NASA/TM-20205007448 ISABE-2019-24377

Machine Learning-Based Predictive Analytics
for Aircraft Engine Conceptual Design

Michael T. Tong
Glenn Research Center, Cleveland, Ohio

October 2020



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space science.
The NASA Scientific and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of acronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

*  TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

«  TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

*+  CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

+  CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

*  SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

«  TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

»  Access the NASA STI program home page at
http://www.sti.nasa.gov

*  E-mail your question to help@sti.nasa.gov

*  Fax your question to the NASA STI
Information Desk at 757-864-6500

*  Telephone the NASA STI Information Desk at
757-864-9658

*  Write to:
NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199



NASA/TM-20205007448 ISABE-2019-24377

Machine Learning-Based Predictive Analytics
for Aircraft Engine Conceptual Design

Michael T. Tong
Glenn Research Center, Cleveland, Ohio

Prepared for the

24th ISABE Conference (ISABE 2019)

sponsored by the International Society for Airbreathing Engines
Canberra, Australia, September 22-27, 2019

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

October 2020



Acknowledgments

The NASA Advanced Air Transport Technology Project of the
Advanced Air Vehicles Program supports the work presented in this paper.

This work was sponsored by the Advanced Air Vehicle Program
at the NASA Glenn Research Center

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program National Technical Information Service
Mail Stop 148 5285 Port Royal Road
NASA Langley Research Center Springfield, VA 22161
Hampton, VA 23681-2199 703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/



Machine Learning-Based Predictive Analytics
for Aircraft Engine Conceptual Design

Michael T. Tong
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

Big data and artificial intelligence/machine learning are transforming the global business
environment. Data is now the most valuable asset for enterprises in every industry. Companies are using
data-driven insights for competitive advantage. With that, the adoption of machine learning-based data
analytics is rapidly taking hold across various industries, producing autonomous systems that support
human decision-making. This work explored the application of machine learning to aircraft engine
conceptual design. Supervised machine-learning algorithms for regression and classification were
employed to study patterns in an existing, open-source database of production and research turbofan
engines, and resulting in predictive analytics for use in predicting performance of new turbofan designs.
Specifically, the author developed machine learning-based analytics to predict cruise thrust specific fuel
consumption (TSFC) and core sizes of high-efficiency turbofan engines, using engine design parameters
as the input. The predictive analytics were trained and deployed in Keras, an open-source neural networks
application program interface (API) written in Python, with Google’s TensorFlow (an open source library
for numerical computation) serving as the backend engine. The promising results of the predictive
analytics show that machine-learning techniques merit further exploration for application in aircraft
engine conceptual design.

Nomenclature

API application program interface

BPR  bypass ratio

ANN  Artificial Neural Networks

DNN  Deep Neural Networks

HPC  high-pressure compressor

h HPC last-stage blade height (core size)
OPR  overall pressure ratio

SVM  Support Vector Machine

TSFC  thrust specific fuel consumption

C SVM parameter, controls the tradeoff between misclassification error and separation margin
Y SVM parameter, controls the tradeoff between error due to bias and variance in the model
Nj number of hidden layers

N, number of neurons in each hidden layer
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1.0 Introduction

The aviation industry is capital intensive, and is subject to stringent environmental and safety
regulations. To minimize risk, technological improvements of aircraft engines are generally made
incrementally, drawing heavily from experiences and lessons learned. Engine companies have generated
and collected large amounts of data over the years. These big data, from various sources such as the
database of currently manufactured engines, current development projects, previously completed
development projects, and the designs that were not manufactured, are valuable resources of intelligence
that can support new engine development. With increasing computational power and employing machine
learning, data can be mined to provide valuable insights that could bring high levels of efficiency to
engine conceptual design.

The author’s previous study (Ref. 1) showed that machine learning-based analytics could be an
effective tool for turbofan core-size prediction. In this work, the focus was on the application of machine-
learning analytics for turbofan TSFC prediction. Supervised machine-learning algorithms for regression
were employed to find patterns in the database of 183 manufactured engines and engines that were
studied previously in various NASA aeronautics projects. Analytics for turbofan cruise TSFC prediction
was built. The objective was to determine if machine learning-based predictive analytics could be an
effective tool for turbofan engine TSFC prediction at the conceptual design stage. In addition to the TSFC
predictive-analytics development, the author slightly modified the engine core-size predictive analytics
that was developed in Reference 1, to improve its prediction accuracy. The modification accounted for an
additional (the fourth) input parameter, engine technology level.

Both TSFC and core-size are key design parameters for any new aircraft engine. TSFC is a measure
of fuel efficiency. It affects aircraft range and is a key element in fuel burn. TSFC is also an indicator of
engine operating cost. To be able to predict TSFC rapidly and accurately would help to identify the best
engine design expeditiously amongst several candidates. Engine core size can affect fuel efficiency. To be
able to predict engine core size rapidly and accurately in the design space exploration would facilitate
engine core architecture selection in the conceptual stage of engine development.

2.0 Engine Database

The basic engine architecture in this study was an axial-compressor turbofan. The engine database
consisted of 144 manufactured engines (Refs. 2 to 8) and 39 engines that were studied previously in
various NASA aeronautics projects. These commercial engines span the era from the mid-1960s to mid-
2010s. The database captures over half-a-century of engine technology improvements and lessons-
learned, which injects realism to the predictive analytics. The NASA engine data were the system-study
results for various NASA aeronautics projects (Refs. 9 to 15). The engine database is shown in the
Appendix (Table IX).

3.0 Machine Learning Algorithms

Machine learning is a branch of artificial intelligence that uses statistical technique and mathematical
algorithms to enable a machine to learn from data, to analyze data patterns, and to make decisions with
minimal human intervention. In this work, the author developed a machine learning-based predictive
analytics for TSFC predictions.

For engine core-size prediction the support vector machine algorithm (SVM) was used. In a previous
study (Ref. 1), of the three algorithms studied, SVM offered the best accuracy and the lowest uncertainty
for binary classification.
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3.1 Support Vector Machine (SVM) for Engine Core-Size Classification

In this work, engine core-size prediction was treated as a classification problem, since the actual
engine core sizes for the commercial engines were not publicly available. A machine-learning predictive
analytics based on SVM (Ref. 16), which was developed in previous study (Ref. 1), was slightly modified
for engine core-size classification, i.e. to label engine core size as acceptable or unacceptable. The
modification accounted for an additional (the fourth) input parameter, engine technology level, as
described in the next section. The algorithm is also described in Reference 1.

3.2 Deep Neural Network (DNN) for Cruise TSFC Regression

Cruise TSFC prediction was considered a regression problem. Due to the high degree of accuracy
required for the TSFC prediction, its predictive analytics was developed using a deep-learning neural
network (DNN) that established correlations between the input variables and the TSFC. DNN is
essentially an artificial neural network (Ref. 17) with several hidden layers. In this work, the DNN
consisted of one input layer, six hidden layers, and one output layer. Each subsequent hidden layer,
consisted of six neurons, progressively extracting higher-level features from the input. These layers used
backpropagation to optimize the weights of the input variables to improve the predictive power of the
analytics. A scaled exponential linear unit (SELU) function (Ref. 18) was used for the activation function
in the hidden layers, defined as:

x ifx>0
SELU(x) —scale{aex_a ifx <0
where x = weighted sum of input variables
o~ 1.67326, a predefined constant to preserve the mean and variance of the inputs
scale = 1.05070, a predefined constant to preserve the mean and variance of the inputs

Dropout regularization technique (Ref. 19), where neuron outputs are dropped out randomly, was
applied between the fifth and the sixth hidden layers, and between the sixth hidden layer and the output
layer, to prevent the DNN from overfitting the training data. The dropout rate was set to 20 percent. A
grid-search routine was used to determine number of epochs, batch size that give the lowest training error.
The number of epochs determined the number of times an entire training dataset was passed forward and
backward through the DNN. Batch size referred to the number of training samples used for each iteration.
The Adam optimization algorithm (Ref. 20) was used for this effort. The predictive analytics was trained
and deployed in Keras (Ref. 18), an open-source neural networks API written in Python, with Google’s
TensorFlow (Ref. 21) serving as the backend engine. Keras provided the building blocks for developing
the deep-learning analytics, and TensorFlow handled the tensor computations and manipulations.
TensorFlow is an open source library for numerical computation and large-scale machine learning.

4.0 Predictive Analytics

With the machine learning algorithms described in the previous section, the author developed two
types of predictive analytics: a regression model for turbofan cruise TSFC prediction, and a classification
model for turbofan core-size prediction. Similar to Reference 1, core sizes of all the manufactured engines
are assumed to be 0.5 in. or larger. For the NASA engines, core sizes were classified according to the
blade-height data obtained from the system studies. The Python programming language (script and
libraries) was used to develop both analytics.
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Input engine parameters for cruise TSFC predictive analytics were:

e OPR at sea level static condition

e BPR at sea level static condition

o Sea level static thrust

e  Cruise Mach number

e Cruise altitude

e Engine technology level (engine certified year)

Even though turbine inlet temperature (T4), turbine cooling, and turbomachinery efficiencies were
important design parameters, these engine data were not publicly available. However, their high
dependence on engine technology (such as tip-clearance control and advanced materials) are well
understood. Since in general, “engine certified year” is a good indicator of engine technology level, it was
used to account for T4, turbine cooling, and turbomachinery efficiencies. For the NASA engines, the
certification years were assumed to be 2025, 2030, and 2040 respectively to correspond with the N+1,
N+2, and N+3 timeframes. These timeframes were directed at three generations of aircraft in the near,
mid, and far terms that were studied under NASA aeronautics projects. The sea-level flight condition for
OPR and BPR was chosen for data availability; majority design data for these two parameters are publicly
available at the sea-level flight condition.

For engine core-size predictive analytics, the binary classifier that was developed in Reference 1 was
slightly modified to account for an additional (the fourth) input parameter, engine technology level.

Input engine parameters for core-size predictive analytics were:

e OPR at sea level static condition

e BPR at sea level static condition

e Sea level static thrust

e Engine technology level (engine certified year)

Two predictive analytics were built with the machine-learning algorithms described in the previous
section. The predictive analytics for cruise TSFC was a regression model. The predictive analytics for
engine core-size was a binary classifier. The core sizes were categorized into two classes: 0 and 1
(correspond to acceptable and unacceptable core sizes), according to the engine core size (%), as shown in
Table I.

TABLE I.—CATEGORIES OF ENGINE
CORE-SIZE CLASSIFIER

Two classes

0 1
(acceptable) (unacceptable)
h >0.50 in. h <0.50 in.
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TABLE II.—TRAINING-TESTING DATASET
SPLIT FOR THE PREDICTIVE ANALYTICS

Training dataset Testing dataset
(no. of engines) (no. of engines)
137 46
(75% of dataset) (25% of dataset)

Training and building the predictive analytics involved machine learning algorithms and data science.
The approach consisted of three steps: dataset preparation; building, training, and cross-validation of the
preliminary analytics; and building, training, and evaluation of the final analytics.

e Dataset preparation

The engine dataset was shuffled randomly (using pseudo-random number generator) and divided into
two datasets: the training set and the testing set. The training set was used to train, cross-validate, and
build predictive analytics. The testing set consisted of the remaining engines that were unseen by the
predictive analytics, and was retained for the final evaluation of the predictive analytics. Table II depicts
the training-testing dataset split.

e Building, training, and cross-validation of the preliminary analytics

The building, training and cross-validation of the analytics were conducted using the training dataset.
Within the training dataset (137 engines), a 6-fold cross-validation procedure was used to conduct a
preliminary evaluation and to fine-tune the analytics. The training dataset was randomly split into 6
groups: 5 groups were used to train the analytics and 1 group was used to cross-validate the analytics.
This process was repeated 6 times so that each of the 6 groups got the chance to be used for training and
validation. The performance measure was then the average of the values, in terms of the mean and
standard deviation, computed in the iteration loop.

e Building, training, and evaluation of the final analytics

Cross-validation was no longer needed for this step, i.e., all 137 engine data were used to build and
train the predictive analytics. The analytics were then used to predict the cruise TSFC and core sizes in
the testing dataset (46 engines), and the results were compared with the testing dataset.

5.0 Predictive Results

5.1 Preliminary Training and Cross-Validation Results

During preliminary training and cross validation, the algorithm parameters and prediction
uncertainties were determined. Using grid-search routines, the algorithms parameters that give the
smallest errors for both analytics are shown in Table I11.

NASA/TM-20205007448 5



TABLE III.—ALGORITHMS USED AND THEIR PARAMETERS
Algorithms Parameters

Ni= 6, N.= 6, epoch=8386, batch size = 16, dropout rate for
the 5™ and 6™ hidden layers = 20%

SVM for core-size prediction | C=10,Y =1

DNN for TSFC prediction

TABLE IV.—CROSS-VALIDATION RESULTS

Algorithms Accuracy Uncertainty
(average) 95% confidence interval
(two standard deviations)
DNN for cruise TSFC prediction 97.9% 3.5%
SVM for core-size prediction 97.8% 4.3%

The prediction accuracy for TSFC measured how close the prediction was to the test data. The
uncertainty was defined at 95 percent confidence level, i.e., two standard deviations for normal data
distribution. The cross validation results are shown in Table IV. For the core-size prediction, the
classification accuracy of the algorithms was defined as the number of correct predictions made as a
percentage of all predictions made. Its uncertainty was also defined at 95 percent confidence interval. The
results show close to 98 percent prediction accuracy for both TSFC and core sizes, with 3.5 and
4.3 percent uncertainties, respectively.

5.2 Evaluation of the Final Predictive Analytics With Testing Dataset
5.2.1 TSFC Prediction

The final predictive analytics, built with the parameters determined during the preliminary training
and with all 137 training data (i.e., no cross validation), were then used to predict the engine TSFC and
core sizes in the testing dataset (the 46 engines unseen by the analytics). Table V summarizes the
evaluation results of the TSFC predictive analytics. On average, the prediction accuracy is high, at
98.3 percent. Table VI shows the detailed comparison of the prediction and the testing data. The
prediction accuracy exceeds 95 percent for 45 of the 46 engines. The prediction accuracy for the one
engine is only slightly below 95 percent. The performance of the deep-learning model over time during
training is shown in Figure 1. It shows the mean squared error decreases consistently and converges over
training epochs. The DNN model performs well consistently for both the training and testing datasets. An
epoch is a measure of the number of times an entire dataset is passed forward and backward through the
neural network.

NASA/TM-20205007448 6



Org.
P&W
CFM
GE
GE
Rolls Royce
CFM
Rolls Royce
GE
Rolls Royce
P&W
GE
NASA SFW
NASA SFW
P&W
NASA ERA
GE
CFM
P&W
P&W
Rolls Royce
NASA ERA
P&W
GE

ERA — Environmentally Responsible Aviation project

Mean squared error

TABLE V.—EVALUATION RESULTS OF THE
CRUISE TSFC PREDICTIVE ANALYTICS

Accuracy Accuracy Accuracy
(average) (maximum) (minimum)
98.3% 100.0% 94.8%

Model Mean Squared Error

10-1

1072

1073

i daeh o i

] —— Training dataset (with dropout)
1 —— Testing dataset

ittty Sl il 44

T
0 2000

T
4000
Epoch

T T
6000 8000

Figure 1.—Deep Neural Network model accuracy on training

and testing datasets.

TABLE VIL.—COMPARISON OF TSFC PREDICTIONS WITH TESTING DATASET

Cruise TSFC  Cruise TSFC  Accuracy,

Engine model
4056
56-5A5
CF6-80E1AL
CF6-80E1A3
Trent 1000-A
LEAP-1A35
Trent 890-17
90-94B
BR715-A1-30
4074
CF6-6D
SA-FPR1.5-GR-HW-2E
SA-FPR1.3-GR-HW-2D
JT9D-7Q
Small-Geared-2014
CF34-8C1
56-5A4
4090
JT9D-7A
BR715-C1-30
Small-DD-2015-V2
JT9D-7R4H1
GEnx-1B64

Data Prediction
0.560 0.581
0.596 0.583
0.562 0.576
0.562 0.569
0.506 0.513
0.536 0.527
0.560 0.561
0.545 0.546
0.620 0.612
0.560 0.549
0.646 0.638
0.515 0.512
0.470 0.480
0.631 0.627
0.486 0.478
0.664 0.683
0.596 0.593
0.560 0.553
0.625 0.623
0.620 0.588
0.524 0.511
0.628 0.610
0.514 0.518

% Org.
96.3 NASA ERA
97.8 GE
97.5 NASA ERA
98.8 NASA SFW
98.6 GE
98.3 P&W
99.8 GE
99.8 P&W
98.7 P&W
98.0 P&W
98.8 P&W
99.4 NASA ERA
97.9 CFM
99.4 P&W
98.4 GE
97.1 P&W
99.5 NASA SFW
98.8 P&W
99.7 GE
94.8 NASA SFW
97.5 Rolls-Royce
97.1 CFM
99.2 GE

Average accuracy = 98.3 percent
SFW — Subsonic Fixed Wing project
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Cruise TSFC

Engine model Data
Large-Geared-2015-HWB-V2 0.464
CF6-80C2A3 0.576
Small-Geared-2015 0.485
Simulated GE90-110B 0.549
CF34-3A 0.704
1519G 0.544
CF6-80C2B2 0.576
JT9D-20 0.624
JT8D-17R 0.825
4060 0.560
4460 0.560
Large-Geared-2014 0.458
CFM56-5B1 0.600
2040 0.563
CF6-50C1 0.657
JT9D-7) 0.631
SA-FPR1.5-GR-HW-2D 0.502
2037 0.563
90-76B 0.545
SA-FPR1.4-DD-2D 0.479
Trent 875 0.560
56-2C1 0.651
CF6-50C 0.657

-— lowest accuracy

Cruise TSFC  Accuracy,

Prediction
0.466
0.581
0.485
0.531
0.717
0.530
0.580
0.622
0.789
0.578
0.574
0.458
0.577
0.579
0.649
0.630
0.501
0.592
0.548
0.490
0.560
0.665
0.648

%
99.6
99.1
100.0
96.7
98.2
97.4
99.3
99.7
95.6
96.8
97.5
100.0
96.2
97.2
98.8
99.8
99.8
9.8 ¢um
99.4
97.7
100.0
97.8
98.6



5.2.2 Core-Size Prediction

Table VII shows the evaluation results of the core-size predictive analytics. The analytics performs
remarkably; it has a perfect prediction accuracy. More importantly, it also predicts unacceptable engine
core sizes (7 < 0.5 in.) with perfect accuracy. Table VIII shows the detailed comparison of the prediction
and the testing data.

Org.
PE&W

IAE
IAE
CFM Int'l
GE
IAE
P&W
Rolls Royce
P&W
NASA SFW
NASA AATT
Rolls Royce
CFM Int'l
Rolls Royce
GE
GE
GE
P&W
GE
P&W
GE
P&W

P&W

TABLE VIL—EVALUATION RESULTS OF THE
ENGINE CORE-SIZE PREDICTIVE ANALYTICS

Core size No. of engines No. of engines Accuracy
(data) (predictions)
h>0.5in. 40 40 100%
h<0.51n. 6 6 100%
Overall 46 46 100%

TABLE VII.—COMPARISON OF ENGINE CORE-SIZE PREDICTIONS WITH TESTING DATASET

Core size

Engine model
2043

V2525-D5
V2533-A5
56-5B2
90-76B
V2500-A1
JT9D-20
Trent 970-84
JT9D-7R4H1
SA-FPR1.5-GR-HW-2E
N3CC-2018
RB211-228B
CFM56-7B22
Trent 772
CF34-8E5A2
GES0-85B
CF6-80E1A4
PW4056
CF6-80C2B4
JT9D-7R4D
CF6-80E1A2
PW4052

PW4164

SFW — Subsonic Fixed Wing project
ERA - Environmentally Responsible Aviation project
AATT — Advanced Air Transport Technology project
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Coresize  Core size
Data Prediction
° °

e © o © o o © o © © © O P p o o 0 0o 0 0 o o

® @ o @ & o o @ © o o P P o o 0 0 0 0 o o

® /1>0.50 in.

Org.
NASA SFW

NASA SFW
Rolls Royce
IAE
CFM Int'l
IAE
Rolls Royce
Rolls Royce
NASA SFW
CFM Int'l
NASA ERA
P&W
P&W
NASA ERA
Rolls Royce
P&W
P&W
NASA SFW
CFM Int'l
P&W
GE
Rolls Royce
P&W

A /1 <0.50 in.

Engine model
SA-FPR1.6-GR-HW-2E

Simulated Genx
RB211-524B4-02
V2522-A5
56-5C3
V2530-A5
RB211-535E4
Trent XWB-97
SA-FPR1.4-GR-HW-2E
CFM56-5B6/P
Large-DD-2015
JT9D-7RAG2
PW4090
Small-Geared-2015
RB211-524C2
4462
4460
SA-FPR1.4-DD-2D
56-5C2
4056
GEnx-1B58
RB211-524B

JT8D-17AR

Data

>

e & ¢ o o P o @ 0 P o 0 o 0 P o o 0 0 0 0 0

Core size

Prediction

>
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6.0 Conclusions

The author developed two machine-learning predictive analytics for turbofan TSFC and core-size
predictions, respectively. The development used the database of 183 manufactured engines and engines
that were studied previously in NASA aeronautics projects. The TSFC predictive analytics has an average
accuracy of 98.3 percent, with 3.5 percent uncertainty. The engine core-size predictive analytics has an
overall accuracy of 100 percent, with 4.3 percent uncertainty. Overall, both predictive analytics show
remarkable prediction accuracy.

To further improve the accuracy (and reduce the uncertainty) of TSFC prediction, the database needs
to be expanded. However, the limitation of publicly available engine data is a challenge to overcome.
Overall, the results show that by bringing together sufficient (big) high quality data, robust machine-
learning algorithms, and data science, machine learning-based predictive analytics can be an effective tool
for engine design-space exploration during the conceptual design phase. It would help to identify the best
engine design expeditiously amongst several candidates. The promising results of the predictive analytics
show that machine-learning techniques merit further exploration for application in aircraft engine
conceptual design.
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Appendix. Engine Database

TABLE IX.—ENGINE DATABASE

Thrust, Cruise Cruise Year Cruise TSFC

Org. Engine Model BPR [5L5) OPR(SLS) Ibs (5LS) Mach Alt. k ft. certified lb/lbf.hr Core Size
CFM Int'l CFMB56E-2C1 5.0 23.50 22000 0.80 35 1979 0.651 .
CFM Int'l CFMSE-3B1 51 2240 20000 0.30 35 1984 0.655 .
CFM Int'l CFM56-3B2 51 2430 22000 0.80 35 1984 0.655 .
CFM Int'l CFMB56-3C1 51 2550 23500 0.80 35 1936 0.667 .
CFM Int'l CFMSE-5A1 5.0 26.60 25000 0.80 35 1937 0556 .
CFM Int'l CFMSE-5A3 5.0 2750 26500 0.80 35 1990 0556 .
CFM Int'l CFM56-5A4 6.0 23.80 22000 0.80 35 19496 0.596 .
CFM Int'l CFM56-5A5 6.0 2510 23500 0.80 35 19496 0.596 .
CFM Int'l CFM56E-5B1 57 3020 30000 0.80 35 19494 0.600 .
CFM Int'l CFM56E-5B2 56 3130 31000 0.80 35 19493 0.600 .
CFM Int'l CFMS5E-5B3 54 3260 33300 0.80 35 19497 0.600 .
CFM Int'l CFM56-5B4 55 27.10 27000 0.80 35 1994 0.600 .
CFM Int'l CFM56-5B5/P 559 23.33 22000 0.80 35 1996 0.600 .
CFM Int'l CFMS5E-5B6/P 5.0 2464 23500 0.80 35 19495 0.600 .
CFM Int'l CFMSB-5C2 6.8 28.80 31200 0.80 35 19491 0.545 .
CFM Int'l CFM56-5C3 6.7 29590 32500 0.80 35 1994 0567 .
CFM Int'l CFM356-5C4 5.6 31.15 34000 0.80 35 1994 0.567 .
CFM Int'l CFM56-7B20 5.4 2261 20600 0.80 35 1996 0.603 .
CFM Int'l CFM5E-7B22 53 2441 22700 0.80 35 19496 0.603 .
CFM Int'l CFM5E-7B24 532 2578 24200 0.80 35 19496 0.603 .
CFM Int'l CFM56-7B26 51 27.61 26300 0.80 35 1996 0.603 .
CFM Int'l CFM56-7B27 50 28.63 27300 0.80 35 1996 0.603 .
CFM Int'l LEAP-1A26 111 3340 27112 0.78 35 2015 0536 .
CFM Int'l LEAP-1A35 10.7 3860 32170 0.78 35 2015 0536 .
CFM Int'l LEAP-1B25 8.4 38.40 26797 0.79 35 2016 0.536 .
CFM Int'l LEAP-1B27 8.5 3990 28034 0.79 35 2016 0.536 .
CFM Int'l LEAP-1B28 8.6 4150 289315 0.79 35 2016 0536 .

GE CF&-6D 549 2470 40000 0.85 35 1970 0646 .
GE CFe-6D1 559 2470 41500 0.85 35 1971 0.646 .
GE CFe-6D1A 559 25.40 41500 0.85 35 1971 0.646 .
GE CFE-45A2 4.3 2590 48500 0.85 35 1973 0.630 .
GE CF&-50C 4.3 28.80 51000 0.85 35 1975 0657 .
GE CFe-50C1 4.3 29.80 52500 0.85 35 1975 0.657 .
GE CFe-50C2 4.3 28.44 52500 0.85 35 1978 0.630 .
GE CFB-50C28 4.3 29.06 54000 0.85 35 1979 0.630 .
GE CFE-50E 4.3 2844 52500 0.85 35 1973 0657 .
GE CFE-50E2 4.3 29.80 52500 0.85 35 1973 0.630 .
GE CFE-804A 5.0 29.00 48000 0.80 35 1931 0.623 .
GE CFE-804A2 50 3010 S0000 0.30 35 19381 0623 .
GE CFE-B0A3 50 3010 S0000 0.30 35 19381 0623 .
GE CFE-80C2AL 51 3096 58000 0.80 35 19385 0.576 .
GE CFE-80C2AZ 51 28.00 52480 0.80 35 1936 0.578 .
GE CFE-BOC2AS 51 3164 58350 0.80 35 1938 0576 .
GE CFE-B0C2ZAS 51 3158 60100 0.80 35 1938 0578 .
GE CFE-80C2ZAB 51 3100 58000 0.80 35 19496 0602 .
GE CF6-80C2B1 51 30.08 S6700 0.80 35 1937 0576 .
GE CFE-80C2B1F 51 3013 57160 0.80 35 1939 0564 .
GE CFe-80C2B2 51 27.74 51580 0.80 35 1987 0576 .
GE CFe-80C2B4 51 30.36 57130 0.80 35 1987 0.590 .
GE CFE-80C2B6 51 31.56 60070 0.80 35 1987 0.602 .
GE CF5-80E1AL 51 3246 57500 0.80 35 19493 0562 .
GE CFB-80E1A2 51 3310 BB8240 0.80 35 19493 0562 .
GE CFB-80E1AS 51 3570 B8520 0.80 35 2001 0562 .
GE CFE-80ELA4 51 3450 ©66870 0.80 35 19497 0.562 .
GE CF34-104 54 26.50 18290 074 37 2010 0.650 L
GE CF34-10E 51 27.30 18820 074 37 2002 0.665 .
GE CF34-3A 6.3 1970 9220 074 37 1986 0704 .
GE CF34-8C1 51 23.03 12670 0.74 37 1999 0.664 .
GE CF34-8C5 51 23.09 13358 0.74 37 2002 0.680 .
GE CF34-BESAZ 51 2482 14500 074 37 2002 0680 .
GE GEQ0-76B 8.6 35.45 79654 0.80 35 1945 0.545 .
® /1>0.50 in.

SFW — Subsonic Fixed Wing project
ERA - Environmentally Responsible Aviation project
AATT — Advanced Air Transport Technology project
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TABLE IX.—Continued.

Thrust, Cruise Cruise Year Cruise TSFC

Org. Engine Model BPR [5L5) OPR(5LS) |bs {S1S) Mach Alt. k ft. certified Ib/lbf.hr CoreSize
GE GES0-35B 34 38.37 37315 0.30 35 15895 0.553 .
GE GES0-90B 8.4 38.70 94000 0.80 35 1997 0.545 .
GE GES0-94B 83 4053 97300 0.30 35 2000 0.545 .
GE GESO-1158 71 4224 115529 0.80 35 2003 0.550 .
GE GEnx-1B54 9.4 35.20 573594 0.85 40 2008 0514 .
GE GEnx-1B58 9.2 37.20 50991 0.85 40 2008 0514 .
GE GEnx-1BG64 9.0 40680 BE6993 0.85 40 2008 0514 »
GE GEn=-1B70 8.8 4350 72299 0.85 40 2008 0514 .
PEW Tan-7 11 15.82 14000 0.30 35 1966 0.796 .
PEW IT8D-9 10 1588 14500 0.80 35 1967 0.807 .
PEW ITBD-17AR 10 17.28 15400 0.30 35 15982 0.825 .
PEW ITBD-17R 10 18.24 17400 0.30 35 15876 0.825 »
PEW ITAD-209 18 18.30 18500 0.30 35 1979 0.724 .
PEW ITED-219 17 20.27 21000 0.30 35 1985 0.737 »
PEW JT9D-3A 5.2 2150 44300 0.85 35 1969 0624 .
PEW Tap-7 5.2 2220 45300 0.85 35 1971 0.620 .
PEW JT9D-7A 51 20.30 45950 0.85 35 1972 0625 .
PEW ITSD-7F 51 2230 48000 0.35 35 1874 0.631 .
PEW TaD-71 51 2350 50000 0.85 35 1876 0.631 .
PEW JTsD-70 4.9 2450 53000 0.85 35 1978 0631 .
PEW JT9D-7R4D 50 2340 48000 0.85 35 14978 0.615 .
PEW ITSD-7R4E 50 2420 50000 0.85 35 1982 0620 .
PEW ITaD-7R4G2 4.8 26.30 54750 0.85 35 1982 0.639 .
PEW IT9D-7R4H1 4.8 26.70 56000 0.85 35 1982 0628 .
PEW JTaD-20 5.2 20.30 45300 0.85 35 1972 0624 .
PEW ITSD-70A 45 2450 53000 0.85 35 1574 0.631 .
PEW 11376 123 3170 27000 078 35 2014 0.530 »
PEW 1519G 116 32.30 19000 073 35 2013 0544 .
PEW 2037 6.0 2590 37500 0.30 35 1983 0.563 »
PEW 2040 55 29.40 40900 0.80 35 1987 0563 .
PEW 2043 5.3 3190 42500 0.30 35 15895 0.563 .
PEW 4052 50 2632 52200 0.85 35 1987 0.560 .
PEW 4056 47 2930 56750 0.35 35 1986 0.560 .
PEW 4060 45 3240 50000 0.85 35 1988 0.560 »
PEW 4074 5.8 32.20 74500 0.85 35 1994 0.560 .
PEW 4077 8.7 33.20 77000 0.85 35 1954 0.560 .
PEW 4084 6.4 36.20 84000 0.85 35 1994 0.560 .
PEW 4050 61 39.16 90200 0.85 35 15996 0.560 .
PEW 4098 5.8 41.37 95340 0.85 35 1998 0.560 .
PEW 4152 49 2690 52200 0.35 35 1986 0.560 .
PEW 4156 4.7 2930 56750 0.85 35 1986 0.560 .
PEW 4164 5.2 31.24 64000 0.85 35 1993 0.560 .
PEW 4168-10 49 3310 68600 0.85 35 2008 0.560 .
PEW 4450 47 30.68 60000 0.85 35 1988 0.560 »
PEW 4452 4.6 3191 63300 0.85 35 1992 0.560 .
PEW B122A 43 2570 22100 0.30 35 2004 0.540 .
Rolls-Royce RB211-228 4.7 25.00 41000 0.85 35 14873 0.655 .
Rolls-Royce RB211-5248 45 2840 49100 0.35 35 1973 0.633 .
Rolls-Royce RB211-52484-02 44 2900 50000 0.85 35 1981 0.603 »
Rolls-Royce RB211-524C2 4.5 2910 51500 0.85 35 1979 0.656 .
Rolls-Royce RB211-524D4 43 2970 53000 0.85 35 15983 0.631 .
Rolls-Royce RB211-524G 4.3 3210 58000 0.85 35 1989 0582 .
Rolls-Royce RB211-524H 42 3400 50500 0.85 35 15985 0572 .
Rolls-Royce RB211-535C 45 2150 37400 0.80 35 1981 0.646 .
Rolls-Royce RB211-535E4 41 2540 40100 0.30 35 1983 0.598 .
Rolls-Royce AE300OT7A 5.2 18.08 7580 073 32 1997 0625 .
Rolls-Royce BR710-A1-10 4.2 2423 14750 0.80 35 1996 0.630 .
Rolls-Royce BR715-A1-30 4.7 2898 18820 076 35 1998 0620 .
Rolls-Royce BR715-C1-30 4.6 32.15 21430 076 35 1998 0620 .
Rolls-Royce Trent 1000-A 95 41 .00 70000 0.85 35 2007 0.506 .
Rolls-Royce Trent553-61 7.5 35.1%9 56620 0.82 35 2000 0539 .

e 1 >0.50 in.

SFW — Subsonic Fixed Wing project
ERA — Environmentally Responsible Aviation project
AATT — Advanced Air Transport Technology project
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TABLE IX.—Concluded.

SFW — Subsonic Fixed Wing project

ERA - Environmentally Responsible Aviation project
AATT — Advanced Air Transport Technology project
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Thrust, Cruise Cruise Year Cruise TSFC

Engine Model BPR (5LS) OPR(SLS] lbs {5LS] Mach Alt. kft. certified lb/Ibf.hr CoreSize
Trent556-61 7.5 36.70 56620 0.82 35 2000 0.539 ]
Trent 7000-72 9.0 4540 73700 0.85 35 2018 0.506 ]
Trent 768 5.2 34.00 63400 0.82 35 1994 0.565 .
Trent 772 5.0 35.80 71100 082 35 1994 0.565 ]
Trent 772B-60 49 36.80 72000 0.82 35 1993 0.565 ]
Trent875 6.1 3542 79100 0.83 35 15995 0.560 ]
Trent877 6.0 36.30 81300 0.83 35 1995 0.560 ]
Trent 884 5.9 38.96 87700 0.83 35 1995 0.560 ]
Trent 890-17 6.2 40.70 91300 0.83 35 1995 0.560 ]
Trent 392 57 4138 92500 0.83 35 1997 0.560 .
Trent 895 57 4152 92900 0.83 35 1999 0.560 ]
Trent370-84 35 38.00 76100 0.85 35 2006 0518 ]
TrentX\WB-84 9.0 41.10 85200 0.85 35 2013 0.488 ]
Trent XWB-97 30 48.60 98200 0.85 35 2017 0.488 ]
V2500-A1 5.3 29.80 25000 0.80 35 1988 0.580 ]
W2522-A5 49 25.70 23043 0.80 35 1996 0.575 ]
W2524-A5 4.3 26.90 24518 0.80 35 1996 0.575 .
W2525-05 4.3 27.20 25000 0.80 35 1992 0.575 .
V32527-A5 43 27.20 25000 0.80 35 1992 0.575 ]
W2523-D5 47 30.00 28000 0.80 35 1992 0.575 ]
WV2530-A5 4.6 32.00 29900 0.80 35 1992 0.575 ]
V32533-A5 45 3344 31600 0.80 35 1996 0.575 ]
UHB 18.8 447 36833 0.80 35 2015 0.477 ]
N3CC-2016 17.6 316 18830 0.70 35 2040 0.461 A
MN3CC-2017 173 369 21515 078 35 2040 0.485 '
MN+3 27.5 36.6 28620 0.80 35 2040 0.464 '
SmallCore geared 255 388 37659 0.80 35 2040 0.450 A
MN3CC-2018 216 36.7 21662 0.79 377 2040 0.479 &
Large-DD-2015 166 437 717492 0.80 35 2030 0.480 ]
Large-DD-2015-HWB-V1 144 489 67183 0.80 35 2030 0.485 ]
Large-DD-2015-HWB-V2 137 49.8 67233 0.80 35 2030 0.487 ]
Large-Geared-2015-HWB-V3 20.0 47.2 56172 0.80 35 2030 0.465 A
Large-Geared-2015-HWB-VZ 20.0 47.1 67423 0.80 35 2030 0.464 ]
Large-Geared-2015-HWB 193 47.2 67386 0.80 35 2030 0.466 ]
Large-Geared-2015 247 3599 74149 0.80 35 2030 0.458 ]
Medium-Geared-2015 239 384 45829 0.80 35 2030 0.466 ]
Medium-Geared-2015-V2 248 385 457499 0.80 35 2030 0.465 ]
Small-DD-2015 949 287 14547 0.80 35 2030 0526 A
Small-DD-2015-v2 10.0 28.7 14586 0.80 35 2030 0.525 A
SmallkGeared-2015 270 246 21525 0.80 35 2030 0.485 A
small-Geared-2015-v2 27.4 24.8 21553 0.80 35 2030 0.483 '
Large-DD-2014 16.2 47 .4 80071 0.80 35 2030 0.469 ]
Large-Geared-2014 224 472 37496 0.80 35 2030 0.458 ]
Medium-Geared-2014 224 447 512495 0.80 35 2030 0.467 ]
Small-DD-2014 9.3 297 15566 0.80 35 2030 0519 A
small-Geared-2014 247 282 24887 0.80 35 2030 0.486 A
SA-FPR1.4-DD-2D 184 331 23813 0.80 35 2025 0.479 A
SA-FPR1.5-DD-20 15.0 33.8 23370 0.80 35 2025 0.496 '
SA-FPR1.6-DD-2D 127 34.4 23046 0.80 35 2025 0.510 A
SA-FPR1.7-DD-2D 1049 35 22734 0.80 35 2025 0.535 &
SA-FPR1.3-GR-HW-2D 241 326 26343 0.80 35 2025 0.470 '
SA-FPR1 4-GR-HW-2D 175 338 24917 0.80 35 2025 0.486 A
SA-FPR1.5-GR-HW-2D 146 335 23369 0.80 35 2025 0.502 A
SA-FPR1.6-GR-HW-2D 124 34 22924 0.80 35 2025 0.517 A
SA-FPR1.3-GR-HW-2E 260 323 28358 0.80 35 2025 0473 A
SA-FPR1.4-GR-HW-2E 18.0 33.8 26575 0.80 35 2025 0.495 A
SA-FPR1.5-GR-HW-2E 121 354 24586 0.80 35 2025 0.515 A
SA-FPR1.6-GR-HW-2E 99 363 24262 0.80 35 2025 0534 '
SA-FPR1.7-DD-LW-2E 35 376 23889 0.80 35 2025 0.547 ]
Simulated Genx 92 414 63800 0.85 35 2008 0523 ]
Simulated GES0-110B 7.2 43 110000 035 35 2003 0.549 ]

® 1 >0.50 in. A 71 <0.501in.
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