12-14 October 2020

IAF Connecting @ll Space People

www.jac2020.org

Relative Wavelength Calibration of the Full-sun Ultraviolet Rocket SpecTrograph (FURST)

Nicolas Donders a,b, Amy Winebarger c, Charles Kankelborg d, Genevieve Vigil c, Laurel Rachmeler e, Ken Kobayashi c, Gary Zank a,b

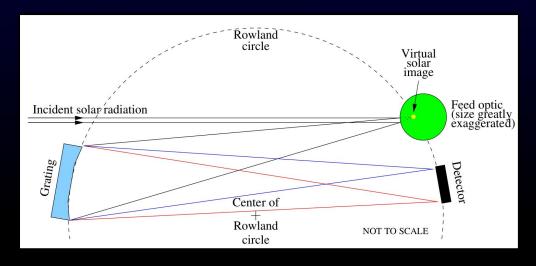
- ^a Department of Space Science, University of Alabama in Huntsville
- ^b Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville,
- ^c Marshall Space Flight Center, NASA, Huntsville AL
- ^d Solar Group, Department of Physics, Montana State University, Bozeman MT
- ^e National Centers for Environmental Information, NOAA, Boulder CO

Donders: IAC-20,A7,3,7,x57894

-- Introduction -- 2 -- 3 -- 4 -- 5

-- Sounding Rockets -- FURST -- Existing Spectra

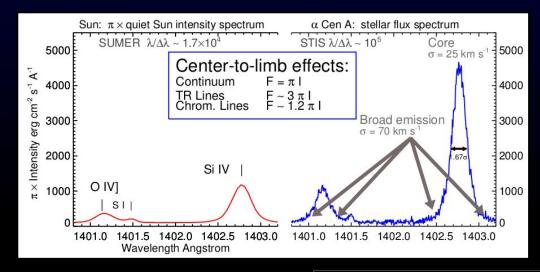
- A modular platform for experimental optical instruments
 - CLASP, Hi-C, MaGIXS, etc. [1-6]
- Spectral imaging during a sub-orbital flight
- Flexible launch locations such as:
 - White Sands Missile Range, New Mexico
 - Poker Flats, Alaska
- Quick project turn-around
- Diverse & international group



-- Introduction -- 2 -- 3 -- 4 -- 5

-- Sounding Rockets -- FURST -- Existing Spectra

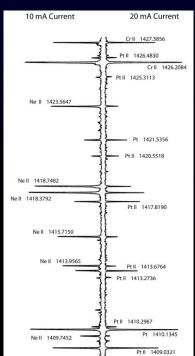
- The Full-sun Ultraviolet Rocket SpecTrograph [7]
 - Will be able to directly compare our Sun's spectra with existing extra-solar data
- Uses a Rowland circle and 7 optical cylinders.
 - Each reflects ≈ 104 Å



-- Introduction -- 2 -- 3 -- 4 -- 5

-- Sounding Rockets -- FURST -- Existing Spectra

- Limited range & resolution
- Example comparison [8]:
 - The Sun (SUMMER: R≈10⁴)
 - Alpha Centauri A (STIS: R≈10⁵)
- FURST goal is R > 10⁵
 - (3 km/s Doppler-shift)



1 -- The Simulated Signal -- 3 -- 4 -- 5

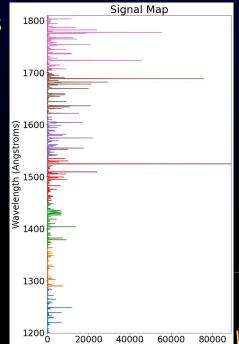
-- Diagnostic Lamp -- Line-Spread Function -- Real Units

- Pt/Cr-Ne hollow cathode lamp signal
 - Sansonetti et al. 2004 [9]
 - Simulated at 20 mA current
 - Wavelength error of 0.002 Å
- Only a few of the most intense lines used for this simulation.
 - In the future, this will be done by hand-picking the 5 or so lines to be used for each channel, and carefully validating their locations and intensities.

Donders: IAC-20,A7,3,7,x57894

Nell 1409,7452 Webcam Placeholder

1 -- The Simulated Signal -- 3 -- 4 -- 5


-- Diagnostic Lamp -- Line-Spread Function -- Real Units

- Data file gives locations and intensities
- Generate a Gaussian using:

$$I = (I_0 - I_b) e^{-\left(\frac{\lambda - \lambda_0}{2\sigma}\right)^2} + I_b$$

- Line-spread function varies
 - For now, we estimate it with a few experimental values:

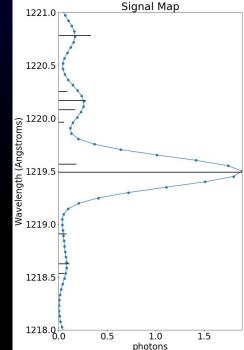
$$\sigma_{width} = \begin{cases} 11.2 & \text{if } \lambda = 1170 \\ 15.6 & \text{if } \lambda = 1570 \\ 23.3 & \text{if } \lambda = 1170 \end{cases}$$

photons

1 -- The Simulated Signal -- 3 -- 4 -- 5

-- Diagnostic Lamp -- Line-Spread Function -- Real Units

- We ensure the mapping of the signal onto discrete pixels in each range.
- Conversion process:

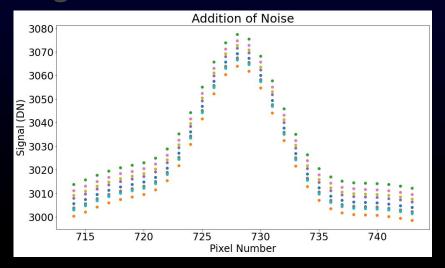

Arbitrary Units


Photons

Electrons

Data Numbers (DNs)

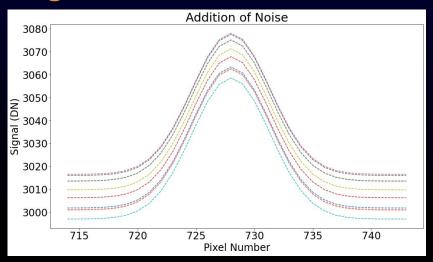
• We add noise with each step!



1 -- 2 -- Monte-Carlo Gaussian-Fitting -- 4 -- 5

-- Addition of Error -- Gaussian Fitting

- Fitting Process:
 - 1. Noise is added
 - 2. Fitting result is stored in a histogram
- Noise added:
 - Photon noise (Poisson)
 - Readout bias and noise (3000 ± 25 DN)
- Noise not yet added:
 - Effective Area, Vacuum Attenuation,
 Gain fluctuation during reading, etc.



1 -- 2 -- Monte-Carlo Gaussian-Fitting -- 4 -- 5

-- Addition of Error -- Gaussian Fitting

- Fitting gives the peak location with sub-pixel resolution
 - Result is stored in a histogram
 - We us the mean and standard error of the mean of these histograms

1 -- 2 -- 3 -- The Wavelength Function -- 5

-- Orthogonal Distance Regression -- Propagation of Error

- Nonlinear ODR with user-supplied 2nd order polynomial
 - λ: wavelength and given error (from lamp data)
 - x: mapped pixel value with error (from simulation)

Cylinder #	$\Delta \lambda_0$	ΔA	ΔB
1	0.04408	8.76E-05	3.45E-08
2	0.01279	2.88E-05	1.41E-08
3	0.14301	38.8E-05	21.8E-08
4	0.06298	7.87E-05	2.50E-08
5	0.03362	6.87E-05	2.99E-08
6	0.04550	8.87E-05	3.78E-08
7	0.06204	12.7E-05	5.65E-08
Mean	0.05772	$\bar{1}2.4\bar{\text{E}}-05$	$\bar{5}.\bar{9}\bar{5}\bar{E}-\bar{0}\bar{8}$

$$\lambda = (\lambda_0 \pm \Delta \lambda_0) + (A \pm \Delta A) \cdot x + (B \pm \Delta B) \cdot x^2$$

Webcam Placeholder

1 -- 2 -- 3 -- The Wavelength Function -- 5

-- Orthogonal Distance Regression -- Propagation of Error

Error propagation gives:

$$\Delta \lambda = \sqrt{\Delta \lambda_0^2 + \Delta A^2 \cdot |x| + \Delta B^2 \cdot x^2}$$

 Converting to Resolution in doppler shift velocity:

$$R = \frac{\lambda}{\Delta \lambda} = \frac{c}{\Delta v} \implies \Delta v = c \frac{\Delta \lambda}{\lambda}$$

- Using pixel values 0 2047 for each:
 - Δ v ≈ 12 km/s
 - Δ v range ≈ 3-31 km/s

Range (Å)	$\Delta\lambda$ (Å)	$\Delta v \; (\mathrm{km/s})$
1200.0 - 1304.0	0.044 - 0.044	11.01 - 10.18
1284.3 - 1388.3	0.013 - 0.013	2.99 - 2.78
1368.7 - 1472.7	0.143 - 0.144	31.32 - 29.33
1453.0 - 1557.0	0.063 - 0.063	12.99 - 12.15
1537.3 - 1641.3	0.034 - 0.034	6.56 - 6.17
1621.7 - 1725.7	0.046 - 0.046	8.41 - 7.94
1706.0 - 1810.0	0.062 - 0.062	10.90 - 10.32
Mean —	-0.05786	-11.65

1 -- 2 -- 3 -- 4 -- Results and Conclusions

-- Summary -- Future Work

- 1. Simulated a diagnostic lamp signal, accounting for noise.
- 2. Developed a method for deriving the pixel-mapping function.
- 3. Estimated the propagation of error and expected resolution.
 - 12 km/s is achievable
 - 3 km/s may be possible
 - Will require additional research and advanced calibration techniques

1 -- 2 -- 3 -- 4 -- Results and Conclusions

-- Summary -- Future Work

- Measuring the actual line-spread function
- Experimental calibration of the diagnostic lamp
 - Understanding of wavelengths and intensities
 - Testing reliable lines in each cylinder range.
- Effective area calibration
 - New collimator build
- Gain fluctuation is significant.
 - We aim to diminish this through an Fe55 source used as a "control."

MSFC Collimator (credit: NASA)

References

[1] S Tsuneta, K Ichimoto, Y Katsukawa, S Nagata, M Otsubo, T Shimizu, Y Suematsu, M Nakagiri, M Noguchi, T Tarbell, et al. The Solar Optical Telescope for the Hinode Mission: an Overview. *Solar Physics*, 249(2): 167–196, 2008.

[2] Ryouhei Kano, Takamasa Bando, Noriyuki Narukage, Ryoko Ishikawa, Saku Tsuneta, Yukio Katsukawa, Masahito Kubo, Shinnosuke Ishikawa, Hirohisa Hara, Toshifumi Shimizu, et al. Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP). In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, volume 8443, page 84434F. International Society for Optics and Photonics, 2012.

[3] Shinnosuke Ishikawa, Masahito Kubo, Yukio Katsukawa, Ryouhei Kano, Noriyuki Narukage, Ryohko Ishikawa, Takamasa Bando, Amy Winebarger, Ken Kobayashi, Javier Trujillo Bueno, et al. CLASP/SJ Observations of Rapid Time Variations in the Lyα Emission in a Solar Active Region. *The Astrophysical Journal*, 846(2): 127, 2017.

[4] Ken Kobayashi, Amy R Winebarger, Sabrina Savage, Patrick Champey, Peter N Cheimets, Edward Hertz, Alexander R Bruccoleri, Jorg Scholvin, Leon Golub, Brian Ramsey, et al. The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS). In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, volume 10699, page 1069927. International Society for Optics and Photonics, 2018.

[5] Ken Kobayashi, Jonathan Cirtain, Amy R Winebarger, Kelly Korreck, Leon Golub, Robert W Walsh, Bart De Pontieu, Craig DeForest, Sergey Kuzin, Sabrina Savage, et al. The Hlgh-resolution Coronal imager (HI-C). *Solar Physics*, 289(11): 4393–4412, 2014.

[6] Amy R Winebarger, Bart De Pontieu, Chun Ming Mark Cheung, Juan Martinez-Sykora, Viggo H Hansteen, Paola Testa, Leon Golub, Sabrina L Savage, Jenna Samra, and Katharine Reeves. Unfolding Overlappogram Data: Preparing for the COOL-AID Instrument on HI-C Flare. *AGUFM*, 2019: SH33A–06, 2019.

[7] Charles Kankelborg, Philip Judge, Amy Winebarger, Ken Kobayashi, and Roy Smart. VUV Spectroscopy of the Sun as a Star. In Solar Physics Department. *Montana State University*, 2017.

[8] TN Woods, FG Eparvier, R Hock, AR Jones, D Woodraska, D Judge, L Didkovsky, J Lean, J Mariska, H Warren, et al. Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments. In *The solar dynamics observatory*, pages 115–143. Springer, 2010.

[9] Craig J Sansonetti, F Kerber, Joseph Reader, and Michael R Rosa. Characterization of the Far-Ultraviolet Spectrum of Pt/Cr-Ne Hollow Cathode Lamps as Used on the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. *The Astrophysical Journal Supplement Series*, 153(2): 555, 2004.

Webcam Placeholder