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Abstract 
Lightning can pose a potential threat to space launch vehicles. In response to this, rules were 
created called the Lightning Launch Commit Criteria (LLCC) that help weather personnel 
evaluate the potential for natural and rocket-triggered lightning. One of the ten LLCC with 
the least research is called the Thick Cloud Layers rule. To further understand electrification 
of thick cloud layers and potentially improve the Thick Cloud Layers rule, a database of thick 
cloud layers that occurred over the Eastern Range was created. This database is then used 
to create an algorithm for identifying and differentiating thick cloud layers from other cloud 
types based on radar characteristics, temperature levels in reference to cloud height, and 
the surface electric field. By analyzing and identifying thick cloud events, this project could 
help narrow down when thick clouds are occurring and potentially minimize unnecessary 
launch delays.    

Events that caused LLCC violations involving the Thick Cloud Layers rule were analyzed by 
hand using Level-2 NEXRAD radar data from the National Weather Service WSR-88D radar 
in Melbourne with the program GR2Analyst. Cases that were found to be isolated and not 
involved with convection were recorded (date, start/end time, location) in a database. 
Radar data associated with these cases was collected and gridded using Python radar 
packages. Once gridded, I calculated and recorded for each radar scan the following radar 
reflectivity driven parameters within an 11x11 km bin centered on each 1 km2 grid point: 
the mean reflectivity colder than 0 degrees Celsius, Maximum Radar Reflectivity (MRR) 
colder than 0 degrees Celsius, Volume Averaged Height Integrated Radar Reflectivity 
(VAHIRR), Hydrometeor Identification (HID), the difference between the maximum and 
mean reflectivity, the cloud depth colder than 0 degrees Celsius, the overall cloud depth, 
the cloud top, and the cloud bottom. Soundings for each event were used to determine 
cloud temperature levels, and where the cloud is in relation to the freezing level. Electric 
field mill data collected over the Eastern Range was used to determine surface electric fields 
below each cloud. All parameters were analyzed in depth for several thick cloud cases to 
gain an understanding of typical thick cloud characteristics. Cases of thick clouds and other 
isolated cloud types were also recorded for training purposes to see if enough differences 
exist between cloud types to differentiate them with an algorithm. Each case along with its 
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corresponding characteristics was recorded in a database, and this database was used to 
compare differing cloud types, as well as train the algorithm to detect thick clouds.  

 

Introduction  

Lightning can pose a potential threat to space launch vehicles. In response to this, rules were 
created called the Lightning Launch Commit Criteria (LLCC) that help weather personnel 
evaluate the potential for natural and rocket-triggered lightning. In 1969, Apollo XII was 
launched and was struck twice by triggered lightning (Merceret, 2010). This triggered 
lightning led to the realization that launch rules needed to be added that included electrified 
clouds that are not producing natural lightning. One of the ten LLCC related to electrified 
clouds not currently producing natural lightning is called the Thick Cloud Layers rule (Willett, 
2017). To further understand electrification of thick cloud layers and potentially improve 
the Thick Cloud Layers rule, this project will build a database of thick cloud layers that 
occurred over the Eastern Range. This database will then be used to create an algorithm for 
identifying thick cloud layers based on radar characteristics, temperature levels in reference 
to cloud height, and the surface electric field. By analyzing and identifying thick cloud 
events, this project could help narrow down when thick clouds are electrified and 
potentially minimize unnecessary launch delays.  

 

Objectives  

1. Identify isolated thick cloud layers from 11 known archived thick cloud layer violation 
events provided by the 45th Weather Squadron  

2. Grid radar data for each event using Python  

3. Analyze and record characteristics of thick cloud layers using gridded radar data (vertical 
integration of contiguous radar reflectivity, maximum reflectivity colder than 0 degrees 
Celsius, and cloud depth colder than 0 degrees Celsius), soundings (determination of 
temperature and freezing level in relation to cloud), and electric field mill data 
(determination of surface electric field)  

4. Create and train an algorithm to identify thick clouds using the characteristics collected   

6. Test algorithm on collected dataset and calculate skill scores  

7. Write a final report detailing the data, methodology, algorithm development, analysis, 
and results  
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Data 

Electric field mill network 

The electric field network used in this study was the 
KSC field mill network. This network consists of 34 
different electric field mills that sense the ambient 
electric field occurring. In order to get electric field 
values for each case, data was collected from the KSC 
Weather data archive. This data is publicly available at 
the following website: 

https://kscwxarchive.ksc.nasa.gov  

Once downloaded, the electric field was averaged 
every 10 seconds to help alleviate noise in the data. 
Python code was written to do this averaging and load 
the data in for comparison to other parameters. 

 

WSR-88D Radar 

The radar data used in this analysis was from the WSR-88D KMLB S-Band Radar located in 
Melbourne, Florida. Radar data for each case is publicly available and downloaded from the 
NCDC website: 

https://www.ncdc.noaa.gov/nexradinv/chooseday.jsp?id=kmlb 

Once downloaded, the radar data was gridded using Python PyArt radar packages. We used 
a 1km by 1km grid spacing, with a 1 km Radius of Influence (ROI). Due to the differing volume 
coverage patterns and locations of storms in reference to the radar, several cases do have 
rings in the data where gaps in the elevation angles are present. Using data from a radar 
with more comprehensive volume coverage patterns (more elevation angles) could help 
alleviate these rings in future work. 

 

Soundings 

Soundings launched from the KSC station were collected for each case day from the 
Wyoming sounding website: 

http://weather.uwyo.edu/upperair/sounding.html 

These soundings were used to find the freezing level for each case day and used in the 
calculation of the Hydrometeor ID (HID). The sounding that occurred closest in time to the 
event was used. Code was written to load in sounding data and extract freezing level height. 

Figure 1: Location of Electric field mills 
surrounding KSC. Taken from: 
https://kscwxarchive.ksc.nasa.gov/Map 
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Methodology  

This project had two main parts:  

1) Analyze thick cloud layer cases in depth 

2) Create a logistic regression model to differentiate cloud types 

 

Thick Cloud Layer Analysis 

First, events that caused LLCC violations involving the Thick Cloud Layers rule were analyzed 
by hand using Level-2 NEXRAD radar data from the National Weather Service WSR-88D 
radar in Melbourne with the program GR2Analyst. Cases that were found to be isolated and 
not involved with convection were recorded (date, start/end time, location) in a database. 
Radar data associated with these cases was collected and gridded using Python radar 
packages. Once gridded, the  following radar reflectivity driven parameters were calculated 
and recorded for each radar scan within an 11x11 km bin centered on each 1 km2 grid point: 
the mean reflectivity colder than 0 degrees Celsius, Maximum Radar Reflectivity (MRR) 
colder than 0 degrees Celsius, Volume Averaged Height Integrated Radar Reflectivity 
(VAHIRR), Hydrometeor Identification (HID), the difference between the maximum and 
mean reflectivity, the cloud depth colder than 0 degrees Celsius, the overall cloud depth, 
the cloud top, and the cloud bottom. Grid points that occurred within 5 nm of an electric 
field mill were recorded in a database to be used for training the logistic regression model. 
Soundings for each event were used to determine cloud temperature levels, and where the 
cloud is in relation to the freezing level. Electric field mill data collected over the Eastern 
Range was used to determine surface electric fields below each cloud. All parameters were 
analyzed in depth for 11 thick cloud cases to gain an understanding of typical thick cloud 
characteristics. Only cases that occurred after the radar had been updated to dual-
polarization capabilities were used in this project in order to be able to calculate HID. 
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Parameters Description 

Maximum Radar Reflectivity (MRR) The maximum radar reflectivity measurement found 
within a volume that extends horizontally within an 11 
km-by-11 km area and extends vertically from 5 km 
(approximate altitude of 0 degrees Celsius) to the top of 
the cloud.   

Volume Averaged Height Integrated 
Radar Reflectivity (VAHIRR) 

Average reflectivity in the 11 km-by-11 km column x 
Average cloud thickness from 0 degrees Celsius 

Mean Reflectivity Mean reflectivity of values above 0 degrees Celsius 

Maximum/Mean Reflectivity 
Difference 

Maximum reflectivity subtracted by the average 
reflectivity 

Electric field  Closest electric field mill value in time and spatially 
within 5 nm 

Thickness (above freezing) Cloud thickness from 0 degrees Celsius 

Overall Thickness Cloud thickness from cloud base to top 

Top Maximum cloud height 

Bottom Minimum cloud height above freezing 

Bottom Overall Minimum cloud height 

HID1, HID2, HID3, HID4, HID5, HID6, 
HID7, HID8, HID9, HID10 

Hydrometeor ID as a fraction of the total area for each 
type 

 

 

Cases of thick clouds and other isolated cloud types were also recorded for training 
purposes to see if enough differences exist between cloud types to differentiate them with 
an algorithm. Only cases with no overlap of other cloud type violations were used in this 
study. Each case along with its corresponding characteristics was recorded in a database, 
and this database was used to compare differing cloud types, as well as train the algorithm 
to detect thick clouds. The four cloud types the model differentiates between are: Thick 
cloud, Attached Anvil, Detached Anvil, and Cumulus. A list of the violation days used in data 
collection for the model are shown in Table 2. 

Table 1: Characteristics recorded for each cloud type case and the corresponding definition. 
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Dates Training Number Test Number Type 

Thick Cloud 02/05/2016 
06/03/2020 
06/04/2020 
07/25/2019 
12/03/2015 
09/07/2014 

33794 11361 1 

Cumulus 02/23/2016 
02/19/2017 
07/28/2014 
08/07/2013 
06/20/2014 

21793 7104 2 

Attached 
Anvil 

08/05/2014 
07/28/2014 
07/24/2015 
04/13/2015 

12979 4256 3 

Detached 
Anvil 

07/24/2019 
08/05/2014 
08/07/2013 

23998 8020 0 

 

 

Multinomial Logistic Regression 

A logistic regression is a statistical method for analyzing a dataset in which there are one or 
more independent variables that correlate to an outcome. For this dataset, there are 20 
different characteristics (independent variables) used to determine a classification of four 
different cloud types (dependent variable). The data is split into a training dataset and test 
dataset. The training dataset is used to train the model in differentiating cloud type, while 
the test dataset is used to test the model performance after being trained. For this study 
we used 75% of the data for training and 25% for testing. The multinomial logistic regression 
model was written in Python. Skill scores are calculated to determine how well the 
algorithm performs. All of the data collected is combined into a database that can be 
updated with future cases outside of the scope of the project. The creation of this database 
ultimately will increase confidence in the statistical significance of the algorithm’s ability to 
detect thick clouds that have the potential to trigger lightning when passed through by a 
launch vehicle.  

Table 2: Cases with isolated cloud types used in training and testing of multinomial logistic 
regression along with the number of each cloud type. 
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Results 

Thick Cloud layer cases 

In this section we will analyze a few of the thick cloud cases in depth. Images of all 11 thick 
cloud cases were created and are available, but not included in this report in their entirety. 
The three chosen cases are meant to showcase the variability in thick cloud cases, as well 
as their shared characteristics. 

 

06/04/2020: 

Starting with the Constant Altitude Plan Position Indicators (CAPPIs), the thick cloud layers 
on this case day are quite thick in the horizontal and the vertical, with reflectivity values 
above 20 showing up at both 4 and 7 km heights (Figure 2). In general, reflectivity values 
are quite cohesive, with little variation in the horizontal. When viewing the RHI plots, we 
can see more clearly the vertical extent of this thick cloud, with reflectivity ranging from the 
surface to 11 km (Figure 3). The HID for this thick cloud is a mixture of aggregates, vertical 
ice, and ice crystals, with aggregates occurring closer to the freezing level and ice crystals 
further aloft. This is understandable since aggregates are heavier than ice crystals, and thus 
ice crystals are able to be lofted higher. Also, from -10 to -20 degrees C is where aggregate 
growth is most efficient, and this is where the aggregates are located in this thick cloud. 
Electric field values are quite weak, with values of ~150 V/m occurring (Figure 4). This value 
falls within the fair-weather field values, i.e. The value of the ambient electric field when no 
clouds are occurring. The maximum MRR appears to occur where relatively weaker electric 
fields are occurring, while weaker MRR is occurring near the relatively stronger fields 
(although all the electric field values were weak regardless).   

 

 

Figure 2: 4km, 7km, and 10km CAPPIs of reflectivity for a thick cloud layer from 6/4/2020. Red ‘x’ 
represents the approximate location of KSC, with 5 nm and 10 nm rings. 
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Figure 3: 4km CAPPI and RHIs of reflectivity and HID for a thick cloud layer from 6/4/2020. Cross 
section location is marked by dotted lines on CAPPI and radar location is marked by the green arrow. 

Figure 4: Electric field contours overplotted on reflectivity CAPPI (left), and MRR (right), for a thick 
cloud layer from 6/4/2020.  
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07/25/2019: 

The second case day was less expansive with a small area of thick cloud passing over the 
KSC area. This cloud had reflectivity values of less than 20 dBZ (Figure 5). The vertical 
thickness of the thick cloud extended below and above the freezing level, with an overall 
thickness of around 4 km. The HID makeup of the thick cloud layer was aggregates, vertical 
ice, ice crystals, and wet snow, with the wet snow occurring near the freezing level. 
Compared to the first thick cloud case, this case had less aggregates and more ice crystals. 
Even though the thick cloud is much smaller in this case, the electric field is stronger, with a 
maximum electric field of ~600 V/m. This implies that this thick cloud is marginally 
electrified. Similar to the first case, higher MRR values occur near smaller electric fields, 
while the larger electric fields correspond to lower MRR (Figure 7). All electric field readings 
were positive. 

 

 

 

Figure 5: 4km, 7km, and 10km CAPPIs of reflectivity for a thick cloud layer from 7/25/2019. 
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Figure 6: 4km CAPPI, and RHIs of reflectivity and HID for a thick cloud layer from 7/25/2019. Cross 
section location is marked by dotted lines on CAPPI and radar location is marked by the green arrow. 

Figure 7: Electric field contours overplotted on reflectivity CAPPI (left), and MRR (right), for a thick 
cloud layer from 7/25/2019.  
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02/05/2016: 

The last case is a very shallow 
thick cloud layer that occurred 
in the winter. As shown in 
Figure 8, reflectivity values only 
show up in the 7 km CAPPI, 
indicating the shallow nature of 
this cloud.  The RHI plots shown 
in Figure 9 show the cloud is 
completely located above the 
freezing level, located between 
6-9 km. HID for this thick cloud 
layer is composed of 
aggregates, vertical ice and ice 
crystals, with vertical ice and 
aggregates dominating. Electric 
field values are small, similar to 
the first case with values barely 
reaching above 200 V/m 
(Figure 10). This value is within 
the fair-weather field range, 
and even though MRR 
conditions were violated (>7.5 
dBZ), the electric field does 
not point toward an electrified 
cloud. 

 

 

 

Date 

Approx.  
E-Field 

Maximum 

Approx.         
MRR           

Maximum 

 

Violations 

2012/6/20 200 8 TC only 

2013/7/19 400 35 CU and TC 

2014/9/7 250 20 CU, AA, and TC 

2015/1/20 250 10 TC only 

2015/4/27 200 12 AA and TC 

2015/12/3 300 33 DW and TC 

2016/2/5 250 18 TC only 

2017/3/14 800 16 DW, AA and TC 

2018/11/15 150 21 TC only 

2019/7/25 600 25 DW and TC 

2020/6/3 200 22 TC only 

Figure 8: 4km, 7km, and 10km CAPPIs of reflectivity for a thick cloud layer from 2/5/2016. 

Table 3: Thick cloud cases analyzed along with their maximum 
electric field and MRR values estimated from graphs. Violations are 

also logged. TC=Thick Cloud, CU=Cumulus, AA=Attached Anvil, 
DW=Disturbed Weather 
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Figure 9: 4km CAPPI and RHIs of reflectivity and HID for a thick cloud layer from 2/5/2016. Cross 
section location is marked by dotted lines on CAPPI and radar location is marked by the green arrow. 

Figure 10: Electric field contours overplotted on reflectivity CAPPI (left), and MRR (right), for a thick 
cloud layer from 7/25/2019.  
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Overall Trends: 

As shown in Table 3, only three out of the 11 cases analyzed had electric field values that 
could be considered above the fair weather field (100-300 V/m). The marginally electrified 
thick cloud cases all had a section of cloud below and above freezing. In theory, a cloud 
spanning from below freezing to above would allow for a more robust mixed phase region, 
which is where charging of hydrometeors is most efficient due to the presence of 
supercooled liquid water. Thick clouds located entirely above freezing had lower electric 
fields (4/27/2015 and 2/5/2016). MRR values did not show a clear pattern to stronger thick 
cloud electric fields. Two of the three marginally electrified clouds had MRR values higher 
than 25 dBZ, while the thick cloud with the highest electric field had a maximum MRR of 
approximately 16 dBZ. Several of the thick cloud layer cases with weak electric fields also 
had values above 20 dBZ.  Even though all of the cases analyzed were isolated in time, there 
were still other violations going on before and/or after the thick cloud violations for many 
of the cases. All of the thick cloud cases with the highest electric fields had multiple 
violations occurring throughout the case day, which could affect the electric fields being 
measured at the surface. Case days with solely thick cloud violations had the weakest 
electric fields, while case days with disturbed weather and thick cloud violations had the 
highest electric fields. Looking at HID, marginally electrified cases had more mixture of 
hydrometeors, with a typical HID of 40% aggregate, 35% vertical ice, and 25% ice crystals. 
This result supports a more prevalent mixed phase region in marginally electrified thick 
clouds. Nonelectrified thick cloud cases are more likely to be dominated by a HID type. The 
fact that vertical ice is a dominating HID in nonelectrified clouds is puzzling and points to 
either an overestimation in vertical ice in the HID calculation, or the electric field mill is not 
picking up the fields in the thick cloud. Nonelectrified thick clouds are more likely to have 
higher values of VAHIRR and lower values of MRR than marginally electrified thick clouds, 
but have substantial overlap. This result implies that electrified thick clouds have higher 
reflectivity above freezing, but less of the cloud is located above freezing so the thickness 
above freezing is less and thus VAHIRR is less.   
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Figure 11: Radar Characteristics for marginally electrified versus nonelectrified thick clouds. 
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Cloud Type Characteristics 

 
Figure 12: Histograms of HID makeup for each cloud type. 

 

Thick Cloud HID:  

For thick clouds, the most dominant HID type is vertical ice (Figure 12). This is surprising, 
since vertical ice is typically caused by strong electric fields orienting the ice in the vertical. 
When looking at our thick cloud cases, however, electric fields rarely reached even 500 V/m. 
This could imply that there is an overestimation in vertical ice due to the HID calculation. 
The second most dominant HID is aggregates, followed by ice crystals. Wet snow is minimal 
and low and high density graupel are nearly nonexistent in thick cloud cases. 

Cumulus HID: 

For cumulus, the most dominant HID types are vertical ice and aggregates. Cumulus cloud 
cases have the most variation in HID makeup, and the most high and low density graupel 
present out of cloud types. This makes sense, since cumulus clouds have the strongest 
updrafts of the cloud types, with updrafts able allow graupel growth to occur and be lofted 
above the freezing level. A typical cumulus cloud case in our data consists of approximately 
50% aggregates, 30% vertical ice, 5% ice crystals, 2% low density graupel, 2% high density 
graupel, and 1% wet snow.  
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Detached Anvil HID: 

The most dominant HID for detached anvils is aggregates. The distributions in Figure 12 
show clear patterns, with most detached anvils being composed of approximately 50% 
aggregates, 30% vertical ice, and 20% ice crystals. Wet snow occurs occasionally, and high 
and low density graupel are minimal. Overall, the pattern present in attached anvils 
resembles detached anvils, with a slight shift in the distribution. 

Attached Anvil HID: 

The most dominant HID for attached anvils is aggregates, with vertical ice and ice crystals 
occurring the second most.  Attached anvils have most ice crystals present out of cloud 
types, with most attached anvils being composed of 30% ice crystals, 30% vertical ice, and 
40% aggregates. Graupel in attached anvil cases is nearly nonexistent. These values seem 
reasonable, since lighter particles such as ice crystals and aggregates are the most likely to 
be advected into the anvil from the main updraft. 

 

 

    

  
Figure 13: Histograms of reflectivity parameters for each cloud type: MRR (top left), 
VAHIRR (top right), mean reflectivity (bottom left), and max/mean difference (bottom 
right). 
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MRR: 

Cumulus has highest MRR values followed by detached anvils. Attached anvils have the 
smallest MRR values, but there is substantial overlap with thick cloud MRR values. Keep in 
mind that MRR values in this analysis are allowed to exceed 35 dBZ. 

Mean Reflectivity: 

Similar to the MRR, the mean reflectivity values are highest for cumulus clouds, followed by 
detached anvils, and lastly attached anvils and thick clouds. Once again, attached anvil and 
thick cloud have substantial overlap in mean reflectivity values. This consistent overlap in 
variables will make distinguishing these two cloud types in the model difficult. 

Max/Mean Difference: 

The max/mean difference can give an idea of how cohesive a cloud is. The larger the 
max/mean difference, the more convective in nature a cloud will be. Looking at Figure 13, 
we can see that the max/mean difference trends follow most closely to the MRR trends. 
Cumulus have the highest max/mean difference which is reasonable since they are the most 
convective. Detached anvil has the second highest values, and thick cloud and attached anvil 
have the lowest values.   

VAHIRR: 

VAHIRR has overlap in all cloud types, thus probably not very useful for differentiation in 
the logistic regression model. Cumulus and detached anvil have the highest VAHIRR values, 
while thick cloud and attached anvil favor lower values. 

 

 
Figure 14: Histograms of thickness above the freezing level (left) and overall thickness 

(right) for each cloud type. 

 

 



18 
 

Thickness: 

For thickness above the freezing level, cumulus have a large range of values (Figure 14). 
Most data points are located at the bottom of the distribution, but cumulus data points also 
compose the highest thickness values as well. Thick cloud makes up the second highest 
thickness averaging around 6 km. Detached and attached anvil are the least thick with 
values sitting between 2-5 km. When viewing the overall thickness, the distribution changes 
for several cloud types. Cumulus clouds are now on average thicker, with values peaking 
between 6-7 km. This implies that a larger portion of cumulus clouds reside below the 
freezing level. The attached anvil distribution stays nearly the same, peaking around 4 km. 
This means that attached anvils are nearly completely above the freezing level. Thick clouds 
are thicker when viewing overall thickness, and the distribution becomes more spread out. 
Thus, some thick clouds do have portions below freezing, while others do not. Detached 
anvil clouds also seem to become thicker when looking at overall thickness. This does not 
seem to match what is expected, since anvils are typically above the freezing level. Most 
likely, a small cloud layer lower in altitude may have made it appear that the detached anvil 
cloud was thicker than it actually is. Since we only have three cases of detached anvil to pull 
from, this artifact would be prominent. Thus, more detached anvil cases should be added 
to the dataset to limit data biases in the future. 

 

 
Figure 15: Histograms of the electric field (left) and a zoomed in portion of the electric field 

(right) to better view the smallest values for each cloud type. 

 

Surface E-field: 

The largest electric field values are associated with cumulus and detached anvil. Cumulus 
clouds are more likely to have a negative electric field value, while all other cloud types are 
associated most often with positive values. This is reasonable due to the differing nature of 
charge structures in the cloud. For a cumulus cloud, the negative charge layer is lower than 
the positive layer in the cloud, which means the electric field mill at the surface will detect 
the negative electric field that is shielding the positive charge layer from the sensor. 
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Attached and detached anvils, however, are composed mostly of positively charged ice 
crystals that were advected into the anvil from the convective cumulus region. Thus, the 
electric field mill at the surface would be most likely to detect a positive electric field 
underneath an anvil. Thick clouds are also associated with positive electric fields, but have 
very weak fields (<600 V/m). The fair-weather field is typically between 100-300 V/m, which 
implies that either most of the thick clouds are not electrified, or the sensor is not detecting 
the fields properly (this could be due to weakening of the signal as it travels to the surface 
if the cloud is very high). 

 

Multinomial Logistic Regression 

Collected data was input into a multinomial logistic regression model to see if it is possible 
to differentiate cloud type using radar characteristics and electric field mill values. Overall, 
the logistic regression model is able to classify 81.7% of clouds correctly. The results of the 
model are shown in the confusion matrix (Figure 16). Basically, values that fall in the 
diagonal area from the top left to bottom right were correctly predicted, while values 
outside of the central diagonal were incorrectly predicted. From the confusion matrix alone, 
we can see that most of the values fall in the middle diagonal, indicating the model did well 
at predicting cloud type. The category with the least predictability was attached anvil and 
was most often misclassified as thick cloud. This misclassification matches what was shown 
in our histogram analysis, with thick cloud layers and attached anvils having the most 
overlap in characteristics. 

 

Figure 16: Confusion matrix demonstrating model performance in classifying cloud type. 
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Skill scores were also calculated to take a more quantitative approach in determining how 
well the model performed and are shown in Table 4. Overall, cumulus clouds were most 
accurately predicted, with a probability of detection (POD) of 93% and a false alarm ratio 
(FAR) of 11%. This result is understandable, since cumulus had the most unique distributions 
in the histograms of radar characteristics from the previous section.  Detached anvil was the 
second best in its ability to be accurately classified, with a POD of 88% and a FAR of 25%. 
Thick clouds were able to be correctly classified to a 
moderate degree with a POD of 79% and FAR of 11%. 
The worst skill scores were associated with attached 
anvils, with a POD of 63% and FAR of 38%. More cases 
should be added if possible to limit data bias and 
variables should be tested to remove cross correlated 
variables. Other cloud characteristics could also be 
added as predictors in cloud type to better improve 
the model.  

 

Conclusion 

This project researched thick cloud layer cases in depth to determine common characteristics 
associated with thick clouds. Cases of thick clouds and other isolated cloud types were also 
recorded for training purposes to see if enough differences exist between cloud types to 
differentiate them with an algorithm. Each case along with its corresponding characteristics 
was recorded in a database, and this database was used to compare differing cloud types, as 
well as train the algorithm to detect thick clouds. The overall takeaways from this project 
were: 

• Most thick clouds are not electrified, or at least their electrification is not detected by 
the electric field mill network. 

• Thick cloud cases that were marginally electrified spanned from above freezing to 
below, had lower VAHIRR, higher MRR, and more mixed HID than nonelectrified thick 
clouds, and occurred on days with multiple cloud violations. 

• There is the potential to differentiate cloud type with moderate accuracy using a 
multinomial logistic regression, with radar characteristics as the independent variables 
used in prediction. 

• The most useful parameters in differentiating cloud type were the HID percentages. 
 

Future work could add new variables to the model such as cloud shape (distance in the vertical 
versus horizontal), dual polarization variables (KDP, ZDR, Correlation Coefficient), satellite 
data, as well as add many more cases into the dataset to make the results more robust. This 
work represents a first step in the automation of cloud type classification for the potential 
improvement of LLCC implementation. 

Type POD FAR 

Detached 0.878 0.248 
Thick 0.786 0.107 

Cumulus 0.931 0.115 
Attached 0.630 0.381 

Table 4: Skills scores of the multinomial 
logistic regression for each cloud type. 
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