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Machine Learning-Based Predictive Analytics 
for Aircraft Engine Conceptual Design 

 
Michael T. Tong 

National Aeronautics and Space Administration  
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Big data and artificial intelligence/machine learning are transforming the global business 

environment. Data is now the most valuable asset for enterprises in every industry. Companies are using 
data-driven insights for competitive advantage. With that, the adoption of machine learning-based data 
analytics is rapidly taking hold across various industries, producing autonomous systems that support 
human decision-making. This work explored the application of machine learning to aircraft engine 
conceptual design. Supervised machine-learning algorithms for regression and classification were 
employed to study patterns in an existing, open-source database of production and research turbofan 
engines, and resulting in predictive analytics for use in predicting performance of new turbofan designs. 
Specifically, the author developed machine learning-based analytics to predict cruise thrust specific fuel 
consumption (TSFC) and core sizes of high-efficiency turbofan engines, using engine design parameters 
as the input. The predictive analytics were trained and deployed in Keras, an open-source neural networks 
application program interface (API) written in Python, with Google’s TensorFlow (an open source library 
for numerical computation) serving as the backend engine. The promising results of the predictive 
analytics show that machine-learning techniques merit further exploration for application in aircraft 
engine conceptual design. 

Nomenclature 

API application program interface 
BPR bypass ratio 
ANN Artificial Neural Networks 
DNN Deep Neural Networks 
HPC high-pressure compressor 
h HPC last-stage blade height (core size) 
OPR overall pressure ratio 
SVM Support Vector Machine     
TSFC  thrust specific fuel consumption 
C  SVM parameter, controls the tradeoff between misclassification error and separation margin 
ϒ  SVM parameter, controls the tradeoff between error due to bias and variance in the model 
Nh number of hidden layers 

Ne number of neurons in each hidden layer 
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1.0 Introduction 
The aviation industry is capital intensive, and is subject to stringent environmental and safety 

regulations. To minimize risk, technological improvements of aircraft engines are generally made 
incrementally, drawing heavily from experiences and lessons learned. Engine companies have generated 
and collected large amounts of data over the years. These big data, from various sources such as the 
database of currently manufactured engines, current development projects, previously completed 
development projects, and the designs that were not manufactured, are valuable resources of intelligence 
that can support new engine development. With increasing computational power and employing machine 
learning, data can be mined to provide valuable insights that could bring high levels of efficiency to 
engine conceptual design. 

The author’s previous study (Ref. 1) showed that machine learning-based analytics could be an 
effective tool for turbofan core-size prediction. In this work, the focus was on the application of machine-
learning analytics for turbofan TSFC prediction. Supervised machine-learning algorithms for regression 
were employed to find patterns in the database of 183 manufactured engines and engines that were 
studied previously in various NASA aeronautics projects. Analytics for turbofan cruise TSFC prediction 
was built. The objective was to determine if machine learning-based predictive analytics could be an 
effective tool for turbofan engine TSFC prediction at the conceptual design stage. In addition to the TSFC 
predictive-analytics development, the author slightly modified the engine core-size predictive analytics 
that was developed in Reference 1, to improve its prediction accuracy. The modification accounted for an 
additional (the fourth) input parameter, engine technology level. 

Both TSFC and core-size are key design parameters for any new aircraft engine. TSFC is a measure 
of fuel efficiency. It affects aircraft range and is a key element in fuel burn. TSFC is also an indicator of 
engine operating cost. To be able to predict TSFC rapidly and accurately would help to identify the best 
engine design expeditiously amongst several candidates. Engine core size can affect fuel efficiency. To be 
able to predict engine core size rapidly and accurately in the design space exploration would facilitate 
engine core architecture selection in the conceptual stage of engine development. 

2.0 Engine Database 
The basic engine architecture in this study was an axial-compressor turbofan. The engine database 

consisted of 144 manufactured engines (Refs. 2 to 8) and 39 engines that were studied previously in 
various NASA aeronautics projects. These commercial engines span the era from the mid-1960s to mid-
2010s. The database captures over half-a-century of engine technology improvements and lessons-
learned, which injects realism to the predictive analytics. The NASA engine data were the system-study 
results for various NASA aeronautics projects (Refs. 9 to 15). The engine database is shown in the 
Appendix (Table IX). 

3.0 Machine Learning Algorithms 
Machine learning is a branch of artificial intelligence that uses statistical technique and mathematical 

algorithms to enable a machine to learn from data, to analyze data patterns, and to make decisions with 
minimal human intervention. In this work, the author developed a machine learning-based predictive 
analytics for TSFC predictions. 

For engine core-size prediction the support vector machine algorithm (SVM) was used. In a previous 
study (Ref. 1), of the three algorithms studied, SVM offered the best accuracy and the lowest uncertainty 
for binary classification.  
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3.1 Support Vector Machine (SVM) for Engine Core-Size Classification 

In this work, engine core-size prediction was treated as a classification problem, since the actual 
engine core sizes for the commercial engines were not publicly available. A machine-learning predictive 
analytics based on SVM (Ref. 16), which was developed in previous study (Ref. 1), was slightly modified 
for engine core-size classification, i.e. to label engine core size as acceptable or unacceptable. The 
modification accounted for an additional (the fourth) input parameter, engine technology level, as 
described in the next section. The algorithm is also described in Reference 1. 

3.2 Deep Neural Network (DNN) for Cruise TSFC Regression 

Cruise TSFC prediction was considered a regression problem. Due to the high degree of accuracy 
required for the TSFC prediction, its predictive analytics was developed using a deep-learning neural 
network (DNN) that established correlations between the input variables and the TSFC. DNN is 
essentially an artificial neural network (Ref. 17) with several hidden layers. In this work, the DNN 
consisted of one input layer, six hidden layers, and one output layer. Each subsequent hidden layer, 
consisted of six neurons, progressively extracting higher-level features from the input. These layers used 
backpropagation to optimize the weights of the input variables to improve the predictive power of the 
analytics. A scaled exponential linear unit (SELU) function (Ref. 18) was used for the activation function 
in the hidden layers, defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑥𝑥                        𝑖𝑖𝑖𝑖 𝑥𝑥 >  0
𝛼𝛼𝑒𝑒𝑥𝑥 − 𝛼𝛼           𝑖𝑖𝑖𝑖 𝑥𝑥 ≤  0 

where x = weighted sum of input variables 
      α ≈ 1.67326, a predefined constant to preserve the mean and variance of the inputs 
     scale ≈  1.05070, a predefined constant to preserve the mean and variance of the inputs 
 

Dropout regularization technique (Ref. 19), where neuron outputs are dropped out randomly, was 
applied between the fifth and the sixth hidden layers, and between the sixth hidden layer and the output 
layer, to prevent the DNN from overfitting the training data. The dropout rate was set to 20 percent. A 
grid-search routine was used to determine number of epochs, batch size that give the lowest training error. 
The number of epochs determined the number of times an entire training dataset was passed forward and 
backward through the DNN. Batch size referred to the number of training samples used for each iteration. 
The Adam optimization algorithm (Ref. 20) was used for this effort. The predictive analytics was trained 
and deployed in Keras (Ref. 18), an open-source neural networks API written in Python, with Google’s 
TensorFlow (Ref. 21) serving as the backend engine. Keras provided the building blocks for developing 
the deep-learning analytics, and TensorFlow handled the tensor computations and manipulations. 
TensorFlow is an open source library for numerical computation and large-scale machine learning.  

4.0 Predictive Analytics 
With the machine learning algorithms described in the previous section, the author developed two 

types of predictive analytics: a regression model for turbofan cruise TSFC prediction, and a classification 
model for turbofan core-size prediction. Similar to Reference 1, core sizes of all the manufactured engines 
are assumed to be 0.5 in. or larger. For the NASA engines, core sizes were classified according to the 
blade-height data obtained from the system studies. The Python programming language (script and 
libraries) was used to develop both analytics. 
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Input engine parameters for cruise TSFC predictive analytics were: 
 
• OPR at sea level static condition 
• BPR at sea level static condition 
• Sea level static thrust 
• Cruise Mach number 
• Cruise altitude 
• Engine technology level (engine certified year) 

 
Even though turbine inlet temperature (T4), turbine cooling, and turbomachinery efficiencies were 

important design parameters, these engine data were not publicly available. However, their high 
dependence on engine technology (such as tip-clearance control and advanced materials) are well 
understood. Since in general, “engine certified year” is a good indicator of engine technology level, it was 
used to account for T4, turbine cooling, and turbomachinery efficiencies. For the NASA engines, the 
certification years were assumed to be 2025, 2030, and 2040 respectively to correspond with the N+1, 
N+2, and N+3 timeframes. These timeframes were directed at three generations of aircraft in the near, 
mid, and far terms that were studied under NASA aeronautics projects. The sea-level flight condition for 
OPR and BPR was chosen for data availability; majority design data for these two parameters are publicly 
available at the sea-level flight condition.  

For engine core-size predictive analytics, the binary classifier that was developed in Reference 1 was 
slightly modified to account for an additional (the fourth) input parameter, engine technology level. 

Input engine parameters for core-size predictive analytics were: 
 
• OPR at sea level static condition 
• BPR at sea level static condition 
• Sea level static thrust 
• Engine technology level (engine certified year) 

 
Two predictive analytics were built with the machine-learning algorithms described in the previous 

section. The predictive analytics for cruise TSFC was a regression model. The predictive analytics for 
engine core-size was a binary classifier. The core sizes were categorized into two classes: 0 and 1 
(correspond to acceptable and unacceptable core sizes), according to the engine core size (h), as shown in 
Table I. 

 
 
 

TABLE I.—CATEGORIES OF ENGINE 
CORE-SIZE CLASSIFIER 

Two classes 

0 
(acceptable) 

1 
(unacceptable) 

h ≥ 0.50 in. h < 0.50 in. 
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TABLE II.—TRAINING-TESTING DATASET 
SPLIT FOR THE PREDICTIVE ANALYTICS 

Training dataset 
(no. of engines) 

Testing dataset 
(no. of engines) 

137 
(75% of dataset) 

46 
(25% of dataset) 

 
 

Training and building the predictive analytics involved machine learning algorithms and data science. 
The approach consisted of three steps: dataset preparation; building, training, and cross-validation of the 
preliminary analytics; and building, training, and evaluation of the final analytics.  
 
• Dataset preparation  

 
The engine dataset was shuffled randomly (using pseudo-random number generator) and divided into 

two datasets: the training set and the testing set. The training set was used to train, cross-validate, and 
build predictive analytics. The testing set consisted of the remaining engines that were unseen by the 
predictive analytics, and was retained for the final evaluation of the predictive analytics. Table II depicts 
the training-testing dataset split. 
 
• Building, training, and cross-validation of the preliminary analytics 

 
The building, training and cross-validation of the analytics were conducted using the training dataset. 

Within the training dataset (137 engines), a 6-fold cross-validation procedure was used to conduct a 
preliminary evaluation and to fine-tune the analytics. The training dataset was randomly split into 6 
groups: 5 groups were used to train the analytics and 1 group was used to cross-validate the analytics. 
This process was repeated 6 times so that each of the 6 groups got the chance to be used for training and 
validation. The performance measure was then the average of the values, in terms of the mean and 
standard deviation, computed in the iteration loop. 

 
• Building, training, and  evaluation of the final analytics 

 
Cross-validation was no longer needed for this step, i.e., all 137 engine data were used to build and 

train the predictive analytics. The analytics were then used to predict the cruise TSFC and core sizes in 
the testing dataset (46 engines), and the results were compared with the testing dataset. 

5.0 Predictive Results 
5.1 Preliminary Training and Cross-Validation Results 

During preliminary training and cross validation, the algorithm parameters and prediction 
uncertainties were determined. Using grid-search routines, the algorithms parameters that give the 
smallest errors for both analytics are shown in Table III. 
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TABLE III.—ALGORITHMS USED AND THEIR PARAMETERS 
Algorithms Parameters 

DNN for TSFC prediction Nh = 6, Ne = 6, epoch=8386, batch size = 16, dropout rate for 
the 5th and 6th hidden layers = 20% 

SVM for core-size prediction C = 10, ϒ = 1 

 
 
 

TABLE IV.—CROSS-VALIDATION RESULTS 
Algorithms Accuracy 

(average) 
Uncertainty 

95% confidence interval 
(two standard deviations) 

DNN for cruise TSFC prediction 97.9% 3.5% 

SVM for core-size prediction 97.8% 4.3% 

 
 
 

The prediction accuracy for TSFC measured how close the prediction was to the test data. The 
uncertainty was defined at 95 percent confidence level, i.e., two standard deviations for normal data 
distribution. The cross validation results are shown in Table IV. For the core-size prediction, the 
classification accuracy of the algorithms was defined as the number of correct predictions made as a 
percentage of all predictions made. Its uncertainty was also defined at 95 percent confidence interval. The 
results show close to 98 percent prediction accuracy for both TSFC and core sizes, with 3.5 and 
4.3 percent uncertainties, respectively. 

5.2 Evaluation of the Final Predictive Analytics With Testing Dataset 

5.2.1 TSFC Prediction 
The final predictive analytics, built with the parameters determined during the preliminary training 

and with all 137 training data (i.e., no cross validation), were then used to predict the engine TSFC and 
core sizes in the testing dataset (the 46 engines unseen by the analytics). Table V summarizes the 
evaluation results of the TSFC predictive analytics. On average, the prediction accuracy is high, at 
98.3 percent. Table VI shows the detailed comparison of the prediction and the testing data. The 
prediction accuracy exceeds 95 percent for 45 of the 46 engines. The prediction accuracy for the one 
engine is only slightly below 95 percent. The performance of the deep-learning model over time during 
training is shown in Figure 1. It shows the mean squared error decreases consistently and converges over 
training epochs. The DNN model performs well consistently for both the training and testing datasets. An 
epoch is a measure of the number of times an entire dataset is passed forward and backward through the 
neural network. 
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TABLE V.—EVALUATION RESULTS OF THE  
CRUISE TSFC PREDICTIVE ANALYTICS 

Accuracy 
(average) 

Accuracy 
(maximum) 

Accuracy 
(minimum) 

98.3% 100.0% 94.8% 

 
 

 
Figure 1.—Deep Neural Network model accuracy on training 

and testing datasets. 
 
 

TABLE VI.—COMPARISON OF TSFC PREDICTIONS WITH TESTING DATASET 

 
Average accuracy = 98.3 percent             lowest accuracy 

SFW – Subsonic Fixed Wing project 
ERA – Environmentally Responsible Aviation project 
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5.2.2 Core-Size Prediction 
Table VII shows the evaluation results of the core-size predictive analytics. The analytics performs 

remarkably; it has a perfect prediction accuracy. More importantly, it also predicts unacceptable engine 
core sizes (h < 0.5 in.) with perfect accuracy. Table VIII shows the detailed comparison of the prediction 
and the testing data. 

TABLE VII.—EVALUATION RESULTS OF THE  
ENGINE CORE-SIZE PREDICTIVE ANALYTICS 

Core size No. of engines 
(data) 

No. of engines 
(predictions) 

Accuracy 

h ≥ 0.5 in. 40 40 100% 

h < 0.5 in. 6 6 100% 

Overall 46 46 100% 

TABLE VIII.—COMPARISON OF ENGINE CORE-SIZE PREDICTIONS WITH TESTING DATASET 

 h ≥ 0.50 in.  h < 0.50 in. 
SFW – Subsonic Fixed Wing project 
ERA – Environmentally Responsible Aviation project 
AATT – Advanced Air Transport Technology project 
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6.0 Conclusions 
The author developed two machine-learning predictive analytics for turbofan TSFC and core-size 

predictions, respectively. The development used the database of 183 manufactured engines and engines 
that were studied previously in NASA aeronautics projects. The TSFC predictive analytics has an average 
accuracy of 98.3 percent, with 3.5 percent uncertainty. The engine core-size predictive analytics has an 
overall accuracy of 100 percent, with 4.3 percent uncertainty. Overall, both predictive analytics show 
remarkable prediction accuracy. 

To further improve the accuracy (and reduce the uncertainty) of TSFC prediction, the database needs 
to be expanded. However, the limitation of publicly available engine data is a challenge to overcome. 
Overall, the results show that by bringing together sufficient (big) high quality data, robust machine-
learning algorithms, and data science, machine learning-based predictive analytics can be an effective tool 
for engine design-space exploration during the conceptual design phase. It would help to identify the best 
engine design expeditiously amongst several candidates. The promising results of the predictive analytics 
show that machine-learning techniques merit further exploration for application in aircraft engine 
conceptual design.  
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Appendix. Engine Database 
TABLE IX.—ENGINE DATABASE 

 
 h ≥ 0.50 in. 

SFW – Subsonic Fixed Wing project  
ERA – Environmentally Responsible Aviation project  
AATT – Advanced Air Transport Technology project  
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TABLE IX.—Continued. 

 
 h ≥ 0.50 in. 

SFW – Subsonic Fixed Wing project  
ERA – Environmentally Responsible Aviation project  
AATT – Advanced Air Transport Technology project 
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TABLE IX.—Concluded. 

 
 h ≥ 0.50 in.     h < 0.50 in. 

SFW – Subsonic Fixed Wing project  
ERA – Environmentally Responsible Aviation project  
AATT – Advanced Air Transport Technology project 
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