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NASA's Earth Science Data Systems Program

Single largest repository of Earth Science Data,
integrating multivariate/heterogeneous data from
diverse observational platforms

Manages NASA's Earth science data through the
entire data life cycle




Why is this important?

“The fraction of science papers that rely on archive data is increasing
and, in many cases, exceeds the fractions of papers based on new
mission data.” - NASA Advisory Council Ad-Hoc Big Data Task Force




Enabled by 25+ years of

Open Data
Open Source
Open Services




ESDS by the numbers =FY19

Unique data products

34,500

Archived files

462 million

Distinct users

3.5 million

Data products distributed

1.9 billion

Current archive

33.6 PB

American Customer Satisfaction Index

/8
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Challenges

Prepare for planned high-data-rate missions

Improve efficiency of NASA's data systems operations

Increase opportunity for researchers and commercial users to access/process PBs of
data quickly without the need for data management

Transparent/extendable open source processing framework

Ensure users find right data for their problem

Minimize user burden to access data

Enable users to extract new knowledge/information from archives




Enabling technologies

Cloud computing

« QOperate components of the data systems in a commercial cloud environment to meet future needs
« Provide new opportunities for users to process data in place and perform analytics at scale

Data-driven technologies

« Maximize information and knowledge discovery capabilities
« Augment data stewardship processes
« Address Earth science research and application needs



"Big Data Close to Compute’

Large Volume Data Storage Applications & Services
Centralized mission observation & . Application and service layer using AWS compute,
model datasets stored in auto Archive storage (S3, S3IA, Glacier), and cloud native
graduated AWS object storage (S3, S3- technologies
IA, Glacier)

Search Catalog

Scalable Compute Ingest Access

Provision, Access, and terminate
dynamically based on need. Cost by
use

Nétive Compute

Processin
J Application

Cloud Native Compute Analytics

Cloud vendor service software stacks and
microservices easing deployment of user based
applications

Public Applications & Services

Science community brings algorithms to the data. Support
for NASA & non-NASA




Data driven technologies

(4

¥ A computer science field that uses
algorithms to perform tasks which
usually require human intelligence

A sub-field of Al that uses
statistics and mathematical
models to find patterns in data

A subfield of ML that uses
algorithms with layers of
artificial neural networks to
learn from the data and
make decisions

Rapid adoption of Al/ML due to:

Expanding data volumes
Improving Algorithms
Networks

Cloud computing

Hardware




Maximize information and knowledge
discovery capabilities
Phenomena portal




Why?

Increasing Earth science data archives require non-traditional approaches to data
management

Data driven technologies to provide advanced search capabilities

Machine learning-based approach - an enabling data driven technology to provide
automated detection of Earth science events from image archives

Catalog of events can provide a novel way to explore large archives of data

Discover and explore Earth science data archives around events using machine learning
(ML) techniques
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Kincade Fire Demo Video









Phenomena Portal Demo Video



Augment data stewardship processes
Automated keyword assignment




Why?

Assigning science keywords is currently a manual
process, which is prone to human error and

Inconsistencies.

Metadata managed across a network of multiple data
centers (i.e. keywords not assigned by a central entity)

Keywords may be assigned by non-subject matter
experts (SMEs)

Improve metadata quality

Provide objective and consistent approach to keyword
assignment

USMOTD 2.5 Degree Low Resolution Annue C Masoiogy Tieme Senes (LRACTSYVZ. 31 2005

CMR Dataset Title

and Description

Abstract

The LISYOTD 2.5 Degree Low Resolution Annual Cimatology Time Serles (LRACTS) consists of
gridded cimatciogies of total ightning flash rates seen by the spaceborne Optical Transient
Detector (OTD) and Lightning Imaging Sensor (US). The long LIS (equatorward of about 38
degree) record makes the merged dimatology most robust in the tropics and subltropics, while
the high latitude data Is entirely from OTD. The LRACTS dataset include annual flash rate time
series data in MP4 format.

DOI
10.5067/US/US-OTO/DATAIDG

Science Keywords

EARTH SCIENCE ~ Atmosphere  Atmospheric Electricity  Lightning

EARTH SCIENCE ~ Atmosphere Weather Events  Lightning




Approach - build word embeddings
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Automated keyword assignment

Word2vec
£

Py

word2vec classifier

~—> Training flow —> Inference flow = Training and Inference flow




Address Earth science research and
application needs:
Hurricane intensity estimation system




Al/ML in Earth Science
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ML in literature

— N

Formulate ~ ACQUIT® prenare  Implement__ _ Train Refine Publish
a problem data data Model Model  Model paper
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ML lifecycle - iterative
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Motivation

15 UTC 10 Oct 17 NHC advisory on Tropical Storm Ophelia:

‘Dvorak intensity estimates range from T2.3/33 kt from UW-CIMSS to
13.0/45 kt from TAFB to T4.0/65 kt from SAB. For now, the initial
intensity will remain at 45 kt, which is an average of the scatterometer
winds and all of the other available intensity estimates.”
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Motivation
15UTC 10 Oct 17 NHC advisory on Tropical Storm Ophelia:

‘Dvorak intensity estimates range from T2.3/33 kt from UW-CIMSS to
13.0/45 kt from TAFB to T4.0/65 kt from SAB. For now, the initial
intensity will remain at 45 kt, which is an average of the scatterometer
winds and all of the other available intensity estimates.”

Can we objectively estimate wind speed from satellite images?
Can we estimate more frequently?



Data

"\ EARTHDATA

EOSD Is NASA'S EARTH OBSERVING SYSTEM
DATA AND INFORMATION SYSTEM
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National Hurricane
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Model development




Test results

Detailed look: Hurricane Earl, 2010
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Adapted from Stevenson et al. (2014). Time series of satellite-derived intensity estimates (circles)
for Hurricane Earl (2010), added to best track intensities and lightning flash rate time series.



Al as a black box

Interpretability + model inspection




Learning Deep Features for Discriminative Localization
Model evaluation with class activation maps

Tropical Storm




Hurricane Dorian Demo Video



We have a model.....now what?

Going extra mile
Interpret prediction data — prediction output maybe just numbers

Questions:

Does the model confidence remain the same over time?
How do you maintain?
How do you complete the loop with new training data?




Deployment to production

Performance requirements
Metrics and baselines with initial models
Monitor over time

Back-testing

Model and software will change

Testing model changes on historical data

Run current production model to baseline performance
Run new models, competing for production

Now-testing

Testing of production model on latest data

Can we get early warning that the model may be faltering?
 Content drift: training data exploited by model are subtly changing with time



Hurricane wind speed estimation portal

Features of a situational awareness tool:

Monitor NHC outlook for “invest” area for trigger

Near real-time tropical cyclone intensity estimation services
Map display

Layers

Comparison with operational forecasts/Evaluate

Service APIs




Workflow

Monitor NHC storm outlook

Retrieve corresponding GOES

imagery

Run the model on the imagery
for wind speed estimation

Save the estimation and
imagery to database

Visualize




Coordinated effort

ML researchers
* Transform ideas into models
* Training data

* Monitor

Domain experts

» FEvaluation
» Performance baselines

» Science use case

End-user stakeholders

Production requirements

ML engineers

Design

Quick prototype
Deployment
Scale

Log




Hurricane Intensity Estimation Portal Demo Video



Challenges and lessons learned

Consistent large-scale training data

Al black box

Training data/Input data becomes part of the code
Versioning training data, model, algorithm becomes difficult
DevOps, CI/CD

Complexity with evolving platforms and infrastructure




What's next?




Biggest bottleneck in adoption of ML in Earth
Science is training data




ML-based validation
& anomaly detection

Storage
strategy

Automated

Automation data quality

«7. 5, 3
Al'/t:Mi'mD(Ils tmr Discoverability Automated &
PR sty consistent
Data-driven search metdata
& discovery, Al/ML
ready data

Al for full data lifecycle




Thank you.

Manil Maskey
manil.maskey@nasa.gov




