
# Advancing AI for Earth Science: A Data Systems Perspective



Manil Maskey, Ph.D.

NASA Earth Science Data Systems/NASA Headquarters Interagency Implementation and Advanced Concepts Team (IMPACT)/NASA Marshall Space Flight Center



ESA EO Φ-week 2020

#### NASA EARTH FLEET

**OPERATING & FUTURE THROUGH 2023** 

INVEST/CUBESATS RainCube CSIM-FD HARP TEMPEST-D CIRIS CTIM HyTI SNo0PI NACHOS

REI FORMULATION IMPLEMENTATION PRIMARY OPS EXTENDED OPS

100 PACE (NSO) ICESAT-2 466 GRACE-FO (2) (GFZ) CYGNSS (8) NISTAR, EPIC (DSCOVRINGAA) CLOUDSAT (CSA) TERRA (JAXA, CSA) 😵 AQUA (JAXA, AEB) 🐶 🟴 AURA (NSO, FMI, UKSA) 🥔 CALIPSO (CNES) GPM (JAXA) LANDSAT 7 (USGS) 🏈 LANDSAT 8 (USGS) 000-2 SMAP SUOMI NPP (NOAA) (JAXA)

TEMPO

SWOT (CNES) LANDSAT-9 (USGS) SENTINEL-6 Michael Freilich/B (ESA) TROPICS (5) GEOCARB 🏧 🖗 MAIA The NISAR (ISRO) ISS INSTRUMENTS JPSS-2, 3 & 4 INSTRUMENTS

**OMPS-Limb** LIBERA 65.20

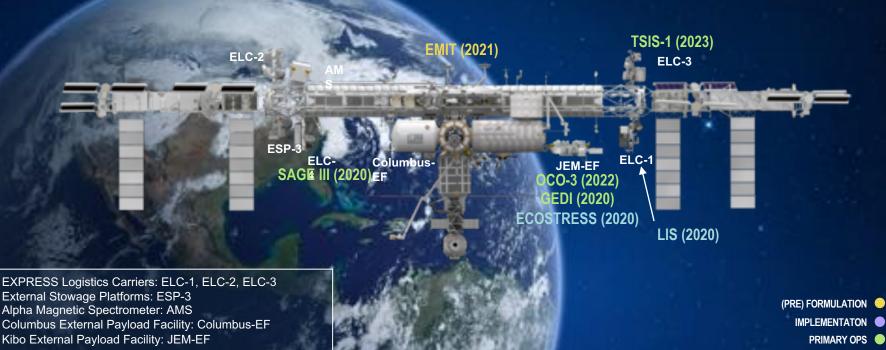
IMR

EMIT

GEDI

SAGE III

000-3 **TSIS-1** 

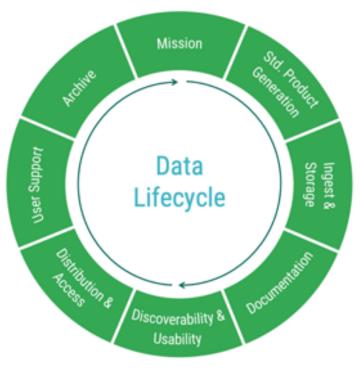

LIS

CLARREO-PF

ECOSTRESS

#### INTERNATIONAL SPACE STATION

EARTH SCIENCE OPERATING MISSIONS




EXTENDED OPS

#### NASA's Earth Science Data Systems Program

Single largest repository of Earth Science Data, integrating multivariate/heterogeneous data from diverse observational platforms

Manages NASA's Earth science data through the entire data life cycle





# Why is this important?

"The fraction of science papers that rely on archive data is increasing and, in many cases, exceeds the fractions of papers based on new mission data." - NASA Advisory Council Ad-Hoc Big Data Task Force



# Enabled by 25+ years of

*Open Data Open Source Open Services* 



### ESDS by the numbers -FY19

Unique data products 34,500

Data products distributed 1.9 billion

Archived files 462 million

Current archive 33.6 PB

Distinct users **3.5 million** 

American Customer Satisfaction Index

78





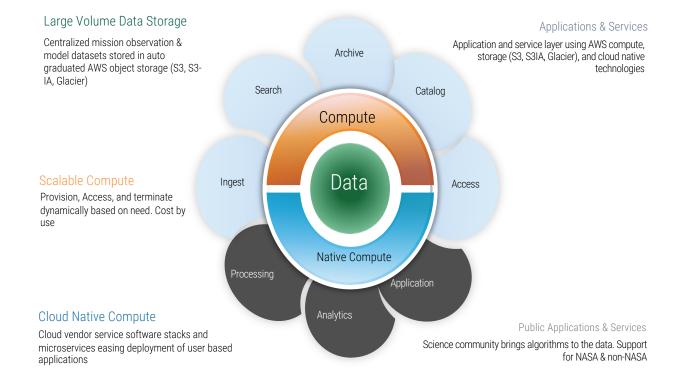
# Challenges

- Prepare for planned high-data-rate missions
- Improve efficiency of NASA's data systems operations
- Increase opportunity for researchers and commercial users to access/process PBs of data quickly without the need for data management
- Transparent/extendable open source processing framework
- Ensure users find right data for their problem
- Minimize user burden to access data
- Enable users to extract new knowledge/information from archives



# Enabling technologies

#### Cloud computing


- Operate components of the data systems in a commercial cloud environment to meet future needs
- Provide new opportunities for users to process data in place and perform analytics at scale

#### Data-driven technologies

- Maximize information and knowledge discovery capabilities
- Augment data stewardship processes
- Address Earth science research and application needs



#### "Big Data Close to Compute"





## Data driven technologies

A computer science field that uses algorithms to perform tasks which usually require human intelligence

#### HINE LEARNIN

A sub-field of AI that uses statistics and mathematical models to find patterns in data

A subfield of ML that uses algorithms with layers of artificial neural networks to learn from the data and make decisions Rapid adoption of AI/ML due to:

Expanding data volumes Improving Algorithms Networks Cloud computing Hardware



# Maximize information and knowledge discovery capabilities *Phenomena portal*





Increasing Earth science data archives require non-traditional approaches to data management

Data driven technologies to provide advanced search capabilities

Machine learning-based approach - an enabling data driven technology to provide automated detection of Earth science events from image archives

Catalog of events can provide a novel way to explore large archives of data

Discover and explore Earth science data archives around events using machine learning (ML) techniques









Sort by: Ameson 4 Only include collections with granules 1 Include non-605005 collections

The Hall Conference is pair pointed to continent and trainings that data



#### WOOHL/Terra Thermal Anonalizs/Fire & Bay L3 Blaker Rev BW SIGE 1006

Considers 1988-49 W angulary in The Terro Indexes Resolution Inspire Section (ACOV). Thermal International on the ACOV State of the ACOV State of the Acov States on the Acov State

#### WODIS/Terts Thermal Anomalies/Fire Daily 1.3 Dates' Non Sticling 1008

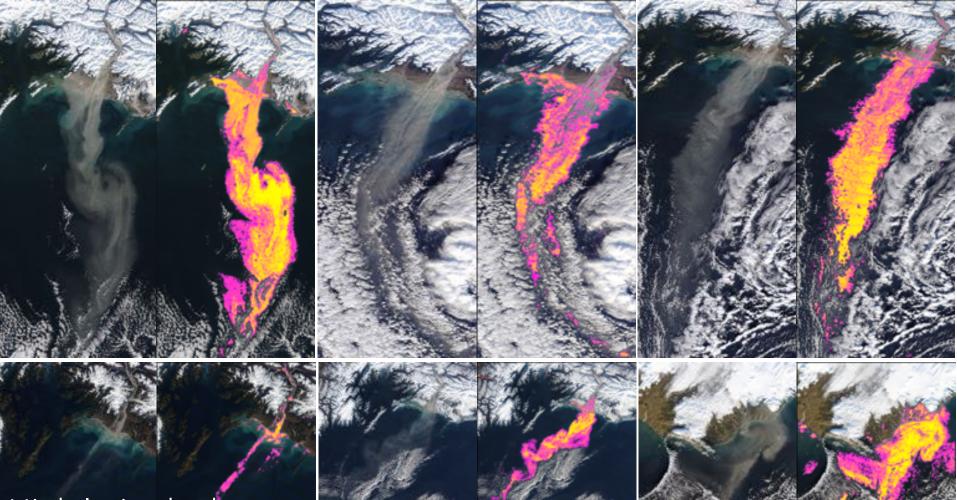
Dependent 10000-40 Wangsting i The Terris Restriction Insight Spanning Spanning Spanning According to Control Control (Control Control (Control Control)), and the Spanning Control (Control Control), and the Spanning Control (Control Control), and the Spanning Control (Control Control), and the Spanning Control (Control), and the Spanning Control (Control Control), and the Spanning Control (Control), and the Spanning Control (Control (Control Control)), and the Spanning Control (Control (Contro)))))



#### WODYS/Name Thermal Accession/The Daily L3 Maker See Shirt 2008

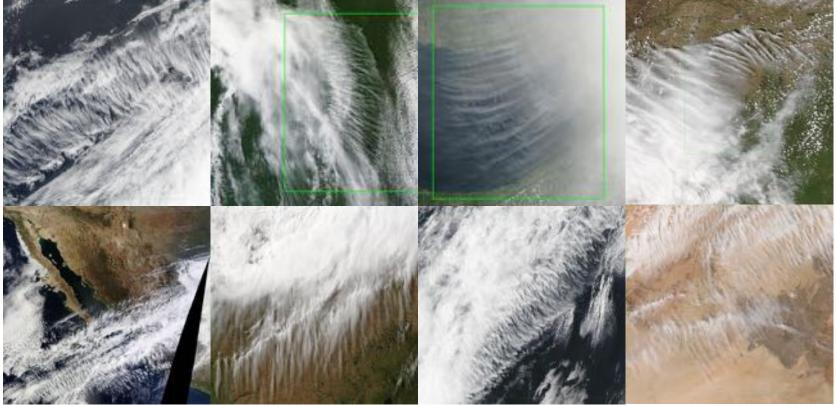
Elevandes - 2002 47-04 angeing - The fact instantist features freque to contract for COST, There is benefits and The Cost in COST ACT reverse is need to an present over upply apply of the part instantion or a cost Transfer MICENT returns upply announced data of the part or cost that apply The cost and the test instantian and the test instantian and the test instantiant and test instantiant and the test instantiant and test instanti

MILLION & CONTRACTOR


#### WOOKS/Input Thermal Anomalies/Pire & Exp 1.3 Elshal Non-Silv Erici 1008

Organization - SIMIL 47: 444 Augustugs - The Augustuation Interfaction Interfaction
(Interfaction Interfaction Interfaction Interfaction Interfaction Interfaction Interfaction
(Interfaction Interfaction Interfaction Interfaction Interfaction
(Interfaction Interfaction
(Interfaction
(In

. .


#### Kincade Fire Demo Video





### High latitude dust

#### Transverse cirrus bands





#### Phenomena Portal Demo Video

Augment data stewardship processes Automated keyword assignment



# Why?

Assigning science keywords is currently a manual process, which is prone to human error and inconsistencies.

Metadata managed across a network of multiple data centers (i.e. keywords not assigned by a central entity)

Keywords may be assigned by non-subject matter experts (SMEs)

Improve metadata quality

Provide objective and consistent approach to keyword assignment



#### Abstract

The LIS/OTD 2.5 Degree Low Resolution Annual Climatology Time Series (LRACTS) consists of gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS). The long LIS (equatorward of about 38 degree) record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The LRACTS dataset include annual flash rate time series data in MP4 format.

| DOI<br>10.5067/LIS/LIS-OTD | /DATA306   |                                   |
|----------------------------|------------|-----------------------------------|
| Science Keywo              | ords       |                                   |
| EARTH SCIENCE              | Atmosphere | Atmospheric Electricity Lightning |
| EARTH SCIENCE              | Atmosphere | Weather Events Lightning          |



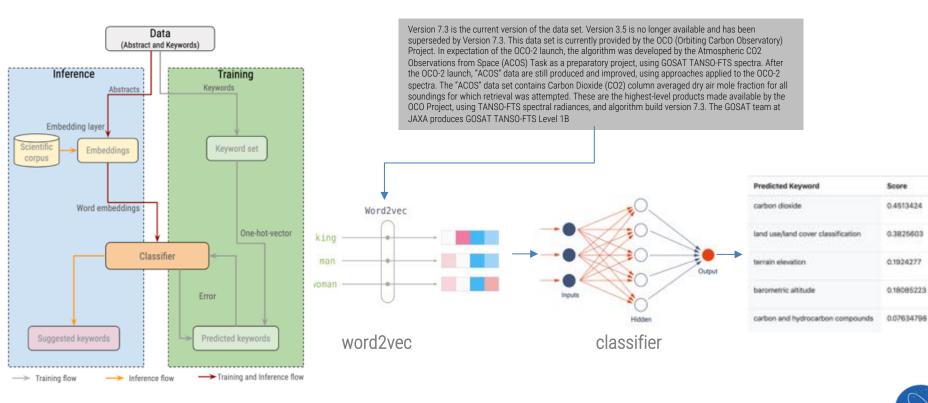
# Approach – build word embeddings

| Journal Name                                            | Date Published |       |       |       |       |       |       |        |       |      |        |              |       |        |        |       |       |        |
|---------------------------------------------------------|----------------|-------|-------|-------|-------|-------|-------|--------|-------|------|--------|--------------|-------|--------|--------|-------|-------|--------|
|                                                         | 2012           | 200.0 | 2004  | 2005  | 2006  | 2067  | 2008  | 3909   | 2934  | 2011 | 2062   | 2018         | 2014  | 2015   | 2008   | 2017  | 2018  | 2019   |
| Atmospheric Science Letters                             |                | 1.5   | 21    |       | 11-   | 22    | 40    |        | . 59  | 44   | 140    | 100          | 103   | 61.    | 44     | 44    | 60    | . 38   |
| Earth and Space Science                                 |                |       |       |       |       |       |       |        |       |      |        |              | 1     | 24.    | 28     | 15    | 42    | 444    |
| Earth's Future                                          |                |       |       |       |       |       |       |        |       |      |        | 13           | 26    | 28     | 12     |       | 101   | 54     |
| Eon, Transactions American Geophysical Union            |                |       |       |       |       |       |       |        |       | -45  | 34     |              |       | 1.1    |        |       |       |        |
| Geochemotry, Geophysics, Geosystems                     | 1.00           | 107   | .766  | 1/1   | 198   | 28.0  | 100   | 5.74   | 164   |      | The.   | 1247         | 216   | 154    | 1985   | 267   | 64    | . 19   |
| deprivation                                             |                |       |       |       |       |       |       |        |       |      |        |              |       |        |        | 22    | 36.   | 34     |
| desphysical Basearch Latters                            | 1.158          | LAR   | 1.516 | 1.646 | 5,700 | 1,5.0 | 1,539 | LIN    | 5,000 | 1.04 | Losa   | 1.154        | 1,208 | 1.00   | 1,411  | 1,100 | 1.500 |        |
| Global Biogeochamocal Cycles                            | 102            | 136-  | 3/4   |       | 15    | 46    |       |        |       | 44.  | - 34   | - 196-       | 39    | - 26-  | 1.10   | 194   | - 10  | - 21   |
| Journal of Advancies in Modeling Earth Systems          |                |       |       |       |       |       |       |        | 13    |      | - 20 - | 25           |       | 10     | 64     | 322   | 526   | -1:200 |
| inumat of Geophysical Research                          |                |       |       |       |       |       | 1.16  |        |       |      | 201    |              |       |        |        |       |       |        |
| Journal of Geophysical Research: Atmospheres            | 878            | LOB   | 785   | 100   | 1004  | 1003  | 127.  | THE    |       | 1885 | 1944   |              | 811   | /16    |        |       | /111  | ATR.   |
| Journal of Geophysical Research: Biogensciences         |                |       |       | 0.297 | - 29  | 540   | 311   | 112    | 5.45  | 140  | 130    | 1.92         | 100   | 1100   | 0.130  | 107   | -45   | . 28   |
| mornal of Geophysical Research: Earth-Sorface           |                | 52    | A.I.; | 100   | 84    | 3.45  | 130   | 11.0   | 134   | 1.12 | 3.01   | 127          | - 10  | - 62   | 312    | - 54  | - 44  | 30     |
| Journal of Geophysical Research: Oceans                 | 254            | 417   | 1.10  | 218   | 312   | 341   | 114   | 3/2    | 362   | 101  | 1.4531 | 110          | 341   | 100.   | 345    | 346   | 802   | 268    |
| assumal of Geophysical Inseeurch: Planets               | 1.02           | 229   | 3,75  | 1.00  | 107   | 150   |       | . 1185 | -142  | 1/1  | 1/2    | 100          | - 111 | - 28   | 100    | 208   | 542   | - 10   |
| Journal of Geophysical Research: Solid Earth            | 345            | 6413  | MAG   |       | 317   | AB    | 4.84  | 376    | 528   | .0.0 | 224    | 2917         | 315   | 101    | 354    | 100   | 5.96  | - 100  |
| journal of Geophysical Research: Space Physics          | 409            | 543   | 416   | 5.05  | arb   | 847   | 545   | 1.528  | 256   |      | 434    | 410          | 563   | 541    | 544    | 500   | 406   | 144    |
| Metasseslogical Applications                            |                |       |       |       |       |       |       | 1.     | 42    | 40   | 126    | . 16         | - 46  | -62-   | -14F.I | . 76  | t     | 2      |
| Paleoceenography                                        | 1000           | 100   | - 140 | 100   | 62    | 41    | 1.84  | 44.1   | 64    | 50   | Mr.    | 185          | 1.0   | 24     | 54     | 160   |       |        |
| Felexisianography and Palasictimatology                 |                |       |       |       |       |       |       |        |       |      |        |              |       |        |        |       | 28    | 75     |
| Quarterly Journal of the Boyal Meteorological flucieity |                |       |       |       |       |       |       |        | 1.0   | HIG  |        | 2011         | 108   | 197:   | 128    |       |       |        |
| Radia Science                                           | 101            | 132   | 3.46  | 114   | 34    | 322   | - 91  | . 508  | - 59  | 1.00 | 100    | - 52         | .03   | /0.    | 100    | - 01  | - 54  | - 51   |
| Reviews of Geophysics                                   |                | .22   | 12    | . 11  |       | .54   |       |        |       |      | 10     | 12           | -14   | 22     | 26     | . 22  | 36    | 31     |
| Space Weather                                           |                | 201   | 37    | 68.   |       | 47    |       | 1.88.7 | 1.00  | - 55 | -63    | 60           | 5.1   | 60     | 441.   | 100   | 525   | 540    |
| fectorists                                              | 1.88.77        | 40.   | 79    | - 600 | 148   | 23    |       | 100    | 173   | 4.1  | 76     | - Chille - L | 24    | 411    |        | 116   | 41    | 1.58   |
| Water Descurios Responsiti                              | Table 1        | 396   | 1010  | 100   | 3.06  | 16.4  | 414   | 100    | 250   | 404  | Area . | 44.4         | 412   | - 10.4 | 1.4041 | 24.7  | 458   |        |

88,410

530 million

#### 5.5 million


unique words



documents

words

## Automated keyword assignment



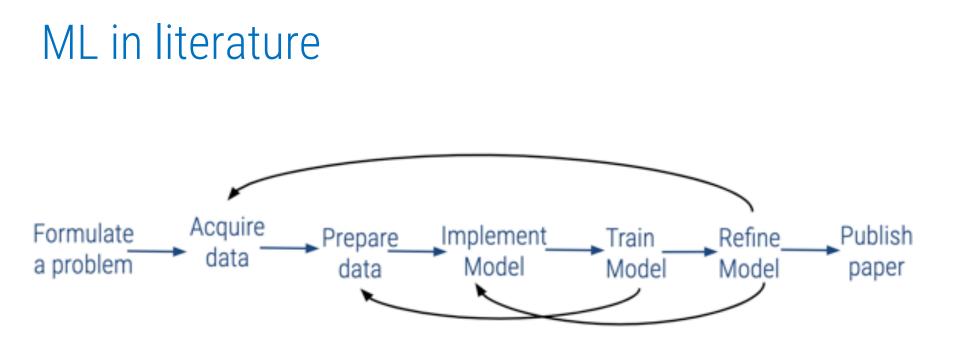


Score


0.4513424

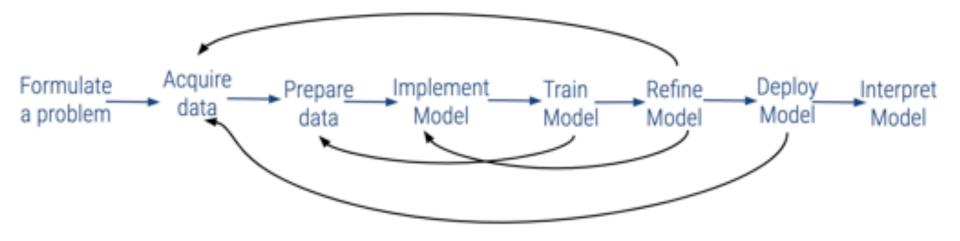
0.1924277

# Address Earth science research and application needs: *Hurricane intensity estimation system*




#### AI/ML in Earth Science




Year

NASA





## ML lifecycle - iterative





## Motivation

15 UTC 10 Oct 17 NHC advisory on Tropical Storm Ophelia:

"Dvorak intensity estimates range from T2.3/33 kt from UW-CIMSS to T3.0/45 kt from TAFB to T4.0/65 kt from SAB. For now, the initial intensity will remain at 45 kt, which is an average of the scatterometer winds and all of the other available intensity estimates."



## Motivation

15 UTC 10 Oct 17 NHC advisory on Tropical Storm Ophelia:

"Dvorak intensity estimates range from T2.3/**33 kt** from UW-CIMSS to T3.0/**45 kt** from TAFB to T4.0/**65 kt** from SAB. For now, the initial intensity will remain at **45 kt**, which is an average of the scatterometer winds and all of the other available intensity estimates."



## Motivation

15 UTC 10 Oct 17 NHC advisory on Tropical Storm Ophelia:

"Dvorak intensity estimates range from T2.3/**33 kt** from UW-CIMSS to T3.0/**45 kt** from TAFB to T4.0/**65 kt** from SAB. For now, the initial intensity will remain at **45 kt**, which is an average of the scatterometer winds and all of the other available intensity estimates."

Can we objectively estimate wind speed from satellite images? Can we estimate more frequently?

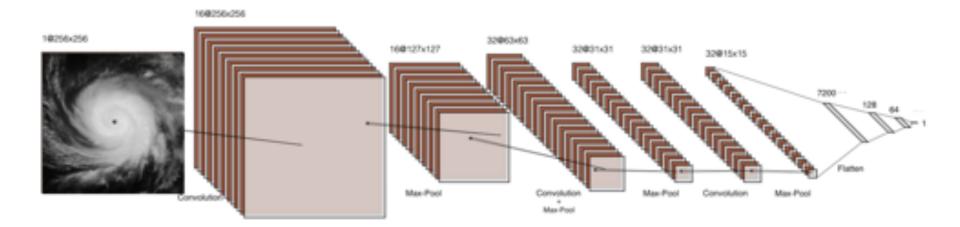


Data
















## Model development



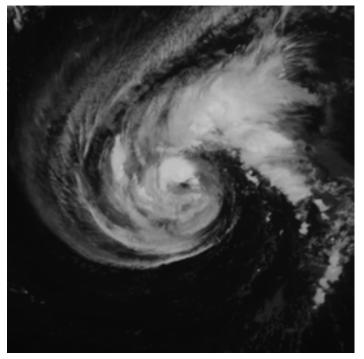


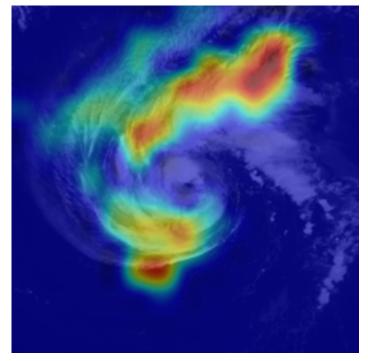
#### Test results

#### Satellite 0-500 km 0-100 km Estimate Wind Speed (m s<sup>1</sup>) Lightning Strikes (divided by 20) aso Aug

Detailed look: Hurricane Earl, 2010

Adapted from Stevenson et al. (2014). Time series of satellite-derived intensity estimates (circles) for Hurricane Earl (2010), added to best track intensities and lightning flash rate time series.





#### Al as a black box

## Interpretability + model inspection



### Learning Deep Features for Discriminative Localization Model evaluation with class activation maps





**Tropical Storm** 



### Hurricane Dorian Demo Video

# We have a model....now what?

Going extra mile

Interpret prediction data – prediction output maybe just numbers

### Questions:

Does the model confidence remain the same over time? How do you maintain?

How do you complete the loop with new training data?



# Deployment to production

#### Performance requirements

Metrics and baselines with initial models Monitor over time

#### Back-testing

Model and software will change Testing model changes on historical data Run current production model to baseline performance Run new models, competing for production

#### Now-testing

Testing of production model on latest data Can we get early warning that the model may be faltering?

• Content drift: training data exploited by model are subtly changing with time



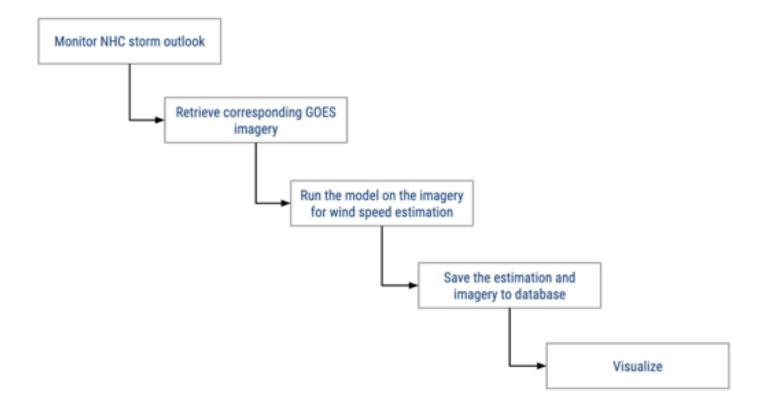
# Hurricane wind speed estimation portal

### Features of a situational awareness tool:

Monitor NHC outlook for "invest" area for trigger

Near real-time tropical cyclone intensity estimation services

Map display


Layers

Comparison with operational forecasts/Evaluate

Service APIs



# Workflow





# Coordinated effort

#### ML researchers

- Transform ideas into models
- Training data
- Monitor

#### Domain experts

- Evaluation
- Performance baselines
- Science use case

#### End-user stakeholders

• Production requirements

#### ML engineers

- Design
- Quick prototype
- Deployment
- Scale
- Log



### Hurricane Intensity Estimation Portal Demo Video

# Challenges and lessons learned

Consistent large-scale training data

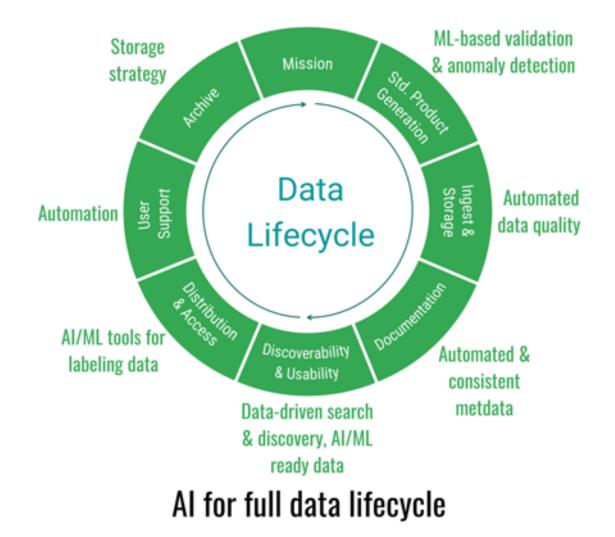
AI black box

Training data/Input data becomes part of the code

Versioning training data, model, algorithm becomes difficult

DevOps, CI/CD

Complexity with evolving platforms and infrastructure




# What's next?



# Biggest bottleneck in adoption of ML in Earth Science is training data









## Thank you.

Manil Maskey manil.maskey@nasa.gov

