

High Fidelity Aerospace Simulations at NASA Ames SimLabs

Dr. Ir. Peter Zaal

Outline

- SimLabs Facilities
- Vertical Motion Simulator
- Research and Training Overview
- Future Visual System and AR/VR

www.nasa.gov/simlabs

SimLabs Facilities

Unique high-fidelity simulation facilities capable of a wide range of aerospace systems research

Future Flight Central

Crew-Vehicle Systems Research Facility

Vertical Motion Simulator

VMS was commissioned in 1979

- Originally designed to support Vertical Take-Off and Landing (VTOL) and Short Take-Off and Landing (STOL) research
- First simulation study was in 1980, investigating the Space Shuttle Pilot-Induced Oscillation (PIO) issue

325+ simulation studies conducted, primarily for research in:

- Handling Qualities of Aircraft and Spacecraft
- Flight Controls and Displays
- Simulation Fidelity

Designing the VMS for Realistic Motion Cueing

Height Control Test Apparatus (HiConTA)

Vertical displacement required for realistic sink-rate cues Flight Simulator for Advanced Aircraft (FSAA)

Six DoF Motion Simulator

Lateral/longitudinal displacement required for realistic horizontal translational cues

Equilibrator design and engineering

VMS Motion Characteristics

Largest motion travel of any ground-based flight simulator

- Six independent degrees-of-freedom
- Combination of electric and hydraulic drives
- 60 ft vertical travel, 40 ft lateral travel

	VMS Nominal Motion Limits			
	Axis	Displacement (ft)	Velocity (ft/s)	Acceleration (ft/s²)
¢	Vertical	<u>+</u> 30	16	24 (0.75 g)
	Lateral	± 20	8	16 (0.5 g)
	Longitudinal	± 4	4	10 (0.3 g)
		(deg)	(deg/s)	(deg/s²)
	Roll	± 18	40	115
	Pitch	± 18	40	115
	Yaw	± 24	46	115

VMS Features

Interchangeable cabs

- Five cabs with varying visual fields-of-view and cockpit layouts
- Two fixed-base labs for simulation development
- Programmable multi-function displays
- Programmable force-feel systems with a variety of inceptors
- High-fidelity visual systems
 - Wide-angle collimated display optics for improved depth perception
 - Customizable visual databases
- Flexible simulation architecture
 - Tailored to research applications
 - Accepts user software and hardware modules
 - Conduct multiple simulations concurrently
 - Can be used in larger distributed simulations

Use of Head-Mounted Displays (HMDs) and Head-Up Displays (HUDs) in the VMS

Use of head-mounted displays and head-up displays in the VMS has been based on vehicle and handling quality requirements:

- Integrated Helmet and Display Sighting System for the Apache Helicopter
- HUD for the Space Shuttle and civil tilt-rotor

HMDs were never considered for the OTW visuals due to the much higher fidelity of projection-based systems and physical cockpits

Vertical Motion Simulator in Action

Vertical Motion Simulator at NASA's Ames Research Center in Silicon Valley, California

Space Shuttle Program

- VMS has supported the Shuttle program with research and training for its entire 30-year operational lifetime
- All Shuttle pilot astronauts have trained on the VMS
 - Typical approach, landing, and rollout simulations (KSC, Dryden, White Sands)
 - Abort-on-Ascent simulations (21 landing sites)
 - Simulation of expanded off-nominal conditions (e.g., tire/brake failure, HUD misalignment)
 - Over 10,000 training runs performed
- VMS has been used as a platform for numerous Shuttle engineering studies
 - Quickly test new concepts at a high level and determine if they merit further investigation
 - 85 Shuttle engineering studies performed that led to 20+ flight rule changes

Lunar Landing Simulations

- Multiple studies were conducted in 2007-2010 with Apollo Lunar Module and Space Shuttle pilots
 - Precision Lunar Landing
 - Proximity Operations and Docking
 - Atmospheric Entry
- Possible VMS Uses in the Human Landing System (HLS) Program
 - Handling qualities studies to support vehicle configuration development and evaluation
 - Engineering studies for modifications after HLS enters service
 - Crew training

Rotorcraft and Advanced Air Mobility (AAM) Research

- The VMS was critical to:
 - Developing a valid rotorcraft handling qualities database
 - Development and continued improvement of the Rotorcraft Handling Qualities Specification (ADS-33)
- Future AAM research will focus on:
 - Vehicle handling qualities
 - Vehicle ride qualities
- Future Flight Central and ATM simulation support:
 - Vertiport operations
 - AAM integration into the National Airspace System

Simulation Fidelity and Cueing

The VMS has been instrumental in setting simulator fidelity and motion standards for pilot training

- Development and validation of Sinacori fidelity criteria
- Development of Objective Motion Cueing Test Criteria for the FAA
- Simulator motion algorithm development for stall recovery training

VMS Visual System Upgrade

Replacement of the existing Wide-Angle-Collimated (WAC) display system with a wide projection display system

- 10-foot spherical dome (200x50 deg)
- Large aperture glass collimating mirror
- Three projectors
- Interchangeable flight deck
- One dome fixed to the motion base
- Two domes for fixed-base simulations

Using AR/VR Headsets for Training

- NASA has been using VR to train astronauts for decades
 - Mostly stationary tasks or tasks with little visual motion
- Both inside and outside of NASA, there is a potential need for VR training of vehicle manual control skills
 - Current technical specs are a limiting factor (mainly resolution and FOV)
 - Cybersickness/motion sickness is an issue
 - VR needs to be benchmarked against reality and other means of training

VR Training in the International Space Station

Possible Future Use of HMDs in the VMS

• Applications:

- VR as a tool for experiment design
- VR to simulate large OTW views (e.g. in advanced air mobility vehicles)
- AR/VR for rapidly reconfigurable cockpits
- Research:
 - Cybersickness (Terenzi and Zaal, 2020, AIAA-2020-0171)
 - Benchmarking VR for training (Terenzi and Zaal, 2020, AIAA-2020-0170)

Summary

- The VMS is an excellent platform for aerospace vehicle research and training
 - Realistic human cueing environment approximates flight
 - Cost-effective and safe compared with flight test
- VMS has made significant contributions to:
 - Aircraft and spacecraft handling qualities
 - Setting simulation fidelity standards
 - Risk reduction for aircraft programs
 - Prototyping and evaluating pilot-vehicle interface concepts
- VMS has a bright future:
 - Significant hardware and software upgrades
 - Helping NASA and commercial partners getting back to the moon
 - Exploring technologies like AR and VR

Questions?

peter.m.t.zaal@nasa.gov

www.nasa.gov/simlabs

- SvdMolen, US Airways craft, <u>source image</u>, <u>Creative</u> <u>Commons Attribution 2.5 Generic</u> license
- All other images property of US Government