#### Polymer Aerogels for Lunar Applications and Beyond

#### Dr. Stephanie L Vivod

NASA Glenn Research Center, Cleveland OH 44135 Stephanie.L.Vivod@nasa.gov

### **GRC Core Competencies**





#### **Air-Breathing Propulsion**



Communications Technology and Development



In-Space Propulsion and Cryogenic Fluids Management



Physical Sciences and Biomedical Technologies in Space



Power, Energy Storage and Conversion



Materials and Structures for Extreme Environments



### Yes, we went to the moon...

#### Apollo Program ran from 1961 to 1972

#### Moon Landing Missions:

- Apollo 11 Neil Armstrong (Commander), Buzz Aldrin, Michael Collins )-1969
- Apollo 12 Charles "Pete" Conrad (Commander), Alan Bean, Richard Gordon-1969
- \*Apollo 13 James Lovell (Commander), Jack Swigert, Fred Haise -1970
- Apollo 14 Alan Shepard (Commander), Edgar Mitchell, Stuart Rosa-1971
- Apollo 15 David Scott (Commander), James Irwin, Alfred Worden-1971
- Apollo 16 John Young (Commander), Charles Duke, Thomas Mattingly-1972
- Apollo 17 Eugene Cernan (Commander), Harrison Schmitt, Ronald Evans-1972

Apollo 15-Astronaut James B. Irwin, Iunar module pilot, works on the Lunar Roving Vehicle



WE'RE GOING BACK! Artemis Program: Return to moon-2024

https://www.nasa.gov/specials/artemis/

#### \*mission aborted

# Wonderful World of Aerogels!!!



- Highly porous solid (>95%)
- Pore sizes (10-40 nm)
- Large surface areas (~850 m<sup>2</sup>/g)
- Low density (0.15 g/cm<sup>3</sup>)







Scanning Electron Micrograph of polymer aerogel matrix







# Current aerogel products and market



Cabot Lumira Aerogel in skylights Grand Rapids, Mi



Aerogel Technologies Airloy



#### Home insulation



Aspen Aerogels Pyrogel pipe insulation



Blueshift AeroZero



BASF Slentite panels



Outdoor gear/apparel

# Potential applications for durable aerogels in aeronautics and space exploration



Cryotank Insulation



Fan engine containment (Ballistic protection)



Ultra-lightweight, multifunctional structures for habitats, rovers



Propellant tanks



Heat shielding



Inflatable aerodynamic decelerators



Vibro-acoustic mitigation



Light weight satellite ODC



Insulation for EVA suits and habitats



### Improving on Previous Technology



#### **Rover Battery Insulation**



- Sensitive internal components must not exceed extreme temperatures of -40° Celsius to +40° Celsius (-40° Fahrenheit to 104° Fahrenheit)
- Night temperatures on Mars can drop to -96°
  Celsius (-140° Fahrenheit).
- The rover is kept warm by a special layer of silica aerogel

#### Stardust Mission

NASA's Discovery Mission Stardust launched with the intention of performing a close (142 km) flyby of the comet Wild-2 in order to collect cometary samples embedded within an aerogel substrate.





### Durable aerogels by reinforcing silica aerogels with polymers



- Versatile: allows cross-linking with variety of polymers to tailor properties
- Collaboration with Aspen Aerogels to scale up streamlined process



Aspen fabricated polymer reinforced aerogels used to insulate cryotank--collaboration with MSFC





Native

**Cross-linked** 

- Polymer reinforcement *doubles* the density
- Results in *two order of magnitude* increase in strength
- Does not change pore structure





Low density... to higher density, same aerogel pore structure



National Aeronautics and Space Administration

# Hypersonic inflatable aerodynamic decelerator (HIAD) concept

- Hard aeroshells used to land rovers on Mars limit size of payload
  - Inflatable structure overcomes this limitation
- Baseline insulation for HIAD (Pyrogel-2250) made up of silica aerogel particles in O-PAN batting
  - Flexible but sheds dust particles on handling
  - Begins to out gas at 380 °C







National Aeronautics and Space Administration

# Cross-linked polyimide aerogels

Diamine





Polyimide formed by reaction of diamine and dianhydride

- Use of triamines, or other multifunctional groups to form network structure
- Gelled polyamic acid network is imidized
- Solvent exchange to acetone then supercritical drying produces aerogel



Monomers



Polyamic Acid Gel



Polyimide Gel



Polyimide Aerogel











# Formulation study various dianhydrides and diamines



# Polyimide chain formation with amide crosslink



Amine end-capped Polyimide chain



National Aeronautics and Space Administration

# Strong, flexible polyimide aerogels



2 to 5 times stronger than epoxy reinforced aerogels at similar density





Can be manufactured in a flexible form with excellent mechanical properties



Guo, Meador, McCorkle, Quade, Guo, Hamilton, Cakmak and Sprowl, ACS Appl. Mater. Interfaces, 2011, 3 (2), pp 546–552

# High temperature testing of PI aerogel thin films



#### High heat flux testing at **Laser** Hardened Materials Experimental Lab (LHEML), Wright Patterson Air Force Base

- Heat flux 20 W/cm<sup>2</sup>, 8 torr N<sub>2</sub>
- 90 sec duration
- Bottom layer only darkened, no hole, no cracks

LHMEL DAS 10091618 Layup 12









Test specimen with thermocouples

#### Isothermal aging 24 hours

- Very little weight loss up to 400 °C
- Collapse of pore structure and weight loss at 500 °C





# Low dielectric properties of PI aerogel lead to higher performance, lighter weight antennas

- Improved gain and efficiency over Duroid substrates
- Dielectric constant of 1.16 for aerogel, 2.1 for Duroid
- <u>77 % lighter in weight</u>
- Also, can be used as substrate in dielectric barrier discharge (DBD) devices







National Aeronautics and Space Administration

# Beyond line of sight (BLOS) coverage for UAS



- Currently only large UAS platforms can accommodate dish antennas
- Solution: Conformal, Phased Array Antenna



Global Hawk/Northrop Grumman



- Electronically attenuated ultra low side lobes to avoid interference with ground
  - Will enable BLOS for UAV operating in Ku provisional bands
- Build out of ultra-lightweight, low dielectric polymer aerogels
  - Up to 80% weight savings by using unconventional materials
- Reduced drag through use of conformal designs

# For conformable antennas, need more conformable aerogels

 Formulations of aerogel had rigid polymer backbone





Rigid polymer backbone



#### Broken antenna

- Rod-coil approach to more flexible aerogels
  - Blocks covalently bonded together
  - Rods provide reinforcement, coils provide flexibility
  - Nano-phase separation of blocks allows separate functionality to be exhibited

Conformal aerogel





Improved antenna performance with 77% lower mass

18



# Approach to more flexible aerogels

 Utilize aliphatic diamines to replace up to 75 % of aromatic diamine



1,5-diamino-2-methylpentane (DAMP)



1,12-diaminododecane (DADD)



H<sub>2</sub>N NH<sub>2</sub>

1,3-Bis(4-aminophenoxy)neopentane (BAPN)



www.nasa.gov 19



### **BLOS Communication for Space Applications**



Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite in lunar orbit



Mars Reconnaissance Orbiter Mission



International Space Station



https://www.nasa.gov/sites/default/fil es/atoms/audio/ep157\_gateway.mp3



The Deep Space Network (DSN): NASA's international array of giant radio antennas that support interplanetary spacecraft missions

# Aerogel IR Scattering Filters for mm and Sub-mm Astrophysics



- IR blocking filters made by embedding scattering particles in an aerogel substrate
- Maximizing the sensitivity of millimeter and sub-millimeter instruments requires rejection of infrared (IR) light.





# Multifunctional, Universal Thermal Insulation System

- Current multilayer insulation (MLI) only functions in vacuum
  - Layers of Mylar separated by scrim layers
- Aerogel is best insulation in gaseous environment
- MLI incorporating aerogel in place of scrim reduces TC by 23-37%







Baseline MLI (Mylar + scrim)

Pi aerogel + Mylar



MLI with and without aerogel tested under simulated Mars atmosphere (8 Torr Argon, -120 to 20 °C)



#### Polyimide Aerogel Development

- Multiple cross-linkers evaluated
- Over 100 different combinations of backbone chemistry studied



#### Hydrophilic to hydrophobic



#### 3D printing



#### Mechanical properties



Transparency



Pore structure





### **Acknowledgments**



#### Polymer aerogel fabrication and characterization

- Dr. Haiquan Guo, Dr. Tom Essinger-Hileman, Dr. Baochau N. Nguyen, Dr. Mary Ann Meador, Jessica Cashman, Ariel Tokarz
- Linda McCorkle, Dan Scheiman Frank Bremenour, Spyro Efpraxias
- Prof. Coleen Pugh (U of Akron), Prof. Miko Cakmak (U of Akron), Prof. David Schiraldi (CWRU)
- A whole lot of interns!





Funding

Convergent Aeronautics Solutions (CAS) Project ARMD Transformative Aeronautics Program STMD Game Changing Development Program Director's Discretionary Fund



