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ESTABLISHING PRIORITIES
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https://www.nasa.gov/sites/default/files/atoms/files/a
merica_to_the_moon_2024_artemis_20190523.pdf

Artemis:



https://www.whitehouse.gov/wp-content/uploads/2020/07/A-New-

Era-for-Space-Exploration-and-Development-07-23-2020.pdf

This focus on further extending

an extraterrestrial human and

robotic presence and on the

development of commercial

space industries makes the

Artemis Program much more

than a repeat of the Apollo

Program. A serious, determined

approach to lunar development

requires a series of pre-

positioned logistics packages. A

combination of 3-D printing,

telerobotics, and artificial

intelligence could enable pre-

positioning the equivalent of a

small Antarctic scientific station.

Newly arrived astronauts should

have a substantial amount of

resources already available and

be able to spend their initial

weeks building out the initial

infrastructure for larger, future

development teams
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Consolidation

Utilization

Emplacement

British National Antarctic Expedition 1902

R.F. Scott’s “winter quarters hut” 

Permanent occupation - 1955

McMurdo Station Today
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Field Station Analog-McMurdo, Antarctica

Accelerate these 
timelines with 
commercial 
partnerships

~100 Years of 
Development

https://commons.wikimedia.org/wiki/
File:Scotts_Hut_Antarctica.jpg

By Gaelen Marsden -
Own work, CC BY-SA 3.0, 
https://commons.wikime
dia.org/w/index.php?curi
d=1391313

Photo courtesy of USAP, US Gov..
By USGS - http://international.usgs.gov/ipy/images/ppacket/mcmurdo118.jpeg, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3591282

Photo courtesy of NSF, US Gov..



International Antarctica Bases Today: South Pole

5

By Daniel Leussler, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=31621072

https://en.wikipedia.org/wiki/Image:Amundsen-
Scott_South_Pole_Station.jpg
(https://en.wikipedia.org/wiki/Creative_Commons)

Hugh Broughton Architects  
https://commons.wikimedia.org/wiki/File:Halley_VI_Antarctic_Research
_Station_-_Science_modules.jpg

https://en.wikipedia.org/wiki/Esperanza_Base



Space Habitat Classifications
Habitat Classification Key Characteristics

CLASS I
Pre-integrated

• Earth Manufactured
• Earth Assembled & Fully Outfitted
• Pre-Integrated & Tested prior to Launch
• Space Delivered with Immediate Habitation Capability
• Launch Shroud Constrained
• Limited to Launch Vehicle Payload Size Capability
• Limited to Launch Vehicle Payload Mass Capability

CLASS II
Prefabricated 
Deployable. Space or 
Surface Deployed & 
Assembled

• Earth Manufactured
• Requires Space Deployment, Assembly & Outfitting
• Requires Robotic and Human Labor During Assembly
• Partial Integration Capable for Subsystems
• Requires some or all Internal Outfitting emplacement
• Critical Subsystems are Earth Based and Tested prior to Launch
• Requires Assembly & Checkout prior to Human Occupancy
• Larger Volumes Capable
• Not Restricted to Launch Vehicle Shroud Size
• Restricted to Launch Mass. Deliver on multiple vehicles

CLASS III
In-Situ Derived and 
Constructed

• Manufactured In-Situ Derived with Space Resources (Lunar or 
Mars)

• In-Space Constructed
• Requires Robotic Manufacturing Capability & Infrastructure
• Requires Robotic and Human Labor During Construction
• Requires Integration of Subsystems
• Requires all Internal Outfitting emplacement
• Critical Subsystems are Earth Based and Tested prior to Launch
• Requires Assembly to become Operability
• Larger Volumes Capable
• Not Restricted to Launch Vehicle Size
• Not Restricted to Launch Mass
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Deployable
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Space Habitat Classifications

KJ Kennedy (2009). Chapter 2: Vernacular of Space Architecture, pp7-21. In AS Howe & B Sherwood (eds) 
AIAA History of Spaceflight series, Out of This World: The New Field of Space Architecture, ISBN 978-1-
56347-982-3. Reston, Virginia, USA: American Institute of Aeronautics and Astronautics.

Kriss J. Kennedy, Space Architect
Copyright 2020

HEDS Technology/Commercialization Initiative-

Habitation and Surface Construction NASA 

~ 1997-1999.

Space Architecture 
Tipping Point



Space Habitat Classifications
Habitat Classification Key Characteristics

CLASS I
Pre-integrated

• Earth Manufactured
• Earth Assembled & Fully Outfitted
• Pre-Integrated & Tested prior to Launch
• Space Delivered with Immediate Habitation Capability
• Launch Shroud Constrained
• Limited to Launch Vehicle Payload Size Capability
• Limited to Launch Vehicle Payload Mass Capability

CLASS II
Prefabricated 
Deployable. Space or 
Surface Deployed & 
Assembled

• Earth Manufactured
• Requires Space Deployment, Assembly & Outfitting
• Requires Robotic and Human Labor During Assembly
• Partial Integration Capable for Subsystems
• Requires some or all Internal Outfitting emplacement
• Critical Subsystems are Earth Based and Tested prior to Launch
• Requires Assembly & Checkout prior to Human Occupancy
• Larger Volumes Capable
• Not Restricted to Launch Vehicle Shroud Size
• Restricted to Launch Mass. Deliver on multiple vehicles

CLASS III
In-Situ Derived and 
Constructed

• Manufactured In-Situ Derived with Space Resources (Lunar or 
Mars)

• In-Space Constructed
• Requires Robotic Manufacturing Capability & Infrastructure
• Requires Robotic and Human Labor During Construction
• Requires Integration of Subsystems
• Requires all Internal Outfitting emplacement
• Critical Subsystems are Earth Based and Tested prior to Launch
• Requires Assembly to become Operability
• Larger Volumes Capable
• Not Restricted to Launch Vehicle Size
• Not Restricted to Launch Mass
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Space: Surface Construction Classifications

Modular

Parts

Raw
Materials

Earth - Modular

Earth - Parts

In-Situ –
Raw
Materials

Raw Materials               Regolith + Volatiles



Getting Started on REQUIREMENTS VS CAPABILITIES

INFRASTRUCTURE: WHAT’S NEEDED?

(DEFINED BY ARCHITECTURE)

• Landing & Launch Pads

• Berms for Fission Power / Blast 

• Radiation Shielding for crew and 
equipment

• Road and route ways

• Other infrastructure such as trenches 
and compacted foundations

• Pressurized Structures (e.g. Habitats)

• Non-pressurized structures such as 
garages, hangars, and refueling 
depots

• Dust-free zones for parking and 
operations

• Access to Energy / Power

RESOURCES: WHAT’S THERE?

(ENERGY, GEOLOGICAL MATERIALS & 

GEOTECHNICAL CHARACTERISICS)

• Natural Resources
– Abundant Solar Energy

– Water & other volatiles

– Regolith
• Bulk material for construction

• Extracted metals from minerals

• Basalt glass fiber for composites

– Thermal Deltas, Vacuum, Location etc

• Capabilities, Tools & Processes
– Regolith Simulants

– Cone penetrometer/ shear vane

– Seismic

– Ground Penetrating Radar

– Borings

– Sample Assays

– Mining & Size sorting, beneficiation

– Production & Storage

– Other capabilities & tools being 
developed



• Long-distance communication, monitoring, and control
• Increased autonomy/automation of operations
• Improved user experience/ease of operation (i.e. 

reduced training load)
• Multi-material printing & related control systems
• Increased transportability / mass reduction
• Expanded environmental range
• Design for field reparability
• Software Design Platform
• Dust mitigation
• Shielding / Ballistic Protection
• Jobsite Mobility
• Off-foundation construction / foundation delivery

Functional Capabilities Needed



Scale of Lunar Surface Construction Tasks: 

Moving Regolith
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Criteria for Lunar Outpost Excavation
R. P. Mueller and R. H. King
Space Resources Roundtable –SRR IX 
October 26, 2007
Golden, Colorado
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PROPOSED NEW FUNCTIONAL CAPABILITIES WBS

4.0 In-Situ 
Construction

4.1 Site Planning 
and Design

Site Survey & 
Characterization

Architecture 
Layout & Master 

Planning

Civil Engineering 
Design

GIS 
Configuration 

Control

Construction 
Techniques and 

Methods

Access & 
Handling 

Equipment

Robotic/Human 
Construction 
Equipment

4.2 In-Situ 
Construction 

Materials

Raw Material

By-product 
Material

Processed 
Material

Re-purposed 
Material

Stockpiling & 
Material 
Logistics

4.3 Site Prep

Terrain Shaping, 
Grading, & Rock 

Clearing

Soil Stabilization

Below Grade 
Operations

4.4 Horizontal 
Construction 
(2D) & Pads

Road 
Construction

Foundation 
Construction

Utilidor 
Construction

Landing / 
Launch Pad

4.5 Vertical 
Construction 

(3D) & Shielding

Underground 
structures

Above Ground 
Structures

Shielding

Landing / 
Launch Pad 

Infrastructure

4.6 
Maintenance & 

Life-cycle

Integrity & 
Preventative 
Maintenance

Lifecycle 
Operations

Facility 
Management

Waste 
Management

Decommission 
and Re-planning 

/ Salvage

Uses Construction industry terminology

Inspection & 
Compliance

* Cross Cutting

* * *



Current NASA In-Situ Construction Projects

• Several Game Changing Development (GCD) Programs, some new starts 

for FY21, focused on “Lunar Surface to Stay”

– Moon-to-Mars Planetary Autonomous Construction Technologies 

(MMPACT) (MSFC Led): Broad Effort using Applicable Technologies

– In-Situ Construction (KSC Led): Focused on Polymer Concrete Construction

– Lunar Safe Haven (LaRC Led): Developing NASA system level 

requirements

• Several ACO / Tipping Point proposals currently in review

• NASA Centennial Excavation, Manufacturing & Construction “EMC” 

Challenge currently focusing on an “E” Challenge

• SBIR subtopics being considered now

• STMD continues its gap analysis for functional capabilities that include 

Surface Construction

• International Space Exploration Coordination Group (ISECG) is conducting 

a separate gap analysis for In Situ Resource Utilization (ISRU) that includes 

Construction & Manufacturing elements (Sanders & Moses participate for 

NASA) 12



• University Collaborations 

– MSFC Cooperative Agreement Notice (CAN’s) Efforts

• University of Mississippi – Ionics Liquids Extraction for Lunar 

Concrete Binder Materials

• University of Mississippi – Effects of Lunar Seismic Activity on 

Landing Pads

• Mississippi State University – Lunar Steel Production

• University of Nevada Las Vegas – Ionic Liquids Extraction of Metals 

from Lunar Regolith

• Drake State Technical School – Development of an Additive 

Construction Workforce

• University of Alabama in Huntsville – Testing of Large Scale 

Structures

• Kappler – Environmental Control During Curing of Lunar Concretes

13

Current NASA In-Situ Construction Projects



Thank you for your attention!

NASA is looking forward to collaboration with 

industry, academia and other government 

agencies
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