after 10 days (Figure 2c). The peak tracer 526 concentration at 10 days for NAM tracers (Figure 1e-f), which is in between the peak time of 527 ATL and EUR tracers (6-9 days), and ASI (10-30 days) and PAC tracers (10-15 days; see Figure 528 2), is due to the combination of the fast transport pathway and the intermediate transport 529 pathway. The fact that climatological northward flow is located over Alaska and North Atlantic, 530 rather than other regions around the Arctic, can be the main reason why both time-mean and 531 transient transports are important for PAC and ATL tracers for the fast transport pathway, while 532 transport by transients dominates for ASI, ATL and EUR tracers (Figure 5a, c and e; also see 533 section 4.2 for more details).

Note that TP and NI tracers also show a concentration peak at around 40-60 days in the troposphere (Fig. 1e-f), but with little contribution to the total Arctic tracer concentration (Fig. 1b-c). Our analysis (not shown) suggests that the mechanism of this 40-60 day peak is similar to

537 the intermediate transport pathway for midlatitude tracers discussed above. The TP/NI tracers are 538 transported zonally by the jet first, and then can be transported into the Arctic over Alaska and 539 the northern North Atlantic. However, as the source regions of TP and NI tracers are over the 540 southern flank of the jet stream (Fig. 6f), it takes longer time for these tracers to be transported to 541 the northern flank of the jet where they can be transported into the Arctic. Whereas for 542 midlatitude source regions, the majority of the tracers are already at the northern flank of the jet 543 where they are released. Therefore, the intermediate transport pathway can happen much earlier 544 for the midlatitude tracers than for subtropical tracers (TP and NI). 545 In short, during day 9-20, the tracers are transported downstream (eastward) by the zonal 546 wind in the midlatitudes. ASI and PAC tracers are carried to Alaska and North Atlantic, and then 547 transported into the Arctic, as these two locations are favorable for northward transport into the 548 Arctic, leading to the intermediate transport timescales. However, as ATL and EUR tracers are 549 advected downstream to Eurasia, where it is favorable for southward transport, they are not 550 effectively transported into the Arctic during day 9-20, exhibiting no intermediate transport 551 pathway. Note that our results that Alaska and North Atlantic are the favorable locations for 552 northward transport into the Arctic, are in agreement with the model simulation results in 553 previous studies (e.g. Akimoto 2003, Hudman et al., 2004; Li et al., 2002; Liang et al., 2004). 554 The meridional transport pattern corresponds well with time-mean (decadal-mean) wind pattern, 555 suggesting that low frequency variability, which can lead to variability in the mean wind, can likely lead to interannual or decadal variability of the intermediate transport pathway. 556 557 4.4 The Slow Transport Pathway

558 We now examine the transport of tracers from tropical and subtropical regions (NI, TP, 559 TR) into the Arctic lower stratosphere, with the peak tracer concentration occurring at around

560 100 days. We will discuss the transport of TP tracers in detail as TP tracers are most efficiently 561 transported into the Arctic among the three regions (Figure 1g). Later on, we will also show that 562 the mechanism for NI and TR tracers is very similar to that for TP tracers.

563 The zonal mean tendency of TP tracers, from day 1 to 100, is shown in Figure 7. During 564 the first few days after the tracers are released, the tendency of tracer concentration (Figure 7a-b, 565 shadings) indicates that tracers are brought up effectively into the subtropical UTLS region. 566 Subsequently, those tracers are transported both equatorward and poleward from the tracer 567 concentration maximum in the subtropics (black contours; Figure 7b-c). From days 11 to 100 568 (Figure 7d-h), a dipole pattern of the tracer tendency can be found in the UTLS in the tropics and 569 subtropics, with a positive tendency above the tracer concentration maximum, and a negative 570 tendency below, indicating a further upward lifting of the tracer concentration to about 80 hPa 571 during day 81-100.

572 The growth of tracer concentration above the Arctic for TP tracers (Figure 1g) starts 573 around days 20 to 30 after the tracers are released. The tendency of the tracers from day 21-100 574 shows a broad positive tendency over the midlatitude and polar lower stratosphere regions 575 (Figure 7e-h), with a larger tendency during day 21-60 (Figure 7e-f) than that during day 61-100 576 (Figure 7g-h; note the scale of Figure 7e-f and g-h is different). It can be seen that the positive 577 tendency over the midlatitude and polar regions can be traced back to the maximum tracer 578 concentration near 120-70 hPa in the tropics and subtropics approximately following the 579 isentropic surfaces (green contours). This suggests that the transport of tracers into the 580 midlatitude and polar regions is likely through isentropic transport from the tropics and 581 subtropics, when the large tracer concentration in the lower latitudes acts as a tracer reservoir.

582 So how are the tracers transported upward into the tropical and subtropical lower 583 stratosphere? We first show the time scale of the vertical transport (Figure 8a) by displaying the 584 time evolution of tracer concentration averaged over 0-40°N (also averaged zonally) at different 585 pressure levels. The peak time of the concentration increases as a function of the vertical levels 586 from about 5 days to 120 days for pressure levels from 125 hPa to 70 hPa. Thus, it takes on the 587 order of 100 days to vertically transport tracers within the tropical and subtropical lower 588 stratosphere.

589 The horizontal structure of the vertical transport in the lower latitudes is shown at 125, 590 100, 90 and 80 hPa (Figure 8b-c, f-g). We plot the vertical fluxes of tracers (red for upward, blue 591 for downward) averaged over 1-80 days, as the tracer concentration peaks at around 80 days for 592 80 hPa (Figure 8a). The vertical flux mostly happens from 10°E to 120°E in the subtropical 593 region, with upward flux in the east and downward flux in the west. In addition to the vertical 594 flux, the July to September modeled climatological vertical velocity is shown at the same 595 pressure levels (Figure 8d-e, h-i). Comparing the horizontal structure of vertical flux and vertical 596 velocity (Figure 8 b vs. d, c vs. e, f vs. h, g vs. i), they are rather consistent. The area averaged 597 $(0^{\circ}-40^{\circ}N; 0-135^{\circ}E)$ ascent, is about -5.1×10^{-4} Pa/s at 100 hPa and -2.7×10^{-4} Pa/s at 80 598 hPa. For an airmass to rise by 10 hPa, it takes about 23 days with the vertical velocity of 599 -5.1×10^{-4} Pa/s (at 100 hPa), and about 43 days with the vertical velocity of -2.7×10^{-4} Pa/s 600 (at 80 hPa). Consistent with Figure 8a, it takes about a month for TP tracers to rise by 10 hPa 601 above the 100 hPa level.

602 For TP tracers, the vertical transport in the UTLS region is mostly due to the dipole 603 structure of the vertical velocity from 10°E to 120°E, with upward motion in the east and 604 downward motion in the west, which coherently exists at all 4 levels in Figure 8. This dipole

605	structure of vertical motion, associated with the upper level anti-cyclone over the Asian summer
606	monsoon region, has been documented by previous studies (e.g., Bergman et al., 2013; Fu et al.,
607	2006; Orbe et al., 2015a; Pan et al., 2016; Park et al., 2009; Randel et al., 2010; Rodwell and
608	Hoskins 1996, 2001; Tissier & Legras, 2016; Vogel et al., 2015, 2019). The strong rising motion
609	directly above the source region of NI and TP tracers in the UTLS, is likely the reason why NI
610	and TP tracers can be most efficiently transported into lower latitude UTLS (Figure 7a; also see
611	Wu et al., 2020) and then into the Arctic (Figure 1g).
612	The transport pathway for NI and TR tracers is similar to TP tracers. The evolution of the
613	tracer tendency (Figure S2 for NI and Figure S3 for TR), is similar to TP (Figure 7) as we see
614	broad positive tendency over the midlatitude and polar lower stratosphere from day 21-100,
615	which is at the same potential temperature levels as the maximum tracer concentration in the
616	lower latitudes. Again, this implies isentropic transport from the tropics into high latitudes. The
617	vertical transport of tracers in the lower latitudes is shown in Figure S4 for NI and Figure S5 for
618	TR. Consistent with TP tracer, the vertical tracer fluxes follow the climatological vertical
619	velocity. Note that for TR tracers, upward transport in the lower stratosphere can happen both in
620	the tropics and in the subtropical summer monsoon regions. Thus, TR tracers are not only lifted
621	up locally, but also transported horizontally into regions favorable for upward transport and then
622	brought up by the vertical motion.

623

624 **5. Discussions and Conclusions**

In this study, we investigate the summertime transport pathways from different surface
regions in the NH into the Arctic by implementing and analyzing a large ensemble of idealized
tagged tracers in WACCM5. Three different transport pathways have been identified by

examining the temporal tracer concentration evolution in the Arctic. The fast transport pathway can bring tracers from all midlatitude regions into the Arctic within the troposphere on time scales less than 8 days. The intermediate transport pathway transports tracers released over Asia and Pacific into the Arctic in 9-20 days. The slow transport pathway brings tropical and subtropical tracers into the Arctic lower stratosphere in 1-3 months.

633 The fast transport pathway, which works efficiently for all the midlatitude regions, brings 634 tracers directly to the north from the source region into the Arctic in both the upper and lower 635 troposphere through meridional transport. The meridional and vertical processes relevant for the 636 fast transport pathway is summarized in the schematic diagrams (Figure 9a-b). During the first 637 two days after the tracers are released (Figure 9a), the tracers are lifted upward into the lower 638 troposphere by vertical diffusion. Furthermore, tracers are also transported into the upper 639 troposphere during the first two days by deep convection and transient vertical transport. Strong 640 poleward transport locates in the lower troposphere at around 60°N, which is at the northern 641 boundary of the source region. The northward transport in the upper troposphere is broader but 642 weaker compared to that in the lower troposphere. During day 3-8 (Figure 9b), as the tracer 643 concentration at the surface reduces due to surface deposition, vertical diffusion brings the 644 tracers downward back to the surface in the lower troposphere. However, vertical transport by 645 transients continues to bring tracers upward into the upper troposphere. The meridional transport 646 into the Arctic is dominated by transients for tracers released in Asia, Europe and North 647 America, while both time-mean and transient transports are important for tracers released in the 648 Pacific and the Atlantic. Note that Yang et al., (2019) used a different framework to decompose 649 the meridional transport of idealized tracers into zonal mean and zonally varying components, 650 and they found both zonal mean and zonally varying components can be important for poleward

651 transport. Here we focus on the time-mean component and deviations from the time mean. The 652 conclusions from different frameworks highlight the roles of different circulation features in 653 transporting tracers poleward.

654 The intermediate transport pathway transports the tracers into the Arctic on the time scale 655 of 1-3 weeks (Figure 9c). The tracers are first transported zonally by the jet stream. Then, if the 656 tracers are transported into regions that are favorable for northward transport into the Arctic, 657 which are over Alaska and the northern North Atlantic, then these tracers can be further 658 transported into the Arctic. For tracers released in Asia and the Pacific, as the source regions are 659 located upstream (west) of the favorable northward transport locations (Alaska and northern 660 North Atlantic), tracers can be advected by the zonal jet and then efficiently transported into the 661 Arctic via the intermediate transport pathway. However, for tracers released in Europe and the 662 Atlantic, as the source regions are located downstream (east) of the two favorable northward 663 transport locations, the zonal jet transports these tracers into locations (Eurasia) favorable for 664 southward transport out of the Arctic. Thus, Europe and Atlantic tracers do not exhibit a clear 665 intermediate transport pathway.

666 The fast and intermediate transport pathways have distinct features. The timescales of the 667 transport are different, and the ways the tracers are transported horizontally are also different. 668 The tracers are transported directly to the north via the fast transport pathway while they are first 669 advected zonally before transported northward into the Arctic via the intermediate transport 670 pathway. These are new findings that have not been documented by previous studies. In addition, 671 we utilize a detailed budget analysis of tracer concentration as well as a decomposition analysis 672 of the transport into time mean and transient components to understand the mechanism of the 673 two pathways. This is also a novel aspect of this study.

674 The slow transport pathway carries the tropical and subtropical tracers into the Arctic 675 lower stratosphere. A schematic diagram for the slow transport pathway is shown in Figure 9d. 676 The tracers are first effectively brought up into the upper troposphere in the tropics and 677 subtropics, mostly by deep convection and large-scale ascent. Then, the tracers are slowly 678 transported upward into the lower stratosphere at locations where the climatological upward 679 motion is prominent. These locations for upward transport into the lower stratosphere are not 680 limited to the tropics, as strong vertical motion can also be found in the UTLS in the summer 681 monsoon regions. The transport pathway into the UTLS in the summer monsoon regions has 682 been well documented by previous studies (e.g. Pan et al., 2016; Park et al., 2009; Randel et al., 683 2010 and others). The results from a few previous studies (e.g. Bourassa et al., 2012; Orbe et al., 684 2015) suggest that tracer species or aerosols can be transported to the Arctic after they are lifted 685 up into the lower stratosphere over the summer monsoon region. Our study shows more details 686 about this transport pathway and associated timescales. The tracers are first lifted up from 100 687 hPa to 70 hPa over the monsoon region on one to four months' time scale, and they can then be 688 transported into the midlatitude and the Arctic following the isentropes. As the climatological 689 upward motion during summer is the strongest over the Asian monsoon region, tracers released 690 in northern India and Tibetan Plateau, which are right beneath the upper level rising motion, can 691 be most efficiently transported into the Arctic via the slow transport pathway.

In this study, we focus on understanding the main features of the three different transport pathways. These transport pathways can have month-to-month (e.g. July vs August), interannual and decadal variabilities as the circulation pattern changes. Our preliminary analysis suggests that, as the circulation structure is not very different between July and August, the time scale and circulation processes involved in these pathways are similar, whereas the spatial pattern of the

697 meridional transport for fast and intermediate can be slightly different (not shown). The slow 698 transport pathway is slightly more efficient during July than August, which is likely because 699 tracers are more efficiently transported into the UTLS over the Asian summer monsoon region 700 during July as pointed out by Wu et al., (2020). The time-mean wind pattern can also be different 701 during different years or decades due to low frequency variability, suggesting that there could be 702 substantial interannual or decadal variability for fast and intermediate transport pathways. The 703 variability of Asian summer monsoon can also lead to interannual variability of the slow 704 transport pathway. These topics are currently being explored and will be reported in future 705 studies.

706 Consistent with Orbe et al., (2015a), our results indicate that midlatitude source regions 707 contribute the most to the passive tracer concentration within the Arctic troposphere, whereas 708 tropical and subtropical source regions contribute the most in the Arctic lower stratosphere. Our 709 findings also suggest that pollutants emitted over all NH midlatitude land regions could be 710 quickly transported into the Arctic troposphere within about one week via the fast transport 711 pathway. Tracer species and aerosols emitted over Asia and North America could also be 712 transported into the Arctic troposphere in about one to three weeks via the intermediate transport 713 pathway. Regions like northern India and Tibetan Plateau are highlighted by the slow transport 714 pathway and might have important implications for the transport of chemical species, such as 715 ozone depleting substances, to the Arctic lower stratosphere. The approach with idealized tracers 716 that have a spatially uniform source in this study focuses on the role of atmospheric dynamics 717 underlying the transport pathways. To properly attribute the Arctic concentration of different 718 chemical species to different source regions, the spatial distribution of emission (e.g.

- anthropogenic emission) needs to be taken into account. Future work will be devoted to linking
- the idealized tracer results to realistic emission sources and their implications.

722 Acknowledgments

- 723 The authors would like to thank Robert Fajber and two anonymous reviewers for comments that
- helped to improve this paper. We acknowledge the support from National Science Foundation
- 725 (NSF) Award OPP-1825858. Y. W. also acknowledges the support from her startup fund from
- Lamont. Y. W. and X. W. are also supported by NSF Award AGS-1802248. We are grateful to
- 727 Dr. Pengfei Zhang for his help in model setups. Computing and data storage resources, including
- the Cheyenne supercomputer, were provided by NCAR's Computational and Information
- 729 Systems Laboratory, which is sponsored by NSF. X.W. thanks William J. Randel and ASP
- 730 program for allocations on Cheyenne. The data produced for and analyzed in this paper is
- 731 available through Columbia University Academic Commons
- 732 (https://academiccommons.columbia.edu/doi/10.7916/d8-9yp5-6p27).

734	References
735	Atlas, E. L., B. A. Ridley, and C. A. Cantrell, 2003: The Tropospheric Ozone Production about
736	the Spring Equinox (TOPSE) Experiment: Introduction. J. Geophys. Res., 108, 8353,
737	doi:10.1029/2002JD003172.
738	Akimoto, H. (2003), Global air quality and pollution, Science, 302, 1716-1719,
739	doi:10.1126/science.1092666.
740	Bergman, J. W., Fierli, F., Jensen, E. J., Honomichl, S., & Pan, L. L. (2013). Boundary layer
741	sources for the Asian anticyclone: Regional contributions to a vertical conduit. Journal of
742	Geophysical Research: Atmospheres, 118, 2560–2575.
743	https://doi.org/10.1002/jgrd.50142
744	Bottenheim, J. W., Dastoor, A., Gong, S. L., Higuchi, K., and Li, Y. F. 2004: Long Range
745	Transport of Air Pollution to the Arc- tic, in: Handbook of Environmental Chemistry, vol.
746	4G, 13-39, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b94522.
747	Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner,
748	M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M.
749	C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N.,
750	Guttikunda, S. K., Hopke, P. K., Jacob- son, M. Z., Kaiser, J. W., Klimont, Z., Lohmann,
751	U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.:
752	Bounding the role of black carbon in the climate sys- tem: A scientific assessment, J.
753	Geophys. Res., 118, 5380–5552, doi:10.1002/jgrd.50171, 2013
754	Bourassa, A. E., A. Robock, W. J. Randel, T. Deshler, L. A. Rieger, N. D. Lloyd, E. J.
755	Llewellyn, and D. A. Degenstein (2012), Large volcanic aerosol load in the stratosphere
756	linked to asian monsoon transport, Science, 337(6090), 78-81,

757 doi:10.1126/science.1219371.

- 758 Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson (2000), Atmospheric sulfur
- cycle simulated in the global model GOCART: Model description and global properties,
 J. Geophys. Res., 105, 24,671–24,687, doi:10.1029/2000JD900384.
- 761 Coopman, Q., Garrett, T. J., Finch, D. P., and Riedi, J.(2018): High Sensitivity of Arctic Liquid
- 762 Clouds to Long-Range Anthro- pogenic Aerosol Transport, Geophys. Res. Lett., 45, 372–
 763 381, https://doi.org/10.1002/2017GL075795.
- Duncan, B. N., and I. Bey (2004), A modeling study of the export pathways of pollution from
 Europe: Seasonal and interannual variations (1987–1997), J. Geophys. Res., 109,
- 766 D08301, doi:10.1029/2003JD004079.
- 767 Fang, Y., A. M. Fiore, L. W. Horowitz, A. Gnanadesikan, H. Levy, Y. Hu, and A. G. Russell
- (2009), Estimating the contribution of strong daily export events to total pollutant export
 from the United States in summer, J. Geophys. Res., 114, D23302,
- 770 doi:10.1029/2008JD010946.
- 771 Fisher, J. A., Jacob, D. J., Purdy, M. T., Kopacz, M., Le Sager, P., Carouge, C., Holmes, C. D.,
- Yantosca, R. M., Batchelor, R. L., Strong, K., Diskin, G. S., Fuelberg, H. E., Holloway, J.
- S., Hyer, E. J., McMillan, W. W., Warner, J., Streets, D. G., Zhang, Q., Wang, Y., and
- Wu, S. 2010: Source attribution and interannual variability of Arctic pollution in spring
- constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon
- 776 monoxide, Atmos. Chem. Phys., 10, 977–996, https://doi.org/10.5194/acp-10-977-2010.
- Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E., Chen, M., et al. (2006). Short circuit
- of water vapor and polluted air to the global stratosphere by convective transport over the
- 779 Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States
- 780 of America, 103(15), 5664–5669. https://doi.org/10.1073/pnas.0601584103

781	Garcia, R. R., & Richter, J. H. (2019). On the momentum budget of the Quasi-Biennial
782	Oscillation in the Whole Atmosphere Community Climate Model. Journal of the
783	Atmospheric Sciences, 76, 69-87. https://doi.org/10.1175/JASD-18-0088.1
784	Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with
785	pollution from mid-latitudes. Nature, 440, 787–789, doi:10.1038/nature04636.
786	Haine, T. W. N., H. Zhang, D. W. Waugh, and M. Holzer. "On transit-time distributions in
787	unsteady circulation models." Ocean Modelling 21, no. 1-2 (2008): 35-45.
788	Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proceedings
789	of the National Academy of Sciences of the United States of America, 101, 423–428,
790	doi:10.1073/pnas.2237157100.
791	Holzer, M., & Hall, T. M. (2000). Transit-time and tracer-age distributions in geophysical flows.
792	Journal of the AtmosphericSciences, 57, 3539–3558.
793	Holzer, M., I. G. McKendry, and D. A. Jaffe (2003), Springtime trans-Pacific atmospheric
794	transport from east Asia: A transit-time probability density function approach, J. Geophy
795	s. Res., 108(D22), 47 08,doi:10.1029/2003JD003558
796	Hudman, R. C., et al. (2004), Ozone production in transpacific Asian pollution plumes and
797	implications for ozone air quality in California, J. Geophys. Res., 109, D23S10,
798	doi:10.1029/2004JD004974.
799	Huntrieser, H., et al. (2005), Intercontinental air pollution transport from North America to
800	Europe: Experimental evidence from airborne measurements and surface observations, J.
801	Geophys. Res., 110, D01305, doi:10.1029/2004JD005045.
802	Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. (2013).
803	The Community Earth System Model: A framework for collaborative research. Bulletin

- 804 of the American Meteorological Society, 94, 1339–1360. https://doi.org/10.1175/ BAMS 805 D-12-00121.1
- 806 Ikeda, K., Tanimoto, H., Sugita, T., Akiyoshi, H., Kanaya, Y., Zhu, C., & Taketani, F. (2017).
- 807 Tagged tracer simulations of black carbon in the arctic: Transport, source contributions,
 808 and budget. Atmospheric Chemistry and Physics, 17(17), 10,515–10,533.
- 809 Krishnamurti, T. N., R. Krishnamurti, S. Das, V. Kumar, A. Jayakumar, and A. Simon, 2015: A
- 810 pathway connecting the monsoonal heating to the rapid Arctic ice melt. J. Atmos. Sci.,
- 811 72, 5–34, https://doi.org/10.1175/JAS–D–14–0004.1.
- 812 Klonecki, A., P. Hess, L. Emmons, L. Smith, J. Orlando, and D. Blake, 2003: Seasonal changes
- 813 in the transport of pollutants into the Arctic troposphere-model study. J. Geophys. Res.,
 814 108, 8367, doi:10.1029/2002JD002199.
- 815 Koch, D., and J. Hansen (2005), Distant origins of Arctic black carbon: AGoddard Institute for
- 816 Space Studies ModelE experiment, J. Geo phys.Res., 110, D04204,
- 817 doi:10.1029/2004JD005296
- 818 Kupiszewski, P., Leck, C., Tjernström, M., Sjogren, S., Sedlar, J., Graus, M., Müller, M.,
- 819 Brooks, B., Swietlicki, E., Norris, S., and Hansel, A. 2013: Vertical profiling of aerosol
- 820 particles and trace gases over the central Arctic Ocean during summer, Atmos. Chem.
- 821 Phys., 13, 12405–12431, https://doi.org/10.5194/acp-13-12405-2013.
- 822 Laliberte, F. and P. J. Kushner, 2014: Midlatitude moisture contribution to recent Arctic
- tropospheric summertime variability. J. Climate, 27, 5693–5707,
- 824 https://doi.org/10.1175/JCLI–D–13–00 721.1.
- Law, K. S., and A. Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315, 1537–
 1540, doi:10.1126/science.1137695.

Li, Q., et al. (2002), Transatlantic transport of pollution and its effects on surface ozone in

- Europe and North America, J. Geophys. Res., 107(D13), 4166,
 doi:10.1029/2001JD001422.
 Li, F., Waugh, D. W., Douglass, A. R., Newman, P. A., Pawson, S., Stolarski, R. S., et al.
 (2012). Seasonal variations of stratospheric age spectra in the Goddard Earth Observing
 System Chemistry Climate Model (GEOSCCM). Journal ofGeophysical Research, 117,
 D05134. https://doi.org/10.1029/2011JD016877
 Liang, Q., L. Jaeglé, D. A. Jaffe, P. Weiss-Penzias, A. Heckman, and J. A. Snow (2004), Long-
- range transport of Asian pollution to the northeast Pacific: Seasonal variations and
- transport pathways of carbon monoxide, J. Geophys. Res., 109, D23S07,
- 837 doi:10.1029/2003JD004402.

- Liu, D., B. Quennehen, E. Darbyshire, J. D. Allan, P. I. Williams, J. W. Taylor, S. J.-B.
- 839 Bauguitte, M. J. Flynn, D. Lowe, M. W. Gallagher, K. N. Bower, T. W. Choularton, and
- 840 H. Coe, 2015: The importance of Asia as a source of black carbon to the European Arctic
- during springtime 2013. Atmos. Chem. Phys., 15, 11 537–11 555,
- 842 https://doi.org/10.5194/acp-15-11 537-2015.
- Liu, H., D. J. Jacob, I. Bey, R. M. Yantosca, B. N. Duncan, and G. W. Sachse, 2003: Transport
 pathways for Asian pollution outflow over the Pacific: Interannual and seasonal
- 845 variations. J. Geophys. Res., 108(D20), 8786, doi:10.1029/2002JD003 102.
- 846 Lewis, A., et al. (2007), Chemical composition observed over the mid-Atlantic and the detection
- of pollution signatures far from source regions, J. Geophys. Res., 112, D10S39,
- 848 doi:10.1029/2006JD007584.
- 849 Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect

850	effect in the Arctic. Nature, 439, 453–456, doi:10.1038/nature04449.
851	Neale, R. B., Chen, CC., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., et al.
852	(2010). Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR
853	Tech. Note NCAR/TN-486+STR, 282 pp
854	Orbe, C., Holzer, M., & Polvani, L. M. (2012). Flux distributions as robust diagnostics of
855	stratosphere-troposphere exchange. Journal of Geophysical Research, 117, D01302.
856	https://doi.org/10.1029/2011JD016455

- 857 Orbe, C., P. A. Newman, D. W. Waugh, M. Holzer, L. D. Oman, F. Li, and L. M. Polvani,
- 858 (2015a): Airmass origin in the Arctic. Part I: Seasonality. J. Climate, 28, 4997–5014,
 859 doi:10.1175/ JCLI-D-14-00720.1.
- 860 Orbe, Clara, Darryn W. Waugh, and Paul A. Newman. (2015b): Air-mass origin in the tropical
 861 lower stratosphere: The influence of Asian boundary layer air." Geophysical Research
 862 Letters 42, no. 10: 4240-4248.
- 863 Orbe, C., Waugh, D. W., Newman, P. A., & Steenrod, S. (2016). The transit-time distribution
 864 from the Northern Hemisphere midlatitude sur-face. Journal of the Atmospheric
 865 Sciences, 73, 3785–3802.
- Pan, L. L., Honomichl, S. B., Kinnison, D. E., Abalos, M., Randel, W. J., Bergman, J. W., &
 Bian, J. (2016). Transport of chemical tracers from the boundary layer to stratosphere
 associated with the dynamics of the Asian summer monsoon. Journal of Geophysical
 Research: Atmospheres, 121, 14,159–14,174. https://doi.org/10.1002/2016JD025616
- 870 Park, M., Randel, W. J., Emmons, L., & Livesey, N. (2009). Transport pathways of carbon
- 871 monoxide in the Asian summer monsoon diagnosed from from Model of Ozone and
- 872 Related Tracers (MOZART). Journal of Geophysical Research, 114, D08303.

- 873 https://doi.org/10.1029/2008JD010621
- 874 Park, S., & Bretherton, C. S. (2009). The University of Washington shallow convection and moist
- 875 turbulence schemes and their impact on climate simulations with the Community
- Atmosphere Model. Journal Climate, 22, 3449–3469.
- 877 https://doi.org/10.1175/2008JCLI2557.1
- 878 Ploeger, F., & Birner, T. (2016). Seasonal and inter-annual variability of lower stratospheric age
- of air spectra. Atmospheric Chemistry and Physics, 16, 10195.
- 880 https://doi.org/10.5194/acp-16-10195-2016
- 881 Quinn P. K., G. Shaw, E. Andrews, E. G. Dutton, T. Ruoho-Airola & S. L. Gong (2007): Arctic
- haze: current trends and knowledge gaps, *Tellus B: Chemical and Physical Meteorology*,
 59:1, 99-114, DOI: 10.1111/j.1600-0889.2006.00236.x
- Rahn, K. A., and R. J. McCaffrey, 1980: On the origin and transport of the winter Arctic aerosol.
- 885 Ann. N. Y. Acad. Sci., 338, 486–503, doi:10.1111/j.1749-6632.1980.tb17142.x.
- 886 Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K., et al. (2010). Asian
- 887 monsoon transport of pollution to the stratosphere. Science, 328, 611.
- 888 https://doi.org/10.1126/science.1182274
- Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical Anticyclones and Summer Monsoons. J.
- 890 Climate, 14, 3192–3211, https://doi.org/10.1175/1520-
- 891 0442(2001)014<3192:SAASM>2.0.CO;2.
- 892 Rodwell, M. J., and B. J.Hoskins, 2001: Subtropical anticyclones and summer monsoons.J.
- 893 Climate, 14, 3192–3211. https://doi.org/10.1002/qj.49712253408
- 894 Shindell, D. 2007: Local and remote contributions to Arctic warming, Geophys. Res. Lett., 34,
- 895 1–5, https://doi.org/10.1029/2007GL030221.

896 Shindell, D., and Coauthors, 2008: A multi-model assessment of pollution transport to the Arctic.

897 Atmos. Chem. Phys., 8, 5353–5372, doi:10.5194/acp-8-5353-2008.

898 Stohl, A., 2006: Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys.

899 Res., 111, D11306, doi:10.1029/2005JD006888.

- 900 Tissier, A.-S., & Legras, B. (2016). Convective sources of trajectories traversing the tropical
- 901 tropopause layer. Atmospheric Chemistry and Physics, 16, 3383–3398.

902 https://doi.org/10.5194/acp-16-3383-2016

- 903 Vogel, B., Günther, G., Müller, R., Grooß, J.-U., & Riese, M. (2015). Impact of different Asian
- source regions on the composition of the Asian monsoon anticyclone and of the
- 905 extratropical lowermost stratosphere. Atmospheric Chemistry and Physics, 15, 13,699–

906 13,716. https://doi.org/10.5194/acp-15-13699-2015

907 Vogel, B., R., M., Günther, G., Spang, R., Hanumanthu, S., Li, D., et al. (2019). Lagrangian

908 simulations of the transport of young air masses to the top of the Asian monsoon

anticyclone and into the tropical pipe. Atmospheric Chemistry and Physics, 19, 6007–

910 6034. https://doi.org/10.5194/acp-19-6007-2019

- 911 Wang, X., Wu, Y., Tung, W.-W., Richter, J. H., Glanville, A. A., Tilmes, S., et al. (2018). The
- 912 simulation of stratospheric water vapor over the Asian summer monsoon region in
- 913 CESM1(WACCM) models. Journal ofGeophysical Research: Atmospheres, 123, 11,377–
- 914 11,391. https:// doi.org/10.1029/2018JD028971
- 915 Warren, S.G. and W.J. Wiscombe, 1980: A Model for the Spectral Albedo of Snow. II: Snow
- 916 Containing Atmospheric Aerosols. *Journal of the Atmospheric Sciences*, 37, 2734–2745,
- 917 https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2
- 918 Wu,Y., Orbe,C., Tilmes,S., Abalos, M., & Wang, X. (2020). Fast transport pathways into the

919	Northern Hemisphere upper troposphere and lower stratosphere during northern summer.
920	Journal ofGeophysical Research: Atmospheres, 125, e2019JD031552. https://doi.org/10.
921	1029/2019JD031552
922	Xu, JW., R. V. Martin, A. Morrow, S. Sharma, L. Huang, W. R. Leaitch, J. Burkart, H. Schulz,
923	M. Zanatta, M. D. Willis, D. K. Henze, C. J. Lee, A. B. Herber, and J. P. D. Abbatt,
924	2017: Source attribution of Arctic black carbon constrained by aircraft and surface
925	measurements. Atmos. Chem. Phys., 17, 11 971-11 989, https://doi.org/10.5194/acp-17-
926	11 971–2017.
927	Yang, H., Waugh, D. W., Orbe, C., Zeng, G., Morgenstern, O., Kinnison, D. E., & Schofield, R.
928	(2019). Large-scale transport into the Arctic: The roles of the midlatitude jet and the
929	Hadley Cell. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-2018-841
930	Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the
931	parameterization of cumulus convection in the Canadian Climate Centre general
932	circulation model. Atmosphere-Ocean, 33, 407–446.
933	

45

30N

- Figure 2. a) Zonally and vertically (1000-100 hPa) averaged tracer meridional flux at different
- latitude (15°N-90°N) and different time (1-21 days) after the ASI tracers are released. The black
- 947 contour denotes the zero line and the dashed dark green line marks the boundary of the Arctic
- 948 region (70°N). The dashed gray line denotes the northern boundary of the tracer source region. 940 Unit of the maximum diamond flow is in (model) (m(x), b) and (m(x), b) with the part of th
- 949 Unit of the meridional flux is in (mol/mol) · (m/s). b)-e) The same as a), but for PAC, NAM,
 950 ATL and EUR tracers respectively. f) The shadings are vertically averaged (1000-100 hPa) tracer
- 950 meridional flux during day 1-8 for the ATL tracers. Unit in (mol/mol) \cdot (m/s). Black contour
- 952 lines show the vertically averaged (1000-100 hPa) ASI tracer concentration during day 1-8. The
- 953 contour interval is 0.01 mol/mol. Dashed purple line denotes the boundary of the Arctic region
- 954 (70°N). g)-j) The same as f), but for PAC, NAM, ATL and EUR tracers respectively. In f)-j), the
- 955 regions defined by the dark green line are where further analysis will be performed in Figure 3-5.
- 956 The southern boundaries are at 15°N while the northern boundaries are at 90°N. The east and
- 957 west boundaries are 60°E-150°E in f), 120°E-120°W in g), 140°W-10°W in h), 90°W-30°E in i)
- 958 and 30°W-90°E in j).
- 959

- 961 Figure 3. a) Meridional and vertical structure of tracer meridional flux and concentration during
- 962 day 1-2 for ASI tracers. The shadings are meridional flux of ASI tracers averaged over 60°E-
- 963 150°E (the region denoted by dark green line in Figure 2f). Unit in $(mol/mol) \cdot (m/s)$. The
- 964 contours are tracer concentration averaged also over 60°E -150°E. The contour lines start from
- 965 0.01 mol/mol, with an interval of 0.02 mol/mol. b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, with an interval of 0.02 mol/mol. b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, with an interval of 0.02 mol/mol. b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, with an interval of 0.02 mol/mol. b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, with an interval of 0.02 mol/mol. b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c) The same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c)-for a same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c)-for a same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c)-for a same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c)-for a same as a), but for day 3-5 and 6-8. d)-0.01 mol/mol, b)-c)-for a same as a), b)-c)-for a same as
- 966 f) The same as a)-c) but for PAC tracers. The averaging is performed over 120°E-120°W (also
- 967 see Figure 2g). g)-i) The same as a)-c) but for NAM tracers. The averaging is performed over
 968 140°W-10°W (also see Figure 2h). j)-l) The same as a)-c) but for ATL tracers. The averaging is
- performed over 90°W-30°E (also see Figure 2i). m)-o) The same as a)-c) but for EUR tracers.
- 970 The averaging is performed over 30°W-90°E (also see Figure 2i).

973 Figure 4. a) Tracer budget analysis during day 1-2 in the upper troposphere (200-500 hPa). 974 Following equation (1), tracer tendency is separated into contribution from deep convection (red, 975 COND), shallow convection (orange, CONS), vertical diffusion (blue, VD) and transport by 976 resolved dynamics (green, RD). From equation (4), transport by resolved dynamics is further 977 decomposed into zonal transport (crosshatched purple), meridional transport (crosshatched 978 magenta) and vertical transport (crosshatched cyan). The residual of equation (4) due to using 979 daily mean data to estimate the rhs of the equation, is in yellow shadings (crosshatched). The budget analysis for different tracers is performed over 30°N-70°N with the same east-west 980 981 boundary in Figure 3. Unit is (mol/mol)/day. b) The same as a), but for 500-950 hPa. c)-d) The 982 same as a)-b), but for day 3-5. e)-f) The same as a)-b), but for day 6-8.

995

996

997 Figure 6. a) The shadings are the meridional tracer flux averaged vertically (1000-100 hPa) 998 during day 9-20 for ASI tracers. Unit in $(mol/mol) \cdot (m/s)$. The black contours are the 999 vertically averaged (1000-100 hPa) tracer concentration. Contour interval is 0.0015 mol/mol. 1000 The boundary of Arctic region is denoted by the dashed purple line. The source region of the 1001 tracers is crosshatched. b)-e) The same as a), but for PAC, NAM, ATL and EUR tracers 1002 respectively. f) The shadings are the model July to August climatological meridional wind 1003 (1981-1990) averaged from 800 to 200 hPa. Unit in m/s. The contours are the climatological 1004 zonal wind at the same vertical levels during the same time period. Contour interval is 5 m/s. 1005

Figure 7. a) The shadings are zonally averaged tracer concentration tendency during day 1-2 for
TP tracers. Unit in ppmv/day. The black contours are the zonally averaged tracer concentration.
Contour interval is 0.5 millimole/mole. The green contours are the potential temperature levels.
Contour interval is 15 K. b) The same as a) but for day 3-6. c)-h) The same as a), but for day 710, 11-20, 21-40, 41-60, 61-80 and 81-100 respectively. The tracer concentration contour (black)

- 1012 interval is 0.2 mmol/mol.
- 1013

Figure 8. a) Temporal evolution of zonally averaged TP tracer concentration from 0-40°N for 1016 125, 100, 90, 80 and 70 hPa. Unit in mol/mol. b) Vertical tracer flux averaged during day 1-80 at

- 1017 125 hPa (red for upward flux and blue for downward flux). Unit in $(mol/mol) \cdot (m/s)$. c) The
- 1018 same as b) but for 100 hPa. d) Model July to September climatological vertical velocity (1981-
- 1019 1990). Unit in Pa/s. e) The same as d) but for 100 hPa. f)-g) The same as b), but for 90 and 80
- 1020 hPa respectively. h)-i) The same as d) but for 90 and 80 hPa respectively.
- 1021

Figure 9. Schematic diagrams for different transport pathways. a)-b) The fast transport pathway.
The width of the arrows indicates the relative importance of different processes. c) The

1025 intermediate transport pathway. d) The slow transport pathway.