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Key Points:  

·      Observed CO2 and carbon stocks/fluxes were reproduced within uncertainties, 

with most of disagreements in transient land uptake. 

·      Ocean carbon-climate feedback is stronger and land feedback slightly less 

sensitive than CMIP5; other feedback parameters are comparable. 

·      Future climate shifts temperate/boreal transitions northward to ~60 °N, extend 

temperate deciduous forest along ~60 °N, and warm/dry Europe. 
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Abstract  

We present results from the NASA GISS ModelE2.1-G-CC Earth System Model with 

coupled climate-carbon cycle simulations that were submitted to the sixth phase of the 

Coupled Model Intercomparison Project (CMIP6) Coupled Climate-Carbon Cycle MIP 

(C4MIP). Atmospheric CO2 concentration and carbon budgets for the land and ocean in the 

historical simulations were generally consistent with observations. Low simulated 

atmospheric CO2 concentrations during 1850-1950 were due to excess uptake from 

prescribed land cover change, which erroneously replaced arid shrublands with higher 

biomass crops, and assumed high 2004 LAI values in vegetated lands throughout the 

historical simulation. At the end of the historical period, slightly higher simulated CO2 than 

observed resulted from the land being an insufficient net carbon sink, despite the net effect of 

CO2 fertilization and warming-induced increases to leaf photosynthetic capacity. The global 

ocean carbon uptake agreed well with the observations with the largest discrepancies in the 

low latitudes. Future climate projection at 2091-2100 agreed with CMIP5 models in the 

northward shift, of temperate deciduous forest climate and expansion across Eurasia along 

60 °N latitude, and dramatic regional biome shifts from drying and warming in continental 

Europe. Carbon feedback parameters were largely similar to the CMIP5 model ensemble. For 

our model, the variation of land feedback parameters within the uncertainty arises from the 

fertilization feedback being less sensitive due to lack of increased vegetation growth, and the 

comparably more negative ocean carbon-climate feedback is due to the large slowdown of 

the Atlantic overturning circulation.  

 

Plain Language Summary   

The Earth’s global carbon cycle traces surface-atmosphere exchanges of CO2 by the ocean 

and the land, including both natural processes (photosynthesis, respiration, ecological 

dynamics, gas exchange, and atmospheric transport) and anthropogenic activities (fossil fuel 

emissions, land use change). Scientists synthesize current understanding of carbon cycle 

science in Earth System Models (ESMs), to simulate the most significant processes in a 

highly complex system, to quantify how the land and ocean carbon sources and sinks of 

atmospheric CO2 behave and how they will change in the future. The NASA GISS 

ModelE2.1-G-CC ESM couples the NASA Ocean Biogeochemistry Model (NOBM) in the 

ocean, the Ent Terrestrial Biosphere Model (Ent TBM) on land, and CO2 transport through 

the atmosphere and interactions with Earth’s radiation. Here we describe experiments that 

were contributed to the Coupled Model Intercomparison Project 6 (CMIP6). Results indicate 

that GISS ModelE2.1 reproduces the large scale properties of the carbon cycle generally 

consistently with measured data. In future warmer climates, major regional biome changes 

will occur in temperate to subarctic climates. The land and the ocean become net sinks, but 

they will have reduced ability to take up additional CO2 and thereby ameliorate climate 

warming.  
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1 Introduction  

The global carbon cycle involves the exchange and storage of carbon among 

numerous different reservoirs of the Earth System. This cycle traces the reduction of CO2 

from the atmosphere through photosynthesis on land and in the ocean as well as gas exchange 

with the ocean reservoir, and oxidation back to CO2 through natural processes of biological 

growth, respiration, ecological dynamics (competition of organisms, fire disturbance), gas 

solubility, and atmospheric transport, and anthropogenic activities, including fossil fuel and 

biomass combustion and land use change. The differential rates of exchange among different 

natural stocks lead to temporal variations and trends in the carbon storage sizes of these 

stocks. On short-term time scales (from seconds to millennia), the movement of carbon is 

dominated by the biogeochemical exchange of carbon among the terrestrial biosphere, ocean, 

and atmosphere, as opposed to geological time scales (hundreds of thousands of years or 

greater) related to volcanic outgassing of subducted carbon (e.g., Carlson et al., 2001; 

Houghton, 2003; Zeebe, 2012), and geochemical time scales (100 millions of years) related to 

rock weathering and the carbon-silicate cycle (Berner et al. 1983). With the onset of 

industrialization powered by fossil fuels, humans have moved carbon from the fossil fuel 

reservoir, which naturally only fluctuates at the geological time scale, into the atmosphere 

through anthropogenic activities largely in the form of greenhouse gases such as carbon 

dioxide (Carlson et al., 2001; Houghton, 2003; Zeebe, 2012). This has increased the amount 

of atmospheric carbon dioxide on the short-term time scale from 280 ppm during the 

Holocene and preindustrial era to 415 ppm today, a rate of increase over the past century of 

~1.0 ppm/year while for 2017 and 2018 it exceeded 2.5 ppm/year (e.g., Friedlingstein et al., 

2019; Le Quéré et al., 2017).  

The carbon cycle is closely tied to climate change due to the greenhouse effect of 

carbon dioxide (CO2) and methane (CH4), the sensitivity of redox processes to warming 

temperatures, and the sensitivity of the ocean uptake to surface warming, changing 

circulation patterns and deep ocean storage. Since the industrial era, the land and ocean 

components of the carbon cycle have been absorbing CO2 released by human activities, such 

that the rate of increase of atmospheric CO2 is less than it would otherwise be. The ability of 

the future land and ocean to act as sinks of CO2 is difficult to constrain. A major concern is 

that their uptake rate may decrease as the land and ocean storage capacity becomes saturated, 

and as net release of CO2 may ensue if oxidation processes exceed photosynthetic uptake 

with climate warming, leading to positive feedback to climate warming.  

Earth System Models (ESMs) offer a means to quantify the effect of anthropogenic 

emissions of carbon on the climate system. ESMs synthesize our understanding thus far of 

the interaction between the physical climate system and the carbon cycle by coupling 

atmosphere–ocean general circulation models (AOGCMs) to terrestrial and ocean carbon 

cycle models (Arora et al., 2013; Hansen et al., 2007; Meehl et al., 2005; Plattner et al., 2008; 

Todd-Brown et al., 2014). Furthermore, ESM projections of future climate change and the 

improved understanding they provide of the global carbon cycle play a vital role when 

forming mitigation and adaptation strategies to deal with climate change (Plattner et al., 

2008). For these reasons, developing ESMs that can constrain the impact of perturbations to 

the carbon cycle on climate change is essential. The redistribution of elevated CO2 into the 

different reservoirs of the carbon cycle is complex and was not easily modeled by the prior 

generation of ESMs, such that the projection of climate change that would occur in response 

to anthropogenically emitted carbon was uncertain and showed divergence (Friedlingstein et 

al. 2014; Kaushik et al., 2020). This is an imminent problem both from scientific and societal 

perspectives.  
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In this study, we use an ESM, the NASA Goddard Institute for Space Studies (GISS) 

ModelE 2.1, to simulate climate change and the global carbon cycle perturbed by 

anthropogenic emissions. We work within the scope of the sixth phase of the Coupled Model 

Intercomparison Project (CMIP6; Eyring et al., 2016) and follow experimental protocols 

established by the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP; 

Jones et al., 2016) which operates within the framework of CMIP6 and is responsible for the 

design, documentation, and analysis of carbon cycle feedbacks and interactions in climate 

simulations conducted by ESM groups around the world. Ensemble MIPs are an important 

community effort to assess current understanding through diverse representations. Previous 

model intercomparison projects have provided important guidance for modeling the coupled 

climate–carbon system using ESMs, and they have led to major advancements of scientific 

knowledge in this field (e.g., Friedlingstein et al., 2006) and contributions to the 

Intergovernmental Panel on Climate Change (IPCC) assessments, which shape policy on 

climate change (IPCC, 2013). Using the latest incarnation of the NASA GISS climate model, 

we have conducted key simulations identified in C4MIP that allow model estimates of the 

relative strengths of the different components of the carbon cycle in producing sources or 

sinks of CO2. The purpose of this study is to describe the behavior of the different 

components of the global carbon cycle in the NASA GISS ModelE2.1 in historical, idealized 

1% per year increasing CO2, and Shared Socio-Economic Pathways (SSP) 5-8.5 scenarios 

and to analyze carbon cycle feedbacks.  

The paper is organized as follows: In section 2, we explain the configurations of the 

atmosphere, land, and ocean components of our model. Section 3 outlines experimental 

design that followed CMIP6 C4MIP protocols. In section 4, we provide results of the 

simulations. Section 4.1 describes results from the fully coupled historical simulations and 

compares the modeled atmospheric CO2 concentration and carbon uptake by the land and 

ocean to observational data. Section 4.2 shows land and ocean carbon uptake for the 

biogeochemically coupled historical experiments, and the results are compared to fully 

coupled historical experiments. Section 4.3 present land and ocean carbon uptake from the 

three variants of 1%/yr increasing atmospheric CO2 simulations, and the change in carbon 

storage at the time of quadrupling of atmospheric CO2 concentration. In this section, we also 

compute carbon cycle feedback parameters. In section 4.4, results from SSP5-8.5 scenario 

experiments are presented. In section 4.5, we present a Köppen-Geiger climate classification 

for emissions-driven historical and SSP5-8.5 simulations. 

 

2 Model description   

 

2.1       The atmosphere model 

The model version used here is GISS-E2.1-G, as described in Kelley et al. (2020). 

That paper describes the model improvements and augmentation since the CMIP5-era GISS-

E2-R model described in Schmidt et al. (2014). Briefly, our configuration of the atmospheric 

model uses 40 vertical layers with a model top at 0.1 hPa, and a horizontal resolution of 2º 

latitude × 2.5º longitude. Atmospheric tracers follow the advective air mass flux of the 

dynamics and achieve greater than nominal resolution by transporting nine higher-order 

moments along with the mean tracer mass. The radiation code is called every 5 model 

timesteps, and we use greenhouse gas concentrations from transient historical forcing 

prescribed for CMIP6 (Meinshausen et al., 2017). In the ESM simulations presented here 

radiation experiences atmospheric emission-based CO2 abundance changes, as described 
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below, and the radiation’s aerosol and ozone constituents are prescribed based on output of 

an ensemble of GISS-E2.1 AMIP simulations which used full atmospheric chemistry and 

aerosol schemes (OMA; Kelley et al., 2020). The GISS ESM model version is the GISS-

E2.1-G-CC in the CMIP6 repository.  

 

2.2 The land model 

 The land model of the GISS GCM couples a ground hydrology model and vegetation 

model. The ground hydrology model is that described by Rosenzweig & Abramopoulos 

(1997), with updates for canopy interception of precipitation and an addition of a snow model 

(Schmidt et al., 2006). The ground hydrology model is responsible for computing soil water 

and the energy balance of the land surface, including temperatures for the vegetation canopy, 

three layers of snow, and six soil layers to a 3.5 m depth. Surface and subsurface runoff are 

routed to rivers and lakes as a function of hydraulic conductivity and local slope. Surface 

albedo and fluxes to the atmosphere are cover-weighted averages from subgrid fractional 

cover of vegetated ground, bare soil, lake, and ocean. A dynamic lakes scheme allows for the 

growth and shrinkage of temporary lakes due to runoff and evaporation (Schmidt et al. 2006). 

 The vegetation model, the Ent Terrestrial Biosphere Model (Ent TBM; Kiang et al., 

2006; Kim et al., 2019; Schmidt et al., 2006; 2014), supplies the surface albedo, water vapor 

conductance, and CO2 fluxes from the vegetated portion of land grid cell. The Ent TBM is a 

demographic dynamic global vegetation model (dDGVM), but for the CMIP6 experiments, 

only the biophysics of the Ent TBM is run to supply land surface and vegetation fluxes. The 

biophysics consists of multi-layer canopy radiative transfer model (Spitters et al., 1986) and 

leaf gas exchange using the Ball-Berry stomatal conductance model (Ball & Berry, 1985) 

coupled with the Farquhar-von Caemmer photosynthesis model (Farquhar & von Caemmerer, 

1982);  leaf boundary layer conductance is from Collatz et al. (1991), and autotrophic and 

heterotrophic respiration is parameterized as in Kim et al. (2019). Boundary conditions of 

natural vegetation cover and canopy structure are prescribed from a satellite-derived global 

vegetation structure dataset v1.0, which provides a map of subgrid fractional cover of 12 Ent 

TBM plant functional types (PFTs) derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover and PFT products (Friedl et al. 2002, 2010), annual 

maximum and monthly leaf area index (LAI; Tian et al., 2002a, 2002b), and forest canopy 

heights derived from the Geoscience Laser Altimeter System (GLAS) aboard the ICESat (Ice, 

Cloud, and land Elevation Satellite; ICESat/GLAS) by Simard et al. (2011). For GISS 

ModelE2.1 CMIP6 experiments, monthly observed MODIS LAI of the year 2004 is 

prescribed for all simulated years.   

Historical crop and pasture cover was prescribed annually, rescaling the subgrid fractions of 

natural vegetation cover. The CMIP5 historical crop and pasture cover for 1900-2005 (Miller 

et al. 2014) were erroneously re-used for the CMIP6 historical experiments, a comparison of 

which is plotted in Figure 1.  For GISS ModelE2.1, these cover changes were constructed 

from a blend of crop cover from Pongratz et al. (2008) and crop and “pasture” cover from the 

CMIP5 Hurtt et al. (2006) Land Use Harmonization (LUH) data set.  To maintain continuity 

with the Pongratz et al. (2008) crops cover for the last millenium (LUHa_t1.v1 for 1700-

1850), the two data sets were linearly weighted with the Pongratz et al. (2008) weight going 

from 1 at 1850 to 0 at 1900. Then the LUH only was used for 1900-2014  for the historical 

period and 2015-2100 future scenarios.  Changes in vegetation carbon stocks due to land 

cover change are distributed as fluxes to the atmosphere uniformly over the year. 

To maintain a continuous transition in land cover change and carbon changes for the 

future scenarios, we continued the historical run with the LUH 2006-2014 land cover, and the 
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future scenarios with the LUH 2015-2100 land cover. The CMIP5 “pasture” cover of Hurtt et 

al. (2006) included rangeland, which alone is comparable in cover to crops and managed 

pasture lands combined. Because rangeland is in fact not a land cover change but a land use 

change (putting grazing animals on existing arid grasslands and shrublands), rescaling all 

natural vegetation with the crops and “pasture” cover in GISS ModelE2.1 effectively replaces 

these two natural types (and small amounts of forest) with higher LAI crop cover, with this 

change particularly significant over Australia. In the LUH2 (Hurtt et al. 2011) for CMIP6, 

pasture and rangeland were separated. The time course of global crop, “pasture” (including 

rangeland) cover area in the GISS ModelE2.1 implementation is plotted in Figure 1a, 

together with the CMIP6 land use change components for comparison. The global total of the 

CMIP5 LUH cover of crops, pasture, and rangeland is comparable to, though slightly lower 

than, that in the CMIP6 LUH2 sum of these types. The LUH2 also considerably revised 

distributions of these types within regions (not shown). We implemented only cover changes 

due to crops, pasture (including rangeland), but not the land use state transitions from primary 

forest to secondary forest, which is a standard option in the historical land cover of the Land 

Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP; Lawrence et al., 

2016). Therefore, in those areas where crop cover expansion replaces forest, our model will 

reflect deforestation, but where deforestation leads to secondary forest regrowth, our model 

will lack the pattern of CO2 losses to the atmosphere followed by uptake by regrowth. The 

resulting time course of global cover of Ent PFTs is plotted in Figure 1b. 

Canopy albedo is a translation to Ent PFTs of the seasonal albedos prescribed by 

Matthews (1983), originally by biome type. Soil carbon is simulated as a 30 cm upper soil 

layer, with a version of the 9-pool CASA model (Potter, et al., 1993; Randerson et al., 2009), 

with carbon only (no prognostic nitrogen), and with soil moisture and temperature responses 

of soil respiration modified, as described in Kim et al. (2019). 

 Because vegetation cover and canopy structure are prescribed, the prognostic carbon 

pools on land are only the plant labile carbon and soil carbon, to enable coupling with 

prognostic atmospheric CO2 and ocean carbon for a fully coupled carbon cycle. The labile 

carbon pool is the balance of photosynthetic uptake of carbon, respiration fluxes, growth of 

seasonally prescribed foliage and fine roots, and retranslocation from senescence. Because 

the vegetation model is run in a biophysics-only mode, carbon uptake from net 

photosynthesis does not drive height growth of vegetation; therefore, any carbon that would 

otherwise be allocated to height growth is dropped as litterfall to the soil. Carbon fluxes not 

included are those from fire and regrowth of secondary forest. 

In the GISS ModelE2.1 C4MIP experiments, the balance of the air-to-land carbon 

flux is a function of three major drivers: 1) land cover change due to expanding crops, 

pasture, and rangeland; 2) the CO2 fertilization effect through which vegetation gross primary 

productivity increases with enhanced diffusion of CO2 into stomata with higher surface 

concentration of CO2 (Ball & Berry, 1987; Sitch et al. 2008; O’Ishi et al. 2009), and an 

inverse relation to surface CO2 concentration to stomatal conductance of water vapor and 

greater water use efficiency; and 3) the radiative warming effect of atmospheric CO2, which 

enhances both leaf photosynthetic capacity and autotrophic (plant) and heterotrophic (soil) 

respiration due to their temperature sensitivities. Changes in climatology that affect drought, 

cloud cover (affecting photosynthetically active radiation), and regional temperature 

(affecting respiration and photosynthetic capacity) further affect the net balance of land 

carbon fluxes. In CMIP5 models, a small amount of climate change was seen to result from 

the reduction of vegetation stomatal conductance vegetation in response to elevated 

atmospheric CO2, and the compensating effect of increased leaf area index and cover changes 

from CO2 fertilization (Gregory et al., 2009; Wenzel et al., 2013). Because we prescribe fixed 
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2004 monthly LAI, our model does not capture the latter secondary negative feedback from 

increased leaf area index from the fertilization effect.  

 For CMIP6 C4MIP, soil carbon stocks were spun up according to the piControl 

conditions in 1850, using an acceleration scheme: 25 years of a piControl configuration was 

run to equilibrate the atmosphere climate and vegetation labile carbon, and then run forward 

another 9 years, saving these 9 years of GCM meteorology (soil moisture and temperature) 

and litterfall. These 9 years of forcings, averaged at a ~1 hour time step, were then used to 

drive the soil biogeochemistry to equilibrium, over 750 iteration × 9 years, totaling 6750 

years. This achieved a state with net ecosystem productivity (NEP) fluxes (GPP − autotrophic 

respiration − soil respiration), averaged over the last 8 years of the spin-up, having an annual 

minimum −0.11,  mean 0.001, and maximum of 0.10 kgC/m2/yr of non-ice covered soil area 

uptake. Total global imbalance was 0.15 GtC/yr uptake. This preindustrial spin-up of soil 

carbon was then used as the initial condition for transient and historical runs. This spin-up 

therefore does not reflect state transitions from land use history prior to 1850. 

 

2.3 The ocean model  

The ocean component of the GISS GCM (GISS-E2.1-G) is a mass conserving ocean 

model, at 1° latitude × 1.25° longitude horizontal resolution with a free surface and natural 

surface boundary conditions for heat and freshwater fluxes (Russell et al., 1995; Schmidt et 

al., 2014). Since its CMIP5 incarnation, it has finer resolution near the surface and a total of 

40 layers in the vertical, improved eddy transport parameterization also including three 

dimensional variation of mesoscale diffusivity, a higher-order advection scheme (Prather, 

1986), and a parameterization of tidal mixing and more realistic strait-through-flows that 

affect property distributions in marginal seas (Kelley et al, 2020). Ocean only simulations of 

passive tracer uptake (CFC) showed that the model is in good agreement with observations 

(Romanou et al, 2017).  

The ocean carbon cycle module is an update of the one used in CMIP5 simulations 

with the GISS model (Romanou et al, 2013; 2014) and which originated from the NASA 

Ocean Biogeochemistry Model (NOBM; Gregg & Casey, 2007). It is fully interactive with 

the atmosphere, the physical ocean, and the ice and radiation submodels, and it includes 4 

phytoplankton species (diatoms, chlorophytes, cyanobacteria, and coccolithophores), four 

nutrient elements (nitrate, silicate, ammonium, and iron), three detrital pools (nitrate/carbon, 

silicate, and iron), and one heterotroph species. Carbon cycling is represented through 

dissolved organic (DOC) and dissolved inorganic carbon (DIC) and interacts with the 

atmospheric CO2 tracer through gas exchange parameterization, following the CMIP6 ocean 

carbon model intercomparison protocol (Orr et al., 2017). Light profiles from the atmospheric 

radiation module are propagated underwater into the ocean and spectrally decomposed to 33 

wavebands that are used to compute growth of the phytoplankton groups (Gregg & 

Conkright, 2002). Latto & Romanou (2018) showed that ocean carbon states estimated from 

the GISS ModelE2.1 with CMIP5 carbon cycle agreed well with observations, and that study 

led to the current improvements in the carbon cycle simulations. 

In the updated NOBM model, the diatom and detrital sinking speeds are modulated by 

an exponential profile that depends on the diatom and detrital concentrations at depth: 

𝑤𝑠𝑑(𝑧) = 𝑣𝑖𝑠𝑓𝑎𝑐(𝑧) × 𝑎 × 𝑒𝑥𝑝(𝑏 ×

𝐶𝑑(𝑧)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
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where 𝑤𝑠𝑑(𝑧) is the sinking speed of diatoms or detritus, 𝑣𝑖𝑠𝑓𝑎𝑐(𝑧) is a coefficient 

representing that effect of viscosity on sinking speed that depends on temperature (particles 

sink more slowly in colder waters), 𝑎 and 𝑏 are constants (0.01 and 5 respectively for 

diatoms, 2 and 3 respectively for detrital carbon, 3 and 6 respectively for detrital silica, and 1 

and 2 respectively for detrital iron), and 𝐶𝑑(𝑧) are the diatom or detrital concentrations. This 

parameterization of sinking speed differs from most models, which generally prescribe a 

constant sinking speed for their prognostic detrital tracers. Alkalinity is now prognostically 

computed following the Ocean Carbon-Cycle Model Intercomparison Project 2 (OCMIP2) 

protocol in order to better simulate carbonate chemistry and the oceanic carbonate pump. The 

ocean iron cycle is forced with the historical annual cycle climatology extracted from the 

online dust simulations using the GISS dust model (Miller et al, 2006) which has been 

expanded to include eight externally mixed minerals (illite, kaolinite, smectite, carbonates, 

quartz, feldspar, iron oxides, and gypsum) plus internal mixtures between minerals and iron 

oxides (Perlwitz et al., 2015a,b). The masses of free and structural iron and their fractions of 

total iron have been evaluated using measurements for location at Izaña Observatory (García-

Pando et al., 2016). The GISS ocean carbon cycle is now including riverine delivery of 

biogeochemical constituents and is coupled to the prognostic river runoff calculated in GISS 

ModelE2.1 as part of the simulated global hydrological cycle. The concentrations of 

particulate organic carbon (POC), dissolved organic carbon (DOC), dissolved inorganic 

carbon (DIC), nitrate, silicate, and iron at all the major and many minor river estuaries are 

obtained from an annual climatology (da Cunha et al., 2007), and they modulate the 

biogeochemical characteristics of the freshwater outflow into the ocean at these sites. 

Therefore, as continental runoff increases (decreases) due to changes in precipitation over 

land, the delivery of these ocean biogeochemical tracers will increase (decrease). Particulate 

carbon burial into the sediment, although prescribed for all areas shallower than 150 m, takes 

place in the estuaries where detritus delivered with the riverine flow tends to accumulate. The 

seasonal cycle of the air-to-sea flux of CO2 as well as the partial pressure of CO2 in the sea 

water have been extensively evaluated against several observational datasets (Lerner et al, 

2020).  

Tracer conservation in the ocean carbon cycle model is rigorously tested with online 

as well as offline diagnostics. These account for the amount of carbon and other tracers that is 

exchanged between different pools through all the modeled processes. We ensure that each 

tracer is conserved to machine precision accuracy (see details in Table S2 of the Supporting 

Information). 

The ocean carbon and the land model spun up separately. For the ocean carbon, the 

spin up starts from a physical climate model simulation (without carbon) that is almost at 

equilibrium after it has been integrated for approximately 3000 years and in which the surface 

of the ocean is at steady state whereas there is a small warming drift at depth of about 

0.006 ℃ over 150 years. The ocean carbon spin up initial conditions are taken from Global 

Ocean Data Analysis Project version 2 (GLODAPv2) for DIC and alkalinity and from World 

Ocean Atlas 2013 (WOA2013) for nitrate, silicate, and iron while the atmospheric CO2 

concentration is at preindustrial levels. The model experiences an initial adjustment of about 

50 years while the surface carbon distributions adjust to the physical ocean mixing and 

exchanges with the atmosphere and while the biological pump comes to near steady state. At 

that time, the air-to-sea flux of CO2 is about −0.5 GtC/yr and slowly decreases. The model is 

further integrated for 700 years with prognostic CO2 at which point surface DIC and 

alkalinity are shown to change very little with time. At that point, we employ a tracer 

acceleration technique that is based on linear extrapolation of DIC and alkalinity at each 

model grid point over a period of 500 years. At the end of this process, the air-to-sea flux of 
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CO2 is within 0.1 GtC/yr for the duration of the experiments, meeting the C4MIP 

requirements (Jones et al., 2016) for submission to CMIP6. 

 

3 Experimental Design 

 We have conducted a total of 12 experiments (Table 1) to contribute to the climate-

carbon cycle component of CMIP6. Following the C4MIP protocol (Jones et al., 2016), three 

Diagnostic, Evaluation, and Characterization of Klima (DECK); two historical; two tier-1; 

and three tier-2 experiments were conducted. In this study, we present nine experiments 

(indicated in bold letters in Table 1) that enable us to assess the model’s skill, describe future 

predictions, and examine carbon cycle feedbacks. In this section, broad overviews of the 

eight experiments and aspects that are unique to NASA GISS ModelE2.1 are described. The 

reader is referred to the C4MIP (Jones et al., 2016) for specific design information of each of 

the experiments.  

1% per year increasing atmospheric CO2 experiments   

 These are idealized scenarios where the atmospheric CO2 concentration increases by 

1% every year starting from the spun-up initial conditions (Section 2). Atmospheric CO2 

concentration is prescribed and is the only forcing present in this scenario; all other forcings 

(e.g., other greenhouse gases and land use) are held at their pre-industrial levels. The 

atmospheric CO2 concentration doubles after 70 years and quadruples after 140 years of 

simulation following C4MIP design protocols (Jones et al., 2016), and the 1% per year 

increase of atmospheric CO2 is applied continuously for a minimum of 150 years following 

CMIP6 requirements (Eyring et al., 2016).  

The standard 1pctCO2 experiment is a concentration-driven coupled simulation, 

meaning that the terrestrial biosphere, ocean, and the radiation scheme of the model responds 

to the increasing atmospheric CO2 concentration, thus promoting climate change. The 

1pctCO2-bgc experiment is the biogeochemically coupled version of the standard 1pctCO2 

experiment. Here, only the land and ocean carbon components of the model respond to the 

increasing atmospheric CO2 level; the model’s radiation component does not respond to the 

increasing atmospheric CO2 level but uses instead the pre-industrial CO2 concentration. 

Correspondingly, the 1pctCO2-rad is the radiatively coupled version of the standard 1pctCO2 

experiment, and in this version, only radiation responds to increased atmospheric CO2 

concentrations, but the land and the ocean carbon experience pre-industrial levels of 

atmospheric CO2 concentrations. The three variations of 1pctCO2 simulations are used to 

study carbon cycle feedbacks.  

historical experiments   

The standard historical experiment (hist) is a concentration-driven simulation where 

atmospheric CO2 and other greenhouse gas concentrations are prescribed (CMIP6 data from 

Meinshausen et al., 2017). The land and ocean models are interactive as described in Sections 

2.2 and 2.3. This experiment is forced by CMIP6 atmospheric CO2 concentration data which 

are based on observations and reconstructs the climate from the beginning of 1850 to the end 

of 2014. 

The esm-hist experiment (esm-hist) is the emissions-driven counterpart of the 

concentration-driven historical experiment. In this experiment, the atmospheric CO2 

concentration is determined prognostically from the anthropogenic CO2 emissions from 

different socio-economic sectors, which are prescribed from the CMIP6 forcing data of 

Hoesly et al. (2018), regridded to the atmospheric model’s 2º latitude × 2.5º longitude 
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resolution, and the carbon fluxes from land and ocean model components. These emissions 

sectors are energy; industrial; transportation; residential, commercial, other; international 

shipping; waste; and solvents sectors. It does not consider CO2 fluxes from biomass burning, 

grazing, harvesting, and aircraft. Emissions data from biomass burning was not available, and 

grazing, harvesting, and aircraft emissions were not configured yet to be included in our 

model.  

Both concentration-driven and emissions-driven historical experiments serve as a 

benchmark for assessing model performance, though the emissions-driven version is capable 

of more in-depth assessments of carbon cycle effects due to its prognostic determination of 

atmospheric CO2 concentration from different emission sectors and the land and ocean sinks.  

The hist-bgc and esm-hist-bgc experiments are the biogeochemically coupled version 

of the historical and esm-hist experiments. These configurations are identical to the hist and 

emis-hist cases except that the land and ocean components of the model respond to the 

increase in CO2 concentration only while there is no radiative warming effect on climate.  

SSP5-8.5 scenario experiments 

The esm-ssp585 experiment is an emissions-driven future scenario simulation based 

on Shared Socio-Economic Pathways (SSPs) which are part of the Scenario Model 

Intercomparison Project (ScenarioMIP; O’Neil et al., 2016) that coordinates with C4MIP. 

SSP5, referred to as “Fossil-Fueled Development”, is characterized by high socio-economic 

challenges to mitigation and low socio-economic challenges to adaptation, and SSP5-8.5 

scenario achieves a forcing level of 8.5 Wm−2 in 2100 (Kriegler et al., 2017; O’Neill et al., 

2016). The esm-ssp585 experiment starts at the end point of the esm-hist experiment and 

continues 85 years until 2100 using CMIP6 SSP5-8.5 anthropogenic emissions and other 

forcings. The ssp585-bgc experiment is the biogeochemically coupled concentration-driven 

version of this scenario and branches off from the historical experiment (hist).  

 

4 Results  

The global carbon budgets for the 9 described experiments and piControl experiment 

are listed in the Appendix in Tables B1-B4. We first summarize the simulated atmosphere, 

then the stocks and fluxes in the land and ocean environments. 

 

4.1 Coupled historical simulations 

 In this section, we present the modeled atmospheric CO2 concentration and CO2 

uptake by the land and ocean components of the carbon cycle in concentration-driven and 

emissions-driven historical experiments, and compare them to observations to assess the skill 

of GISS ModelE2.1 in modeling the present-day global carbon cycle.  

 

4.1.1 Atmospheric CO2 concentration 

 Figure 2a shows a comparison of the temporal evolution of simulated global mean 

annual atmospheric CO2 concentration in the esm-hist experiment with the observation-based 

atmospheric CO2 used to force the concentration-driven historical (hist) simulations 

(Meinshausen et al., 2017). In the esm-hist experiment, simulated atmospheric CO2 

concentration is lower than the observed until about 1960, and then it is in close agreement 

until the end of the simulation in 2014. The esm-hist low bias in the earlier part of the 20th 
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century is attributed to changing trends in uptake by inaccurately prescribed land cover 

change, detailed in Section 4.1.2, with “crop” cover replacing rangeland, creating an artificial 

sink from the land cover change. The convergence of the observed and simulated historical 

atmospheric CO2 by 1960 is explained in Section 4.1.2 with regard to the temporal pattern of 

the cumulative air-to-land CO2 flux.   

After 1960, atmospheric CO2 concentration from the esm-hist experiment increases 

more rapidly and eventually leads to somewhat higher values than observed towards the end 

of the simulation (2005) by approximately 4.1 ppm. This result is consistent with the CMIP5 

multi-model-mean overestimation of the atmospheric CO2 concentration at the end of the 

simulation (2005) by about 5.6 ppm higher than in observations (Hoffman et al., 2014). 

However, some emission sources, e.g., biomass burning and aircrafts, were not included in 

our simulations (see Section 3), implying that our overestimate is likely higher than reported 

here.  

Figure 2b shows the simulated surface air temperatures in the hist and esm-hist 

experiments as an anomaly with respect to the 1951-1980 mean temperatures obtained from 

observation-based results from GISS Surface Temperature Analysis (GISTEMP) version 4 

(GISTEMP Team, 2020; Lenssen et al., 2019). Both hist and esm-hist experiments capture 

the overall slow rate of surface air temperature increase in the 1850-1970 period and the 

faster rate of increase after 1970. The esm-hist experiment agrees particularly well with 

GISTEMP v4 results in the 1880-1940 period where the surface air temperature is low. These 

patterns are consistent with the atmospheric CO2 concentration patterns in which CO2 

increases gradually in the 1850-1960 period and increases sharply after about 1960. As 

described before, atmospheric CO2 concentration in the 1850-1960 period is lower in the 

esm-hist experiment which likely leads to lower surface air temperatures than the historical 

experiment.    

 The 2010-2014 mean column-averaged atmospheric CO2 concentration at each grid 

point from the esm-hist experiment is compared with column-averaged NOAA 

CarbonTracker CT2017 atmospheric CO2 mole fraction data (Peters et al., 2007) and GOSAT 

(Greenhouse gases Observing SATellite; JAXA/NIES/MOE) data for the same 5 year period 

to assess the spatial distribution of atmospheric CO2 (Figure 3a-c). The GISS ModeE2.1 esm-

hist global mean atmospheric CO2, about 400 ppm, is much higher than observed, which is 

about 390 ppm, so these maps show the difference relative to those respective means, to 

reveal differences in the distribution patterns. Seasonal averages over December-January-

February (DJF), March-April-May (MAM), June-July-August (JJA), and September-

October-November (SON) are also shown in Figure 3d-o. The model captures the 

hemispheric contrast in atmospheric CO2 concentration, the Northern Hemisphere (NH) 

higher winter concentrations, and summer growing season draw-down of atmospheric CO2. 

However, the NH seasonal amplitude is relatively damped compared to observations, while 

the Southern Hemisphere (SH) concentration is consistently lower relative to the mean (albeit 

still higher than observed). The model does not reproduce MAM having the highest relative 

NH atmospheric column CO2, which is due to the model not capturing a respiration pulse 

prior to spring leafout, because the GISS ModelE2.1 high latitude temperatures are biased 

low by ~8 ℃ (see Kelley et al., 2020), causing a later soil thawing and suppressed 

respiration. This low temperature bias also causes a damped summer NH uptake of 

atmospheric CO2 in JJA, due to cold-suppressed summer GPP at the same time with a tardy 

soil respiration pulse. Because of the low land uptake in JJA, soil respiration losses with fall 

senescence manifest as higher NH atmospheric CO2 in SON relative to the model mean 

compared to observations. The consistently low SH atmospheric column CO2 is a result of 

the damped NH cycle and reduced concentration gradient for equatorial transport as well as 
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due to high CO2 uptake by the oceans associated with overestimated NPP (Lerner et al, 

2020). 

At the continental scale, due to localized emissions sites, the model exhibits high 

concentrations of atmospheric CO2 in winter due to fossil fuel emissions over the Eastern 

United States, Eastern China, and Europe, but because we do not simulate fire or biomass 

burning, the locally elevated atmospheric CO2 concentrations over central Africa and the 

Amazon are absent in our model. 

 

4.1.2 Terrestrial biosphere CO2 uptake     

 Table B1 summarizes the components of land carbon fluxes and stocks in the final 

year of each experiment. Gross primary productivity (GPP) and net primary productivity 

(NPP) values of the historical (116.7 GtC/yr and 43.8 GtC/yr, respectively) and esm-hist 

(117.6 GtC/yr and 44.7 GtC/yr) simulations are all well within the range of observed GPP 

and NPP uncertainty and prior MIP GPP ranges of 90-150 GtC/yr (Houghton et al, 2007; 

Welp et al., 2011; Piao et al, 2013), with NPP being just over about a third of GPP. The GISS 

ModelE2.1 historical and esm-hist experiments show that the combined CO2 fertilization 

effect and warming-induced increases to leaf photosynthetic capacity result in enhanced GPP; 

we analyze their separate contributions later in Section 4.2. The net effect with warming-

induced increases to respiration (both autotrophic and heterotrophic) leads to ~30% higher 

NPP in the historical and esm-hist experiments compared to the preindustrial, only slightly 

higher in the emissions-driven experiments. Compared to inventory estimates of ~380-536 

(mean 450) GtC in global vegetation biomass (Erb et al., 2018), the model biomass estimate 

without the labile pool is low at 340 GtC, but with the labile pool the total is high at 563 GtC. 

The total soil carbon stocks for the historical and esm-hist experiments are close to the 

median of ~1500 GtC of inventory map estimates and well within the 504-3000 GtC 

literature range (Scharlemann et al., 2014). 

We examine next the transient behavior of these experiments to understand the final 

year outcome. The annual mean CO2 exchange between the terrestrial biosphere and the 

atmosphere for the historical and esm-hist experiments during the 1850-2014 period is shown 

in Figure 4a,c. The concentration-driven and emissions-driven experiments yield very similar 

evolution of fluxes. Cumulative uptake for the two experiments is also similar at the end of 

2014; however, the historical experiment has higher uptake until approximately 1980 because 

atmospheric CO2 concentrations are higher.  

The changes in trends of air-to-land CO2 flux in the historical and esm-hist 

experiments are strongly tied to rates of land conversion to human land uses (Figure 1), 

which accelerated with population growth starting in the colonial era ~1700 A.D., with the 

industrialized world plateauing in the late 1990’s (Pongratz et al. 2008). With regard to 

vegetation behavior, after decades of regrowth, CO2 fertilization, and fire suppression 

(Pongratz et al., 2008), satellite observations have shown that the Earth experienced a 

greening trend from the 1980’s to late 1990’s or 2000’s due to CO2 fertilization (Zhu et al., 

2016), but the trend has reversed since then, with declining LAI due to water stress from 

increasing vapor pressure deficits (Yuan et al., 2019).  

 The effect of land cover changes is reflected in the land use change term that 

comprises a component of air-to-land flux. In our model, the terrestrial biosphere flux is 

determined as 

𝐹𝐿 = 𝑛𝑝𝑝 − 𝑟ℎ −
𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡  ............................................... ......................................... ................. 2 
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where 𝐹𝐿 is the air-to-land flux (positive into surface), 𝑛𝑝𝑝 is net primary productivity, 𝑟ℎ is 

heterotrophic respiration, and 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 is carbon flux in products of land use change, which 

corresponds to the change in vegetation biomass in our model. The magnitudes of 𝑛𝑝𝑝 and 

𝑟ℎ terms are much larger than 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡; however, the difference of 𝑛𝑝𝑝 and 𝑟ℎ is small and 

on the same order as the 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 term (Figure 5a,b). For this reason, the 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 term 

has a relatively large influence on the evolution of carbon uptake by the terrestrial biosphere. 

The 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 magnitudes can be attributed to erroneous specification of land cover change 

due to the LUH inclusion of rangeland in the “pasture” cover type.   

The annual fluxes due to net ecosystem productivity 𝑛𝑝𝑝 − 𝑟ℎ in Figure 5a are low 

compared to the magnitude of land CO2 fluxes (excluding land use change) estimated in a 

multi-model DGVM compilation in Friedlingstein et al. (2019), which ranges ~ −6 to −3 

GtC/yr by 2010-2018. The CO2 fluxes from land use change in Friedlingstein et al. (2019) are 

based on the LUH2 data set and do not have the 1850-1900 carbon sink as in our 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 
term, while the trends through the 20th and early 21st centuries reflect still the stronger loss 

at 1950-1960 and steady losses thereafter, but restricted within 1-1.5 GtC/yr. The net effect in 

our model is that the cumulative air-to-land flux remains negative after about 1920 onwards, 

with the land as a steady source. 

The departures of the esm-hist simulated atmospheric CO2 concentration from 

observations can be explained by how our land model does or does not deal with the above 

known forcings and responses. The annual and cumulative air-to-land flux (Figure 4a,c) 

trends to closely follow our prescribed crop, pasture, and rangeland cover changes as plotted 

earlier in Figure 1, with the consequent changes in biomass carbon stocks quantified as 

𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 in Figure 5; the land carbon uptake is positive over 1850-1900, negative over 

1900-1960, with a spike in loss to the atmosphere over 1950-1960, then becomes a net sink 

after 1960. In comparison to the historical experiment, the lower cumulative uptake in the 

esm-hist experiment over 1850-1900, where both have otherwise the same cover changes, is 

due to several factors: 1) The largest driver is from using the CMIP5 LUH land cover data 

set, in which the rangeland included with “pasture” replaces a large fraction of less 

productive natural shrubland cover with our crops PFT, particularly in the Western U.S., 

South America, and Australia. This adds biomass and LAI to these areas and creates a 

significant sink. In the LUH2, crops and pasture without rangeland in fact mostly replaces 

forest in the Eastern U.S. during 1850-1900, the losses from which would be more consistent 

with observed CO2. 2) Our prescribed LAI from the year 2004 occurs during a period of peak 

LAI, such that monthly LAI prescribed from 2004 values is higher than actual LAI earlier in 

the century (Yuan et al. 2019), thus driving overestimated CO2 uptake. Finally, 3) a positive 

feedback results from the lower simulated atmospheric CO2 concentration causing less of a 

fertilization effect. The low simulated atmospheric CO2 concentration over the pre-industrial 

to mid-20th century is therefore due to an overestimated land sink. Together, these lead to the 

land gaining biomass carbon and serving as a net sink.   

Over 1900-1950, the switch of the land to being a net source corresponds to a marked 

increase in losses of biomass carbon due to land cover change replacing natural grasslands 

and small areas of forest with crops. Shrubland cover also is replaced at an accelerated rate, 

but the net effect is of a net loss, as shown in the negative 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 values over this period 

in Figure 5a.   

Over 1950-1960, there is a jump in crop/pasture/rangeland cover expansion and 

conversion of natural vegetation, not only shrublands but also grasslands and forest to the 

crop PFT (Figure 1), affecting all continents. This cover change is expressed as the strong dip 
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in the air-to-land flux as seen in Figures 4a and 4c and quantified as 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 in Figure 5. 

This cover replacement continues at a slower rate through the end of the historical period.   

 The recovery to historical atmospheric CO2 concentration levels by 1990 and slightly 

exceeding the historical levels of atmospheric CO2 concentration by the 2000’s appears to be 

due to lower than actual land CO2 uptake rates, when compared to the CT2017 estimate. 

After 2000, while CO2 fertilization leads to land being a net sink, simulated atmospheric CO2 

concentration is still higher than observed due to insufficient land CO2 uptake. The lower 

simulated air-to-land flux compared to the CarbonTracker estimate since 2000 could reflect 

underestimated GPP or higher respiration, but the model estimate is within the lower 

uncertainty bound of CarbonTracker. This latter period is observed to have experienced a 

reduction in global vegetation growth due to drying (Yuan et al. 2019), but also high latitude 

increases in LAI since 2004 (Zeng et al. 2018; Zhu et al. 2016). The insufficient simulated 

land CO2 sink may be because our experiments lack the high latitude enhanced LAI growth, 

or because they do not distinguish primary from secondary forest and miss the enhanced CO2 

sink from regrowth of the latter. Given the decline otherwise of global vegetation growth, 

however, if the modeled land CO2 uptake is low, it is most likely because soil respiration is 

high, or our biophysics has low GPP due to either drought stress or an insufficient sensitivity 

to the CO2 fertilization effect. A small, steady prescribed replacement of natural grasslands 

and forests by crops and pasture also contributes to losses, but if these changes did occur, 

then other factors are still required to compensate for them.   

Combined, the above described effects can explain our land model’s being an 

excessive sink of CO2 during the early 20th century and an insufficient sink in the 2000’s, 

hence the difference in atmospheric CO2 concentration between the observed and the esm-

hist experiment (Figure 2).  

Now we examine spatial patterns of simulated atmospheric CO2 concentration and 

fluxes. Figure 6a compares the continental scale mean 2000-2014 air-to-land fluxes between 

the model and CarbonTracker. Both the concentration-driven and emissions-driven historical 

experiments are fairly consistent with CarbonTracker data. The medians of the modeled flux 

agree well with CarbonTracker, however, for land, the model interquartile ranges have 

smaller range with underestimated maxima, indicating that our model does not capture 

extremes.   

 The spatial patterns of terrestrial biosphere CO2 flux for the mean of 2000-2014 

period are assessed in Figure 7a-c. The historical and esm-historical experiments demonstrate 

similar spatial patterns and magnitude of flux. Current satellite observations are not sufficient 

to resolve local or regional patterns of fluxes but are appropriate at the continental to 

hemispheric scales.  Nonetheless, when the two model experiments are compared roughly to 

CarbonTracker data, the spatial pattern is fairly consistent; however, the magnitude is 

damped with overall less uptake than observed, as indicated previously in Figures 4a and 6a; 

this is consistent with the damped simulated seasonal atmospheric CO2 concentration 

described earlier. Some small regions that show negative air-to-land flux in CarbonTracker, 

i.e., Indonesia, Ukraine, and the Pacific Northwest, instead have positive uptake in both 

historical and esm-hist experiments. These differences may be due to lack of deforestation 

and biomass burning in our model. The seasonal maps in Figure 7d-o provide some 

explanation for pronounced differences in JJA in the boreal and subarctic zones, where land 

CO2 uptake is too low, and the Amazon Basin, where there is a net loss. During 2000-2014, 

global LAI was fairly flat in trend (Zhu et al., 2016), so the discrepancy cannot be due to 

different LAI. These discrepancies appear due to biases in the GISS ModelE2.1 simulated 

climate (see Kelley et al., 2020). The NH high latitudes (boreal, subarctic) are too cold during 
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the JJA growing season, causing reduced photosynthetic capacity from frost hardening in our 

model. The Amazon Basin has overall low precipitation and excess temperatures, leading to 

higher soil respiration and higher water stress, particularly in JJA during a time that should 

have peak productivity, resulting in net carbon losses rather than uptake and an appearance of 

reverse seasonality in fluxes.  

Uncertainties in CarbonTracker terrestrial biosphere CO2 flux are large in some 

regions, particularly in high latitudes in the Northern Hemisphere, and may reach the same 

magnitude as the signal itself. This is partially due to scarcity of ground observations, in 

particular, over Siberia and in the Amazon region. For this reason, although the comparison 

of model to CarbonTracker flux data provides a decent assessment of the model’s skill, such 

a comparison of magnitudes in regional scale is not entirely conclusive, and the relative 

patterns should be considered taking into account the regional uncertainties of both datasets.  

 

4.1.3 Ocean CO2 uptake   

The air-to-sea annual mean CO2 flux and cumulative uptake for the historical and 

esm-hist experiments during the 1850-2014 period are shown in Figure 4b,d. The CO2 flux 

into the ocean in the concentration-driven experiment is slightly higher than in its emissions-

driven counterpart until about 1950, but this behavior reverses after 1950, and by 2014 both 

simulations estimate similar air-to-sea CO2 flux. This difference in uptake between the 

historical and esm-hist experiments is arising from the difference in atmospheric CO2 

concentration between the two experiments where atmospheric CO2 concentration in esm-hist 

experiment is lower than in the historical experiment until about the mid-20th century by 

about 10-20 ppm (Figure 2a). As explained in section 4.1.2, the low atmospheric CO2 

concentration during the initial years (1850-1900) of the esm-hist simulation is driven by the 

land being an excessive carbon sink. Since the atmospheric CO2 concentration is low, air-to-

sea flux is also low as the CO2 gradient between the atmosphere and the ocean is small, 

leading to smaller amounts of CO2 uptake by the ocean from the atmosphere in the esm-hist 

experiment compared to the historical experiment. For this reason, cumulative ocean uptake 

in the esm-hist experiment is lower than the historical experiment (Figure 4d), and thus, the 

ocean is not strongly driving the evolution of atmospheric CO2 concentration in this period. 

Once the land becomes a carbon source in 1900, atmospheric CO2 concentration begins to 

increase (Figure 2a), and accordingly, ocean CO2 uptake begins to increase as well (Figure 

4b,d). The land becomes a sink again in 1960, however, atmospheric CO2 keeps increasing 

until the end of the simulation (Figure 2a) mainly due to sharply increasing anthropogenic 

CO2 emissions, and the ocean uptake keeps increasing in response to the increasing 

atmospheric CO2 concentration. The deviation in ocean uptake between the historical and 

esm-hist decreases towards the end of the simulation, and at the end, the cumulative ocean 

carbon uptake in the historical experiment is only slightly higher (~6 GtC or about 4%) than 

the esm-hist experiment. The cumulative uptake by the ocean in our model is consistent with 

studies that have utilized observation-based data synthesized by the GLODAPv2 (Olsen et 

al., 2016). Net cumulative ocean uptake of both anthropogenic and natural CO2 during the 

1994-2007 period in the historical and esm-hist experiments, which are 26.2 GtC and 29.2 

GtC, respectively, are within the uncertainty range of 29±5 GtC reported in Table 3 of Gruber 

et al. (2019).   

Figure 6b compares the mean 2000-2014 air-to-sea flux between the model and 

CarbonTracker regionally. Both the concentration-driven and emissions-driven historical 

experiments are generally consistent with CarbonTracker data for the northern and southern 

mid-latitude regions, and the subtropics regions are not far off. Modeled fluxes in  the tropics 
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are biased showing decreased outgassing and in some places even uptake CO2 due to biases 

in Ekman induced upwelling that produce warmer surface temperatures and shallower mixing 

for alkalinity and DIC (as discussed in detail in Lerner et al, 2020). Polar regions are 

noticeably different between the model and CarbonTracker. Although the model does 

simulate slightly stronger uptake than observed (Lerner et al, 2020), CarbonTracker 

uncertainties in the region are also large.  

 The spatial patterns of air-to-sea CO2 flux for the mean of 2000-2014 period in the 

model and observations are compared in Figure 7a-c. The historical (Figure 7a) and esm-hist 

(Figure 7b) experiments demonstrate very similar spatial patterns and magnitude of air-to-sea 

CO2 flux when compared against each other, which was also observed in Figure 6b. When 

the two model experiments are compared to CarbonTracker data, the spatial pattern is broadly 

consistent where the regions close to the poles are mostly CO2 sinks and tropical regions are 

CO2 sources. Differences are most apparent in the Southern Ocean, equatorial Pacific, and 

subpolar regions. Although both the model and CarbonTracker indicate Subpolar North 

Atlantic Ocean as having high positive air-to-sea CO2 flux, both historical and esm-hist 

experiments indicate even higher positive fluxes in this region. For the equatorial oceans, 

both simulations show less outgassing than the CarbonTracker data. Below, we briefly 

discuss the mechanisms underlying the CO2 flux bias; a more detailed discussion can be 

found in Lerner et al. (2020). 

Subpolar Regions: The model overestimates the CO2 flux from the atmosphere to the ocean 

in both the subpolar North Atlantic and Pacific due to the model’s underestimate of pCO2 in 

both regions. However, the underlying cause of the pCO2 underestimation differs between 

these two regions. In the subpolar North Atlantic, the model overestimates wintertime mixing 

(Figure S1a,b), which results in the model overestimating surface DIC and alkalinity. If the 

biases in alkalinity and DIC were equivalent, then one would expect no impact on the bias in 

pCO2 since alkalinity acts to decrease pCO2 while DIC contributes positively to pCO2. 

However, the alkalinity bias in intermediate and deep waters is greater than that for DIC in 

this region (Figure S2). Thus convective mixing contributes to the surface alkalinity bias 

more strongly than it does to the DIC bias, causing the model to have higher excess alkalinity 

(the difference between alkalinity and DIC) in the surface waters of this region (Figure 

S1c,d).  

In the Subpolar North Pacific, however, the bias appears to be temperature driven, as 

the model underestimates temperature by ~2 oC (Figure S1e,f), which lowers the solubility of 

CO2 and increases the flux of CO2 into the ocean from the atmosphere in this region. 

Additionally, in the Subpolar North Pacific, the model systematically overestimates DIC and 

alkalinity (as in the Subpolar North Atlantic), but since excess alkalinity is not systematically 

larger than observations (Figure S1c,d), temperature likely plays a stronger role than 

alkalinity and DIC biases in driving the air-to-sea CO2 flux bias in this region. 

Southern Ocean: The model overestimates alkalinity and the CO2 flux from the atmosphere to 

the ocean in the Southern Ocean as well. However, the reason behind the excess alkalinity 

bias in the Southern Ocean is unclear, as the mixed layer depth in the model is consistent with 

observations, and primary production (PP) is only slightly overestimated by the model in 

austral winter. While the model predicts a mixed layer depth consistent with observations, it 

also displays a positive excess alkalinity bias in the Atlantic Sector of the Southern Ocean 

below 200 m (Figure S3). Since the model’s mixed layer depth can exceed 200 m in some 

regions of the Southern Ocean (Figure S1a,b), particularly during austral winter, the bias in 

surface excess alkalinity may stem from regions where the model transports subsurface 

waters that are depleted in DIC and enriched in alkalinity compared to observations. 
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Equatorial Pacific:  In the Equatorial Pacific, two factors contribute to the model’s 

underestimation of outgassing of CO2. The first is the model’s underestimation of wind speed 

(Figure S1g,h), which reduces the gas transfer velocity as well as Ekman induced upwelling 

of deep waters enriched in DIC, and hence the air-to-sea CO2 flux. The second is the model’s 

high excess alkalinity, particularly along the coast of South America (Figure S1c,d). This 

excess alkalinity bias likely stems from the upwelling of waters within and below the 

thermocline that also contain excess alkalinity that is higher than observed (Figure S4).  

 In three of the four regions of largest CO2 flux bias, the bias seems at least partially to 

be due to the transport of subsurface and intermediate waters that have positive biases in 

excess alkalinity. While the cause of these biases is unclear, a possible explanation is the 

model’s representation of calcium carbonate dissolution below the surface layer. The model 

does not contain a prognostic calcium carbonate pool; rather, the model assumes that the 

export flux of calcium carbonate below the compensation depth (75 m in the model) is 

exponentially decreasing with depth, with the maximum flux proportional to the integrated 

primary production above the compensation depth. The dissolution of calcium carbonate, and 

hence the alkalinity source below the compensation depth, is then calculated as the vertical 

divergence of the aforementioned export flux. Notably, the calcium carbonate dissolution rate 

does not depend on the saturation state of seawater. Such a treatment may overestimate the 

alkalinity source in the mesopelagic and bathypelagic zones, since in the model the calcium 

carbonate flux is tightly linked to primary production, whereas in the real ocean this flux 

stems from production of only calcium carbonate producing organisms (e.g., 

coccolithophores, foraminifera, etc.). 

Biases in the air-to-sea CO2 flux may also stem from biases in nutrient distributions 

and their impact on productivity. Interestingly, the regions of the largest negative surface 

nitrate biases, in the Equatorial Pacific and Southern Ocean (Figure S1i,j), are associated with 

positive biases in primary production (Figure S1k,l). This suggests that low nitrate 

concentrations in these regions are at least partly due to increased nutrient utilization by 

phytoplankton, though in the equatorial Pacific they are likely also a consequence of reduced 

upwelling of nutrient rich sub-thermocline waters due to weaker surface wind than observed. 

High productivity tends to decrease DIC and contributes to both regions being a weaker CO2 

source (equatorial Pacific) or stronger CO2 sink (Southern Ocean) than observed (Figure 

7a,c). 

Physical ocean biases are documented in Kelley et al. (2020) and in Lerner et al. 

(2020): there is still a double ITCZ (Intertropical Convergence Zone) in the Pacific and 

excessive precipitation patterns in the tropics as well as larger than observed snowfall in the 

mid latitudes. Sea surface temperature positive biases are found mostly in the Eastern 

Boundary Upwelling and in the storm tracks regions and are associated with radiation and 

cloud precipitable water deficiencies. Salinity positive biases are mostly found in marginal 

seas but also the broader tropical open ocean regions and are associated with precipitation 

biases. Deeper than observed mixing is found in the North Atlantic deep water formation 

regions and the Southern Ocean south of the Antarctic Polar Front. 

 

4.2 Biogeochemically coupled historical simulations 

 The global annual mean cumulative uptake of CO2 by the land and ocean reservoirs in 

both concentration-driven and emissions-driven biogeochemically coupled historical 

scenarios are shown in Figure 8c-f. As expected, the biogeochemically coupled scenarios for 

both concentration-driven and emissions-driven experiments for the land have higher uptake 
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of CO2 than their fully coupled counterparts towards the end of the simulation (Figure 8c,e) 

since there is no enhancement to autotrophic and soil respiration in the absence of warming 

from the radiative effect. The historical and hist-bgc experiments have identical cumulative 

uptake until about 1900 while the hist-bgc experiment accumulates more carbon after 1900, 

with total land carbon stocks in 2014 enhanced by 30.2 GtC in the hist-bgc experiment 

compared to the historical, stored in soil carbon (Table B1). For the emission-driven 

counterpart, this identical accumulation period lasts until approximately 1960, as there is less 

of a CO2 fertilization effect due to lower atmospheric CO2 concentration during this period 

compared to the historical atmospheric CO2 concentration. At the end of the simulation, the 

esm-hist-bgc experiment stores 25.5 GtC more on land than the esm-hist (Table B4). The 

esm-hist-bgc experiment has negligibly lower cumulative CO2 uptake than the hist-bgc 

experiment by 4.6 GtC (Figure 8c,e). Soil carbon stocks are higher by ~3% in the 

biogeochemically coupled experiments compared to the preindustrial, and by ~1% when the 

radiative effect is included. 

Our model releases any enhanced carbon uptake to the soil, but we also encountered a 

model error in which there is excess accumulation of labile carbon (non-structural 

carbohydrates, NSC) in grasses (cOther in Table B1), which lack calculation of potential 

height growth or simulated full mortality to move this biomass as litter to the soil. This plant 

labile carbon pool does not respire in our model, whereas it would more realistically be 

transformed to higher plant density or leaf area, litterfall, and more soil carbon storage, some 

of which would be respired back to the atmosphere. The labile carbon accumulation in all 

plants is 223 GtC, a third of the total vegetation biomass of 563 GtC. Given the estimate of 

Erb et al. (2018) of ~380-536 (mean 450) GtC in global vegetation biomass, and our woody 

stem biomass of 310 GtC, this accumulated labile carbon is perhaps excessive by ~60 GtC, 

but not excessive enough to adversely impact our simulated carbon cycle given uncertainties 

in both soil carbon and vegetation biomass. 

 The cumulative ocean uptake of CO2 shows very small variations between the fully 

and biogeochemically coupled configurations of both concentration-driven and emissions-

driven simulations (Figure 8d,f). For the concentration-driven simulations, the 

biogeochemically coupled case has a slightly higher cumulative uptake at the end of the 

simulation (historical: 136.3 GtC, hist-bgc: 150.3 GtC in 2014), whereas the fully and 

biogeochemically coupled versions are almost identical in the emissions-driven simulations 

(esm-hist: 130.2 GtC, esm-hist-bgc: 129.8 GtC in 2014). In the concentration-driven 

historical simulations, the atmospheric CO2 concentration is prescribed, and hence, it is 

exactly the same in the fully and biogeochemically coupled simulations. However, in the hist-

bgc experiment, there is no coupling of the atmospheric CO2 evolution to the radiation, hence 

the surface ocean does not warm as much as in the fully coupled experiment (Figure S5b in 

the Supporting Information), resulting in the uptake being higher in hist-bgc due to the 

solubility pump being stronger (Figure S5a). The role of the biological pump manifests itself 

through primary production (PP) and carbon export (cexp, computed in the model at 75 m 

depth). Initially (earlier than 1950) both PP and cexp are weaker in the biogeochemically 

coupled experiment than in the fully coupled experiment (Figure S5d,e) because warmer 

water in the fully coupled experiment stimulates primary production. During this period, PP 

and cexp contribute to a tendency towards reduced ocean carbon uptake in the 

biogeochemically coupled vs. the fully coupled experiment. However, the difference in the 

solubility pump is greater than the difference in the biological pump between these two 

experiments, so that carbon uptake is actually greater in the biogeochemically coupled 

experiment than the fully coupled experiment. However, after 1970’s, both PP and cexp get 

stronger in the biogeochemically coupled experiment than in the fully coupled experiment 
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(thus now contributing to stronger uptake than in the fully coupled experiment) due to the 

fact that mixed layer depth (MLD) in the fully coupled experiment is shoaling (surface 

warming leads to more stable stratification hence shallower mixing) and leads to enhanced 

nutrient depletion at the surface, limiting PP in the fully coupled experiment (Figure S5c). 

Therefore, in the concentration-driven simulations, it is the solubility pump that drives the 

uptake differences with minor contributions from the biological pump in the early part of the 

simulations (before 1970), but the biological pump plays a more important role in driving the 

uptake differences in the later part of the simulations (after 1970).  

However, the ocean response in the emissions-driven simulations is more complicated 

than in the concentration-driven simulations because the ocean adjusts interactively to the 

atmospheric CO2 concentrations. Unlike in the concentration-driven simulations, there is an 

evolving atmospheric CO2 concentration difference between the esm-hist and ems-hist-bgc 

experiments, such that before 1910, atmospheric CO2 concentration in the two experiments is 

essentially the same (+/- 2 µatm), and hence, differences in ocean uptake are small (Figure 

S6a). 

In the period 1910-1950, atmospheric CO2 concentration in the esm-hist-bgc 

experiment is greater than in esm-hist experiment, but the difference is decreasing to zero by 

1950. Thus, during this period the ocean uptake in the biogeochemically coupled experiment 

is greater than in the fully coupled experiment. After 1950, the atmospheric CO2 

concentration in the esm-hist experiment increases faster than in the esm-hist-bgc experiment, 

leading to more uptake in the fully coupled experiment which overcomes the effect of surface 

warming. Therefore, the difference between the uptake in these two experiments decreases 

with time, switches sign around 1980, and remains small thereafter. Primary production and 

carbon export differences increase (Figure S6d,e). However, whereas PP difference is similar 

to the one in the concentration-driven simulations (Figure S5d), cexp difference is smaller 

than in the concentration-driven simulations (Figure S5e), hence the very small uptake 

difference at the end of the simulations, possibly indicating a different role of the biological 

pump in the emissions-driven simulations. The different behavior in the emissions-driven and 

the concentration-driven simulations is going to be the subject of subsequent studies as it 

requires more in-depth, quantitative analysis than the one provided here.  

Overall, the ocean takes up a much greater amount of carbon than the land in either 

concentration-driven or emissions-driven simulations, as was the case for the fully coupled 

historical and esm-hist experiments. This trend is similar to many CMIP5 models where the 

ocean uptake was mainly in the range of 100-150 GtC in the 2000’s and was greater than the 

land uptake which showed considerable disagreements but nevertheless had mostly net zero 

or negative cumulative uptake in the 2000’s (Friedlingstein et al., 2014).  

 The spatial distributions of the difference between the fully and biogeochemically 

coupled simulations (2000-2014 mean) are shown in Figure 9. On land, the CO2 fertilization 

effect without the radiative effect does not result in uniform enhancement of the uptake, but 

there are regional variations for both concentration-driven and emissions-driven simulations. 

However, these regional differences are not all the same for the concentration-driven versus 

emissions-driven experiments. Both concentration-driven and emissions-driven simulations 

show greater uptake in the fully coupled experiments (historical, esm-hist) in the northeastern 

U.S., Russia, south-central Africa, and eastern China (Figure 9a,b). However, only the 

concentration-driven simulations show greater uptake with the fully coupled experiment than 

the biogeochemically coupled experiment in a crop-dominated area of South America, at the 

boundary between North and South America, and in a large portion of continental Europe 
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(Figure 9a,b). Alaska, India, and southeastern Asia show larger uptake in the fully coupled 

experiment in emission-driven simulations (Figure 9a,b). These are reflected in seasonal 

maps (Figure 9c-j). The fully coupled esm-hist experiment shows substantially lower uptake 

than its biogeochemically coupled counterpart during winter months in Europe (DJF) and 

crop-dominated area of South America (JJA) which is not the case for concentration-driven 

simulations (Figure 9c,d). In DJF, southeastern Asia shows larger uptake in the fully coupled 

experiment in the emission-driven mode than in the concentration-driven mode (Figure 9c,d). 

India and Alaska show larger uptake in the fully coupled experiment in the emission-driven 

mode in SON and JJA, respectively (Figure 9i,j). For the ocean, the air-to-sea CO2 flux 

difference between the fully and biogeochemically coupled experiments is smaller (Figure 

9a,b). Generally, the ocean shows weaker uptake in the fully coupled simulations over most 

of the ocean due to warmer surface temperatures, shallower mixed layers, and weaker mixing 

(Figure S5,S6). There are two notable exceptions where the uptake is stronger in the fully 

coupled than the biogeochemically coupled simulations: i) the Norwegian-Greenland Seas 

and ii) the Weddell Sea. In both regions, sea ice melting due to warmer temperatures leads to 

more ocean surface available for exchanges with the atmosphere and hence uptake there. The 

concentration-driven simulations are characterized by less sea ice melting than the emissions-

driven simulations, hence the effects in the emissions-driven simulations are more 

pronounced in the Norwegian-Greenland Seas. The equatorial Pacific and Atlantic Oceans 

show larger uptake in the fully coupled simulations than the biogeochemically coupled 

simulations in emission-driven experiments which is noticeably different from the 

concentration-driven simulations. The role of the biological pump is smaller than the 

solubility pump in the concentration-driven simulations, however the emissions-driven 

simulations merit more in-depth analysis in future work. 

 

4.3 1% per year increasing CO2 simulations 

 CO2 exchanges between the atmosphere and the land and ocean for the fully, 

biogeochemically, and radiatively coupled 1pctCO2 experiments are shown in Figure 10a,b. 

At the time of quadrupling of CO2, i.e. after 140 years, we obtain 66% higher uptake of CO2 

on land and 30% higher uptake in the ocean (Table B1,2) in the 1pctCO2-bgc experiment 

compared to the 1pctCO2 experiment. In the radiatively coupled experiment, 1pctCO2-rad, 

surface warming, while the land and ocean carbon reservoirs only see preindustrial 

atmospheric CO2 concentrations leads to both land and ocean becoming CO2 sources. In all 

three 1pctCO2 experiments, the global uptake of the ocean is higher than that of the terrestrial 

biosphere (Figure 10a-d).  

 Since our model does not simulate changes in LAI, height growth, or cover change 

that might result from either fertilization or warming, the changes in land carbon stocks are 

due to changes in soil carbon (CO2 fertilization enhances litterfall; warming enhances soil 

respiration) and in the labile carbon pool in vegetation (CO2 fertilization increases GPP; 

warming can both increase carboxylation capacity of CO2, Vc,max, and increase autotrophic 

respiration). In Figure 10e, higher GPP in the 1pctCO2 experiment than in the 1pctCO2-bgc 

experiment shows that there is a thermal fertilization effect with the increase of Vc,max with 

temperature. However, for the net land carbon uptake trends, warming-induced soil 

respiration losses are in excess of this enhancement to GPP. Thus, comparing Figures 10c and 

10g, trends in land carbon are almost entirely accounted for by changes in soil carbon, with a 

loss of ~600 GtC in the 1pctCO2-rad experiment compared to 1pctCO2.  

 The spatial distributions of the change in stored carbon in the terrestrial biosphere for 

the duration of the 140 year period of the simulations are shown in Figure 11a-c. The fully 
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and biogeochemically coupled experiments show similar patterns. On land, the 

biogeochemically coupled experiment stores more carbon at locations of high productivity, 

e.g., tropical and temperate regions. Increase in productivity is greater in the 

biogeochemically coupled experiment where respiration is not increased in the absence of 

radiatively induced climate warming. Most notable differences between the fully and 

biogeochemically coupled experiments are the net negative regions in northern Eurasia and 

northeastern North America found in the 1pctCO2 experiment and the uniform lack of any 

regions of carbon loss in the 1pctCO2-bgc experiment. The 1pctCO2-rad experiment shows 

largely net negative change in stored carbon with small patches of positive change in the 

northern high latitudes. As shown in Figure 10g, the predominant high latitude losses are due 

to increased soil respiration with climate warming, since in our experimental configuration, 

the vegetation cover and structure are fixed. The plant labile carbon pool of vegetation also 

will be more depleted from enhanced vegetation respiration at higher temperatures (not 

shown), but soil respiration accounts for almost all losses to the atmosphere here. The small 

patches of increased net uptake are due to warming in these locations boosting GPP to a 

greater extent than increasing soil respiration. 

 The spatial distributions of the change in stored carbon in the ocean over the 140 

years of the simulations are shown in Figure 11. The fully coupled and biogeochemically 

coupled experiments demonstrate very similar patterns, implying that the carbon 

disequilibrium between the atmosphere and the ocean surface, i.e. the solubility pump, drives 

most of the ocean uptake, especially in the region of intense uptake in subpolar North 

Atlantic Ocean and along the pathway of the North Atlantic western boundary current. In this 

region, the biogeochemically coupled experiment shows greater increase in stored carbon 

than the fully coupled experiment because in the latter the effect of surface warming and 

enhancement of outgassing are included. An important characteristic of the ocean response in 

the 1pctCO2 and 1pctCO2-rad simulations with the GISS coupled model is the drastic 

decline of the Atlantic Meridional Overturning Circulation (AMOC) driven primarily by 

intense freshening in the polar/subpolar regions through melting of land and ocean ice. At the 

beginning of the simulation, the AMOC at 26 °N is about 25 Sv, and by the time of doubling 

of atmospheric CO2 concentration, it has reached 18 Sv, and at the time of quadrupling, it is 

at 10 Sv. The AMOC slowdown leads to decreased uptake in the North Atlantic via the 

weakening of the solubility pump in the 1pctCO2-rad simulation but less so in the fully 

coupled simulation. While primary production is stimulated by surface warming in both the 

fully and radiatively coupled simulations, it is also impacted by the shallowing of the mixed 

layer and the reduced availability of nutrients from below. As a result, PP declines with time 

in both the fully and radiatively coupled simulations but remains stable in the 

biogeochemically coupled simulation. The Southern Ocean plays a critical role in the 

solubility pump because, while it remains unchanged in the 1pctCO2-bgc experiment, it 

becomes the dominant carbon sink in the fully coupled simulation due to the weakening of 

the North Atlantic sink with the AMOC strength reduction and the relative increase in 

importance of the Southern Ocean sink. The biogeochemically coupled simulation has no 

surface warming due to climate change, thus ocean circulation and mixing are stronger than 

in the fully coupled simulation which explains the stronger uptake.  

 The terrestrial biosphere uptake of carbon is also more sensitive to climate change 

than the ocean uptake. The uptake of carbon by the terrestrial biosphere is reduced to a 

greater extent in the radiatively coupled 1pctCO2-rad experiment (Figure 10c,d, 11c).   
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4.3.1 Carbon cycle feedbacks 

 A set of metrics known as carbon-concentration and carbon-climate feedback 

parameters are frequently used to quantify the response of carbon cycle storage on land and 

in the ocean to changes in atmospheric CO2 concentration and climate (Arora et al., 2013; 

Boer & Arora, 2009, 2010, 2013; Friedlingstein et al., 2003, 2006; Gregory et al., 2009; 

Jones et al., 2016; Plattner et al., 2008; Roy et al., 2011; Schwinger et al., 2014; Zickfeld et 

al., 2011). In this section we discuss the feedback parameters estimated from our simulations. 

 We follow the integrated flux method (Friedlingstein et al., 2006; Arora et al., 2013) 

which expresses the changes in stored carbon in land and ocean components of the carbon 

cycle as an approximate linear sum of effects arising from changes in atmospheric CO2 

concentration and climate, which is written as  

𝛥𝐶𝐿,𝑂
𝐶𝑂𝑈 = 𝛽𝐿,𝑂𝛥𝐶𝐴

𝐶𝑂𝑈 +

𝛾𝐿,𝑂𝛥𝑇
𝐶𝑂𝑈   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

where 𝛥𝐶𝐿,𝑂, 𝛥𝐶𝐴, 𝛽, 𝛾, and 𝛥𝑇 represent the change in total land or ocean carbon storage 

(GtC), change in atmospheric CO2 concentration (ppm), the carbon-concentration feedback 

parameter (GtC/ppm), the carbon-climate feedback parameter (GtC/K), and change in global 

mean surface air temperature (K), respectively. The subscripts 𝐴, 𝐿 and 𝑂 signify atmosphere, 

land and ocean components of the carbon cycle, respectively, and the superscript 𝐶𝑂𝑈 

indicates a fully coupled simulation. The change in total carbon storage in the land or the 

ocean (𝛥𝐶𝐿,𝑂) is computed as the change in cumulative flux at a given year of simulation with 

respect to the cumulative flux of the initial year. Change in atmospheric CO2 concentration 

(𝛥𝐶𝐴) is also with respect to the initial year. The change in surface air temperature is 

computed with respect to the mean of the initial ten years and the mean of the ten years prior 

to the desired year, e.g., for the year 1990, 𝛥𝑇 is computed as the difference between the 

mean temperatures of 1980-1990 and 1850-1860. Ten-year means are used in order to reduce 

large variabilities in surface air temperature. Here, change in global mean surface air 

temperature, 𝛥𝑇, is regarded as an acceptable proxy to climate change (Friedlingstein et al., 

2006; Schwinger et al., 2014). The 𝛽 and 𝛾 parameters are computed as  

𝛽𝐿,𝑂 = 𝛥𝐶𝐿,𝑂
𝐵𝐺𝐶/

𝛥𝐶𝐴
𝐵𝐺𝐶    .................................................................................................................. 4 

𝛾𝐿,𝑂 = (𝛥𝐶𝐿,𝑂
𝐶𝑂𝑈 − 𝛥𝐶𝐿,𝑂

𝐵𝐺𝐶)/

𝛥𝑇𝐶𝑂𝑈  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

where the superscripts 𝐵𝐺𝐶 indicate biogeochemically coupled simulations. Alternatively, 𝛾 

parameter can be computed from the radiatively coupled experiment as  

𝛾𝐿,𝑂 = 𝛥𝐶𝐿,𝑂
𝑅𝐴𝐷/

𝛥𝑇𝑅𝐴𝐷  .................................................................................................................... 6 

(e.g., Arora et al., 2013) though Schwinger et al. (2014) concluded that carbon-climate 

feedback computed this way underestimates the reduction of ocean carbon uptake 

(superscripts 𝑅𝐴𝐷 indicate radiatively coupled simulations). Positive 𝛽 parameter indicates 

negative feedback of land and ocean to the atmosphere because the growth of atmospheric 

CO2 concentration is hindered from enhanced uptake in response to higher levels of 

atmospheric CO2 concentration. On the other hand, negative 𝛽 parameter indicates positive 

feedback of land and ocean to the atmosphere. Similarly, for the 𝛾 parameter, the feedback of 

land and ocean to climate change (warming surface air temperature) is negative and positive 
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when 𝛾 is positive and negative, respectively. For the computation of 𝛾 parameter, we follow 

the recommended COU﹣BGC difference method (equation 5) from a CMIP5 study 

(Schwinger et al., 2014) because this method captures the response of the ocean to climate 

change under rising atmospheric CO2 concentration. We only use equation 6 to compute γ 

when comparing our results to CMIP5 global multi-model-mean results reported in Arora et 

al. (2013).  

 The feedback parameters from the annual mean global cumulative uptake in the 

1pctCO2 experiments are shown in Figure 12a,c. Throughout the simulation, the 𝛽 for both 

land and ocean remains positive, meaning that the land and ocean take up more carbon with 

increasing atmospheric CO2 concentration, and the feedback to the atmosphere is negative, 

because carbon uptake by land and ocean tends to reduce atmospheric concentrations and 

therefore climate change. Over the first few decades, β increases with the rising atmospheric 

CO2 concentrations, but after approximately 80 years in the land and 70 years for the ocean, β 

decreases as we increase CO2 in the atmosphere, meaning that the land and ocean sinks 

weaken. For the ocean, this behavior arises from the fact that the uptake increases almost as a 

cube root function (Figure 10b) where the rate of general change of uptake becomes almost 

constant at ~0.1 GtC/yr, indicating a saturation of carbon storage reservoirs. The atmospheric 

CO2 concentration, however, keeps increasing exponentially at 1%/yr according to the 

definition of the 1pctCO2 experiments (Section 3), and the rate of change in atmospheric CO2 

concentration surpasses the rate of general change in ocean uptake near year 70. Therefore, 

equation 4 dictates that β decreases sharply. The land also experiences a similar effect where, 

in our model, the uptake rate decreases because of decreasing fertilization effect due to 

saturation of fixed leaf photosynthetic capacities for carboxylation of CO2. At any given year, 

𝛽 for the ocean is larger than that for the land which is consistent with the larger cumulative 

CO2 uptake of ocean compared to the land in the 1pctCO2 experiment (Figure 10c,d).  

 Unlike the 𝛽 parameter, the 𝛾 parameter remains negative for both land and ocean at 

any given time and maintains an almost constant decreasing trend for the duration of the 

simulation (Figure 12a; computed using the 𝐶𝑂𝑈 − 𝐵𝐺𝐶 approach in equation 5). γ is 

negative because the land and ocean release more carbon to the atmosphere (increased 

outgassing) and therefore their carbon storage reservoirs decrease with increasing global 

temperatures. The feedback to the atmosphere is positive because it tends to enhance global 

warming. The magnitude of the land  𝛾 parameter is larger than that of the ocean, consistent 

with the larger cumulative loss of carbon from the land than the ocean in the 1pctCO2-rad 

experiment (Figure 10c,d).  

 Relative contributions of the different carbon cycle feedbacks and the atmospheric 

carbon burden are quantified in Figure 12d. The components are determined as 𝛽𝐿𝛥𝐶𝐴
𝐶𝑂𝑈: 

land carbon-concentration, 𝛽𝑂𝛥𝐶𝐴
𝐶𝑂𝑈: ocean carbon-concentration, 𝛾𝐿𝛥𝑇

𝐶𝑂𝑈: land carbon-

climate, 𝛾𝑂𝛥𝑇
𝐶𝑂𝑈: ocean carbon-climate, and 𝑚𝛥𝐶𝐴

𝐶𝑂𝑈: airborne where 𝑚 is 2.12 GtC/ppm 

(Appendix 1; Arora et al., 2013; Gregory et al., 2009), and the five components are expressed 

as decimal fractions of the total sum. The magnitude of carbon-concentration feedback 

contribution is significantly larger than the carbon-climate feedback, meaning that the 

response of land and ocean is greater to increased atmospheric CO2 concentration than to 

increased surface air temperature leading to negative overall carbon cycle feedback to CO2 

forcing. Throughout the simulation, both ocean and land carbon-concentration feedback 

contributions remain mostly constant with slight increases in the beginning. The land carbon-

climate feedback contribution also remains mostly constant except with an opposite sign and 

on a much smaller scale. The ocean carbon-climate feedback contribution experiences a 

steady decrease (increase in magnitude) until about 100 years into the simulation, however, 
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its magnitude is smaller than the land counterpart at the time of quadrupling of atmospheric 

CO2 concentration. The airborne fraction decreases in the first half of the simulation, 

reaching to about 0.5, then the second half experiences a slight increase.  

The evolution of feedback parameters from the GISS ModelE2.1 is mostly 

comparable to those from some CMIP5 models reported in Arora et al. (2013). Here, the 

GISS ModelE2.1 𝛾 parameters are computed using the 𝐶𝑂𝑈 − 𝐵𝐺𝐶 method (equation 5, 

Figure 12a) but also using the 𝑅𝐴𝐷 method (equation 6; Figure 12b) for consistency with 

Arora et al (2013). At the time of quadrupling of atmospheric CO2 concentration, the GISS 

ModelE2.1 ocean carbon-concentration feedback, 0.85 GtC/ppm, is similar to the value 

reported for the CMIP5 model mean (0.80±0.07 GtC/ppm). The land carbon-concentration 

parameter for the GISS ModelE2.1 model is 0.68 GtC/ppm which is smaller than the CMIP5 

model mean value (0.92±0.44 GtC/ppm). The ocean carbon-climate parameter, 𝛾𝑂, for GISS 

ModelE2.1 is larger (in the negative sense; −17.7 GtC/K) than the ensemble mean for some 

of the CMIP5 models (−7.8±2.9 GtC/K), indicating that the ocean in GISS ModelE2.1 is a 

stronger source of CO2 with warming which relates to the large warm biases of GISS 

ModelE2.1 as well as the slowdown of the ocean overturning circulation with a warming 

climate. 𝛾𝐿 of the model (−54.8 GtC/K) is close to the CMIP5 estimate (−58.4±28.5 GtC/K).  

 Lastly, estimating the geographic distribution of the feedback parameters in order to 

highlight the regions which contribute most to their magnitude is informative. To do so, we 

computed the feedback parameters at each grid point based on equations 3 - 5 for the year of 

quadrupling of atmospheric CO2 concentration (140th year; Figure 13). The 𝛽 and 𝛾 

parameters are now expressed per unit area (GtC/m2/ppm and GtC/m2/K) similar to Boer & 

Arora (2010), Boer & Yu (2003), Ciais et al. (2013), and Roy et al. (2010) in order to 

normalize by grid cell area. In order to avoid singularities in β and γ locally when the 

denominators become very small, i.e. for changes in atmospheric CO2 concentration (𝛥𝐶𝐴
𝐵𝐺𝐶) 

and temperature (𝛥𝑇𝐶𝑂𝑈) locally which are very small, global averages in these quantities are 

used (Boer & Yu, 2003; Ciais et al., 2013).  

The carbon-concentration feedback parameter is almost entirely positive throughout 

the globe. Regions with the largest contribution to the carbon-concentration feedback over 

land are found at equatorial tropical and subtropical regions, eastern North America, Europe, 

East Asia, and mid-latitude South America which is consistent with the fact that these regions 

are not limited by water or temperature and thus have high response to elevated atmospheric 

CO2 concentration. This pattern is mostly consistent with CMIP5 multi-modal-mean 𝛽 

distribution in Ciais et al. (2013). For the ocean, areas with largest contributions are found in 

subpolar North Atlantic Ocean, which is a region of intense uptake of CO2, and along the 

pathway of the North Atlantic Deep Water along the western boundary in the North Atlantic, 

as mentioned in Section 4.3. However, this differs from the CMIP5 multi-modal-mean (Ciais 

et al., 2013) which only shows moderately large 𝛽 values at subpolar North Atlantic Ocean 

and small 𝛽 values in the North Atlantic western boundary current. The discrepancy could be 

attributed to the fact that GISS ModelE2.1 has stronger overturning circulation in the North 

Atlantic than the CMIP5 model mean.  

The carbon-climate feedback parameter is mostly negative with the locations of 

(negatively) largest 𝛾 occurring at similar locations as the largest 𝛽, e.g., tropical land and 

northwestern Atlantic Ocean. However, unlike β, γ switches sign over some distinct regions. 

For the terrestrial biosphere, patches of positive γ are found in northern North America and 

Eurasia. These patches are characterized by increases in GPP due to warming in these high 

latitude areas boosting temperature-sensitive photosynthetic capacity, as noted earlier. For the 
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ocean, positive 𝛾 values occupy the subtropical gyres, though the magnitude is generally 

lower than the positive land 𝛾 values. The Arctic Ocean also shows positive γ. Negative γ 

implies outgassing whereas positive implies uptake, hence in the subtropical gyres and in the 

Arctic Ocean, GISS ModelE2.1 takes up CO2, due to carbon transport divergence.  

 

4.4 SSP5-8.5 scenarios 

 

4.4.1 Atmospheric CO2 concentration  

 Figure 14a shows the global mean atmospheric CO2 concentrations in the emissions-

driven esm-ssp585 experiment and in the concentration-driven ssp585-bgc experiment. 

Atmospheric CO2 concentration in the esm-ssp585 and the ssp585-bgc increase at nearly the 

same pace while the esm-ssp585 experiment maintains a slightly higher atmospheric CO2 

concentration throughout the simulation. In the final year of the simulation (year 2100) in the 

esm-ssp585 experiment, the atmospheric CO2 concentration is 1160 ppm, whereas it is 1136 

ppm in the concentration-driven experiment. We note, however, that the esm-ssp585 

experiment started from the end of the esm-hist experiment which was at 7.2 ppm higher 

atmospheric CO2 concentration than the concentration-driven historical experiment (Figure 

2a).  

 Simulated global mean surface air temperatures in the esm-ssp585 and ssp585-bgc 

experiments are shown in Figure 14b. Temperature increases almost linearly in the esm-

ssp585 experiment, reaching approximately 18.9 ℃ by 2100. The ssp585-bgc experiment, 

despite an absence of the radiative warming effect, still exhibits a small increase due to 

forcings in the SSP8-8.5 scenario other than CO2 (e.g., aerosols, ozone, and land use change; 

O’Neal et al., 2016). This is likely due also to reduction in stomatal conductance at higher 

surface CO2 concentration causing increases in surface temperature.  

 Figure 15 shows the distribution of column-averaged atmospheric CO2 concentration; 

differences between the 2015-2024 mean and 2045-2054 mean are shown in Figure 15a,b, 

and differences between 2015-2024 mean and 2091-2100 mean are shown in Figure 15c,d. In 

the esm-ssp585 experiment, extensive warming is evident over the globe already by mid-21st 

century, except a small region in the North Atlantic which exhibits cooling of about 6 ℃ (the 

“cold blob”). Northern high latitudes (mainly the Arctic Ocean) warm by more than 6 ℃ 

while surface air temperatures over the Southern Ocean remain unchanged and the warming 

over Antarctica does not exceed 2 ℃. Tropical oceans warm by about 4 ℃ (Figure 15c). 

Surface air warming is significantly reduced in the ssp585-bgc experiment (Figure 15b) 

compared to the esm-ssp585 experiment; the cold blob in the North Atlantic is only 2 ℃ 

colder than the beginning of the simulation, and the air over the Southern Ocean exhibits 

another cold “blob” in the Weddell Sea, but also other regions around Antarctica.  

By the end of the 21st century, surface warming has increased everywhere, although 

the Southern Hemisphere has warmed at a faster rate (Figure 15c). The North Atlantic cold 

spot is still cooling at almost the same rate, however, its geographic location has shifted 

slightly towards the northeast. Southern Hemisphere high latitudes experience now analogous 

warming as their Northern Hemisphere counterparts. Interestingly, in the ssp585-bgc 

experiment, the North Atlantic cold blob is broader and significantly colder than in the esm-

ssp585 experiment, and the Southern Ocean is also cooling. 
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4.4.3 Terrestrial biosphere and ocean CO2 uptake  

Air-to-land and air-to-sea annual mean CO2 flux in the ssp585-bgc and esm-ssp585 

experiments are shown in Figure 14c,d. As the ssp585-bgc experiment experiences only a 

small amount of surface air temperature increase, the air-to-land flux in this experiment is 

higher due to less respiration than in the fully coupled esm-ssp585 experiment (Figure 14c). 

Both experiments have rising trends in both fluxes after 2014 (Figure 14c,d), but warmer 

temperatures in esm-ssp585 lead to lower air-to-land and air-to-sea fluxes than in the ssp585-

bgc experiment, resulting in lower cumulative uptake for esm-ssp585 (Figure 14e,f). For 

land, the rising trend peaks at 2070; thereafter in ssp585-bgc, the trend remains flat, while in 

esm-ssp585 it reverses slightly then rises again at 2100. The air-to-sea CO2 flux peaks higher 

than land at 2080; after the peak, in ssp585-bgc the trend plateaus, whereas in esm-ssp585 it 

reverses slightly. At the end of the simulations, the air-to-land fluxes of the ssp585-bgc and 

esm-ssp585 experiments reach 6.0 GtC/yr and 3.8 GtC/yr, respectively (Figure 14c), and air-

to-sea flux in the ssp585-bgc and esm-ssp585 experiments reach 7.2 GtC/yr and 5.2 GtC/yr, 

respectively, consistent with the esm-ssp585 result at the mean of the CMIP5 models. The 

partitioning of CO2 into the atmosphere, land, and ocean can be seen in Figure 14e,f. In both 

experiments, CO2 remaining in the atmosphere is roughly twice as much as CO2 accounted 

for by the land and ocean combined uptake. The land uptake is noticeably smaller in the esm-

ssp585 experiment in comparison to ssp585-bgc experiment owing to lower air-to-land flux 

throughout the simulation. The esm-ssp585 trends and magnitudes are in accord with the 

behavior of CMIP5 models that do not include a terrestrial nitrogen cycle but have land use 

change, as compared in Friedlingstein et al. (2014). However, the slight rise in the last ~3-5 

years of the GISS ModelE2.1 esm-ssp585 simulated flux is not seen in the CMIP5 models. 

Figure 16 shows the distribution of change in stored carbon; differences between 

2015-2024 mean and 2045-2054 mean are shown in Figure 16a,b, and differences between 

2015-2024 mean and 2091-2100 mean are shown in Figure 16c,d. In the ssp585-bgc 

experiment, most of the globe undergoes a positive change where the productive regions on 

land (e.g., southeast Asia) and North Atlantic Ocean (extending into the Arctic Ocean) show 

the highest increase in stored carbon (Figure 16b,d). The Southern Ocean also shows a 

noticeably large increase in stored carbon (Figure 16b,d). In the esm-ssp585 experiment, the 

extent of high uptake region in the North Atlantic Ocean is markedly smaller compared to the 

ssp585-bgc experiment, and especially in the high latitudes of this region, the increase in 

stored carbon is not different from other parts of the ocean (Figure 16a,c). Changes in carbon 

storage in the Southern Ocean in the esm-ssp585 experiment are similar to those in the 

ssp585-bgc experiment. There are parts of the land (the boreal zone in northern Russia) that 

show net decrease in stored carbon in the ssp585-bgc experiment (Figure 16b,d), and this is 

even more pronounced in the esm-ssp585 experiment (Figure 16a,c). The variabilities in 

change in stored carbon on land can be largely attributed to soil carbon, which increased by 

9.3% from 1567 GtC at the end of the esm-hist experiment to 1714 GtC in the esm-ssp585 

experiment by 2100 (Table B1). Net primary productivity nearly doubles for land by the end 

of the esm-ssp585 experiment (~45 GtC/yr) compared to the esm-hist experiment in 2014 (85 

GtC/yr) (Table B1); since our model configuration releases carbon that would be allocated to 

plant height growth instead as litter to the soil, esm-ssp585 soil respiration in 2100 also 

nearly doubles, due to both warming and more substrate, such that the net increase in soil 

carbon reflects the CO2 fertilization effect. The majority of the globe experiences a net 

increase in stored carbon; however, the northern high latitudes (boreal zone and subarctic) 

losses, i.e., northern Russia and northern North America, show more pronounced and more 

widespread net decrease in stored carbon (Figure 16a,c). These losses are due to increased 
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soil respiration from a shorter frozen season for the soil, with the spring thaw earlier and 

warmer by 2-5°C in May.  

Figure 17 shows the evolution of the components of the carbon budget in the 1850-

2100 period from esm-hist and esm-ssp585 experiments. Though the land CO2 uptake (0.4 

GtC/yr excluding land use change) and ocean CO2 uptake (2.5 GtC/yr) combined accounted 

for about half of airborne CO2 (6.3 GtC/yr) at the end of the historical period (2014), this 

proportion decreases in the SSP8-8.5 scenario. By 2100, the land uptake (4.1 GtC/yr 

excluding land use change) and ocean uptake (5.2 GtC/yr) accounts for about a third of 

airborne CO2 (26.6 GtC/yr). The land and ocean are net sinks, slightly less at the end of the 

historical period compared to the inventory of Friedlingstein et al. (2019), which also has a 

slightly higher fossil fuel emissions estimate than the CMIP6 prescribed emissions. Their 

future increases as net sinks are in accord with the majority of CMIP5 models (Friedlingstein 

et al. 2014). 

 

4.5 Climate biases and future regional climates 

As a way to interpret our simulated climates, we classify the esm-hist and esm-ssp585 

climates here with the Köppen-Geiger system, a well-known, long-developed geographer’s 

collation of the correlation between climate (seasonality of monthly surface temperature and 

precipitation) and land biome types (Köppen, 1884). This system is widely used to assess the 

ecological suitability of climates for vegetation and to predict potential biome changes with 

climate change (e.g. Peel et al., 2007; Poulter et al., 2011; Rawal et al., 2014; Rubel & 

Kottek, 2010; Rubel & Kottek, 2011; Sanderson, 1999). Figure 18 shows the Köppen-Geiger 

classification for observed climate and the emissions-driven experiments. These figures use 

the 30-class scheme of Kottek et al. (2006) and Rubel & Kottek (2011) and color table of 

Beck et al. (2018). Observed climate in Figure 18a uses the 2001-2010 mean surface 

temperature from the Climate Research Unit (CRU TS 3.22; Harris et al. 2014), and the same 

decade mean precipitation from the Global Precipitation Climatology Centre (GPCC v6; 

Schneider et al. 2011).  

As there was negligible difference in Köppen-Geiger classes between the 

concentration-driven historical experiment climate at the end of the period compared to the 

emissions-driven experiment, esm-hist, here we compare only esm-hist to the observed 

climate. The comparison of esm-hist (average of 2005-2014) to the CRU/GPCC observed 

climate shows that GISS ModelE2.1 captures the statistics of surface temperature and 

precipitation that distinguish biomes as classified by Köppen-Geiger. However, there are 

some important biases: 1) GISS ModelE2.1 is too dry in the tropics, particularly the Amazon 

Basin (Kelley et al., 2020), as is a well-known issue for many ESMs (Yin et al., 2012;  

Koutroulis, 2016), but the Köppen-Geiger classification makes this clearly significant for 

vegetation, with insufficient precipitation for Af, equatorial rainforest, and Am, equatorial 

monsoon, and some areas more appropriate for arid hot steppe, BSh, than for forest (in the 

Amazon basin); 2) GISS ModelE2.1 does not quite capture arid cold desert climates (BWk) 

as in central Eurasia and in general produces climates with slightly more precipitation; 3) the 

temperate/boreal transition (Dfa/Dfb) and tundra/subarctic (Dfc) are at lower latitudes in 

Eurasia in the esm-hist experiment, and Alaska is colder (ET instead of Dsa and Dsb), which 

reflect GISS ModelE2.1’s cold bias in higher latitudes; 4) GISS ModelE2.1 does not capture 

the area of Siberia that is classified as Dwb (where there is extensive larch forest), instead 

simulating this as having colder winters (Dwc); 5) ModelE2.1 also does not capture the 

diversity of climate types (snow with dry hot or warm summers, Dsa, Dsb) on the Siberian 

peninsula due to being too cold, and meanwhile it simulates these climates in Central Eurasia 
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where there otherwise should be boreal forest and tundra/subarctic climates (Dfb, Dfc); 6) in 

the esm-hist experiment, Australia is slightly more humid than observed (more arid hot 

steppe, BSh, than arid hot desert, BWh); 7) in the Central-Western U.S., where observed 

climate is classified as arid cold steppe (BSk), as well as in Central Asia (BSk, and also Bwk, 

arid cold desert), GISS ModelE2.1 esm-hist climate simulates these regions as more humid 

types (Dsa, Dsb) or colder (Dfc).    

The comparison between esm-hist and esm-ssp585 experiments (Figure 18b,c) shows 

major changes at both continental and finer regional scales: 1) warming climate shifts the 

temperate/boreal transition (Dfa, Dfb) to higher latitudes, with temperate forest climate 

nearly replacing boreal, and a broad band of Dfa, extending along ~60 °N; northward shift of 

tundra climate (Dfc) nearly eradicates polar (tundra or subarctic) (ET) environments; 2) 

reduction of the precipitation and higher temperatures in the Western U.S. shift the biomes to 

their hotter versions (Dsb to Dsa, and Csb to Csa, due to hotter summer temperature); 3) in 

continental Europe, all biomes shift toward those with hotter summers, and most of Spain 

changes from warm temperate with dry hot summers (Csa) to arid hot steppe (BSh); 4) the 

Tibetan Plateau changes polar tundra (ET) to still dry though warmer (Dwc), but with some 

more humid areas (Dfc); and 5) Alaska warms and Australia dries in the esm-ssp585 

experiment relative to the esm-hist experiment, to be more similar to the 2001-2010 observed 

climate, which implies that they may in reality change commensurate to their shifts relative to 

the esm-hist experiment. 

Some differences in biome class for the observations and experiments are between 

biomes with fine distinctions and climate/biome correlation uncertainties that can be due to 

imperfections in the Köppen-Geiger classification scheme, which is subject to many revisions 

and refinements in the literature (e.g. Cannon, 2012; Guetter & Kutzbach, 1990; Peel et al., 

2007; Poulter et al., 2011; Trewartha, 1968; Trewartha & Horn, 1980; Zscheischler et al., 

2012).  Beck et al. (2018) produced a classification of future climate based on combining 

projections of CMIP5 models for 2071-2100. In their scheme, they changed the threshold 

between temperate (C) and cold (D) climates from 0 ℃ to 3 ℃, and they did not include the 

class As. However, the broad patterns of climate change can be compared to our results. As 

with GISS ModelE2.1’s esm-ssp585 experiment, the CMIP5 models also predict: 1) the 

broad swath of “snow fully humid with hot summer” (Dfa), corresponding to temperate 

broadleaf forests, across ~60 °N, and GISS ModelE2.1 marginalizes boreal needleleaf forest 

climate (Dfb) whereas the CMIP5 models maintain more of this type in its migration 

northward;  2) the warming of Alaska and the Tibetan Plateau; and 3) the dramatic regional 

changes in continental Europe. The CMIP5 models do not predict the warming of Australia 

as in GISS ModelE2.1, and they capture the region of Siberia where our model does not, and 

are on average not as dry-biased in the Amazon as GISS ModelE2.1.   

 

6 Summary and conclusions   

 The performance of the NASA GISS ModelE2.1 Earth System Model (GISSE2.1-G-

CC) in simulating a fully coupled carbon cycle is presented here for the first time, following 

the experimental protocol for C4MIP. The GISS ModelE2.1 carbon cycle incorporated land 

and ocean components coupled interactively to the atmosphere and ice components. In this 

work, we assessed the CMIP6 C4MIP historical simulations, in both concentration-driven 

and emissions-driven modes, against observation-based data; described three variations of the 

concentration-driven 1%/yr increasing atmospheric CO2 concentration simulations that 

differed in the degree of coupling of the carbon cycle to radiation (1pctCO2, 1pctCO2-bgc, 
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1pctCO2-rad); and described the SSP5-8.5 fully coupled emissions-driven and 

biogeochemically coupled concentration-driven scenario experiments.  

 The historical simulations demonstrated that, within the uncertainties, our model was 

largely able to reproduce the observed atmospheric CO2 concentration and land and ocean 

fluxes. The identified departures from observed atmospheric CO2 concentration were tied to 

differences seen in the fluxes. The behavior of land carbon uptake had a stronger impact than 

the ocean uptake in influencing the agreement of modeled versus observed atmospheric CO2 

concentration. In the first part of the simulation through the mid 1900’s, erroneously 

represented land use change as well as fixed 2004 LAI (higher than during earlier in the 

century) led to higher land carbon uptake and hence lower modeled atmospheric CO2 

concentration than the observed. In the 2000’s, the major discrepancy was attributed to low 

land uptake of carbon in the northern high latitudes and in the Amazon in the summer, due to 

GISS ModelE2.1 biases in simulated climate. CO2 fertilization as well as warming-enhanced 

photosynthetic capacity overall lead toward convergence to observed atmospheric CO2 by the 

end of the historical period, and a trend of land as a continued land sink at the end of the 

historical period. Though the land played a larger role in influencing the variability of carbon 

uptake, the ocean uptake mostly dominated total carbon uptake, particularly after mid 1900’s.  

The biogeochemically coupled historical simulations, where radiation is not coupled 

to the climate and thus has no climate change due to radiative forcing, showed that more 

carbon is taken up than in the fully coupled historical simulations. The ocean uptake in 

emission-driven simulation, however, experienced an equal amount of carbon uptake as the 

fully coupled case. The land is more sensitive to climate change, leading to a difference of 

about 40 GtC more accumulated at the end of the simulation whereas the difference for the 

ocean was at most 10 GtC. There were hardly any differences observed in the spatial 

distribution of fluxes compared to those of fully coupled cases. Our experimental framework 

with fixed observed 2004 LAI serves as a type of control experiment, as it enabled 

straightforward interpretation of why simulated fluxes and atmospheric CO2 concentration 

depart from observations without being subject to the complexity of, for example, poorly 

simulated phenology or uncertain simulated distributions of natural vegetation types. This 

enabled us to separate the roles of land cover change and LAI, to identify deficiencies in our 

model implementation of land cover change, and to discern an insufficient CO2 fertilization 

effect that can be improved with future model simulations that include prognostic growth and 

globally changing LAI. We are not yet able to quantify where lack of fire could be a 

significant aspect of our model’s departure from observed atmospheric CO2 concentration. 

The SSP5-8.5 scenario experiments indicated that the land and ocean uptake increases 

rapidly at the beginning of the simulations due to the high rate of atmospheric CO2 

concentration increase, however, the uptake rate decreased over time. By the end of the 

simulation in the fully coupled esm-ssp585 experiment, the proportion of CO2 remaining in 

the atmosphere was larger than that at the end of the esm-hist experiment where it accounted 

for roughly 3 times the combined land (excluding land use change) and ocean uptake. Total 

ocean uptake at the end of the esm-ssp585 experiment was nearly 3 times the total land 

uptake (including land use change). Most regions of the globe in the esm-ssp585 experiment 

showed an increase in stored carbon, however, notable regions of net negative change were 

identified (e.g., North Atlantic Ocean, northern Russia, northern North America). The GISS 

ModelE2.1 results for the esm-ssp585 experiment fall squarely within the range of trends 

simulated by the CMIP5 models that do not include a terrestrial nitrogen cycle and that 

include land cover change (Friedlingstein et al, 2014).   
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According to Köppen-Geiger climate classifications, the predicted climate at the end 

of the esm-ssp585 experiment reproduces climate changes like those predicted by CMIP5 

models (Beck et al. 2018), notably the northward migration of temperate deciduous forest 

climate to a temperate/boreal boundary at ~60 degrees °N, spreading along this latitude 

across Eurasia. The GISS ModelE2.1 esm-ssp595 projected climate also reproduces the 

several changes in climate types in continental Europe to drier and warmer types. Major 

climate type changes occur largely for temperate to subarctic climates. That the boreal zone 

and subarctic specifically show net carbon losses in the esm-ssp585 scenario whereas the rest 

of the world increases as a net sink is due to greater soil respiration from a shorter frozen 

season and warmer and more widespread thawed period for soils. 

The 1%/yr increasing atmospheric CO2 concentration simulations demonstrated the 

behavior of carbon uptake by the different components of our model in an idealized scenario 

where CO2 is the only forcing. The biogeochemically coupled simulation experienced the 

greatest positive change in storage, and the radiatively coupled simulation experienced a net 

loss of carbon from the land and ocean reservoirs. As with the historical case, the land was 

more sensitive to climate change than the ocean. Tropical land biosphere and northern 

Atlantic Ocean were among the key regions identified to have had the largest change in 

stored carbon.  

Carbon-concentration (𝛽) and carbon-climate (𝛾) feedback parameters were computed 

from the three variations of 1%/yr CO2 simulations. The ocean had larger magnitude of 𝛽 

parameter while the land had larger magnitude of 𝛾 parameter. The total carbon-

concentration feedback dominated the total carbon-climate feedback, however, the magnitude 

of the rate of increase decreased for the carbon-concentration feedback while that for the 

carbon-climate feedback did not. The carbon-concentration feedback was almost completely 

positive throughout the globe, however, the carbon-climate feedback contained some regions 

with positive values while the majority of the globe was negatively valued. Compared to 

CMIP5 model ensemble, the feedback parameters from our model were consistent to within 

one standard deviation except the ocean 𝛾 parameter which was larger in magnitude.  

Future improvements in how GISS ModelE simulates the carbon cycle will certainly 

be seen with prescription of more accurate land cover change and land use state transitions, as 

well as prognostic LAI and growth that can capture global trends like the greening in the 

2000’s and fire dynamics. The land model’s geographically height-varying vegetation 

structure, biophysics and soil biogeochemistry otherwise perform well in providing terrestrial 

biomass and soil carbon stocks and fluxes, but require better boundary conditions in historical 

land cover and LAI, so implementation of the Hurtt et al. (2011) land use state-transitions is 

planned. Prognostic phenology is a weakness of land models, and may introduce other errors, 

as seen in most C4MIP models (Friedlingstein et al. 2006), but sensitivities of interannual 

variability and growth trends with climate would be possible to explore. Whether the addition 

of nitrogen and disturbance dynamics can lend significant improvement compared to the role 

of land use change remains to be seen, but these additional dynamics are known to reduce 

model sensitivity to CO2 fertilization and climate forcings (Friedlingstein et al. 2014). 

Meanwhile, the northern high latitude cold bias of the climate model emerges as significant 

in impacting the simulated carbon cycle on land, but it has yet to be explained. GISS 

ModelE2.1 also simulates arid or semi-arid regions in the western U.S. and central Eurasia as 

slightly more humid climate types for both present and future climate. Uncovering the causes 

of these model climate biases will be important to improving predictions of the carbon cycle, 

as the Köppen-Geiger classifications show they are significantly different enough to impact 

the type of biome that can be supported by the simulated climate.  
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Future development in the ModelE ocean carbon cycle will seek to address current 

limitations that may give rise to biases in ocean biogeochemical properties. First, alkalinity 

sources and sinks are based on integrated primary production (alkalinity sink) and an 

assumed calcium carbonate dissolution rate that decreases exponentially with depth 

(alkalinity source) and does not depend on the calcium carbonate saturation state of seawater. 

In addition, riverine inflow does not contribute to alkalinity. Second, while the model 

includes N2 fixation, denitrification is not explicitly represented in the model. Rather, nitrate 

is lost in each grid cell in proportion to the concentration of nitrate in the grid cell and the 

vertical integral of N2 fixation. While this treatment forces the nitrogen budget to be closed, it 

can also result in unrealistic spatial variability in nitrate concentration. Lerner et al. (2020) 

found that in the GISS ModelE2.1 historical simulations, nitrate is generally underestimated 

in the surface ocean compared to observations, which may partially be a consequence of our 

treatment of denitrification, though it may also stem from a lack of iron limitation in observed 

high nutrient low chlorophyll areas such as the Southern Ocean. Therefore, future model 

development will focus on the inclusion of a prognostic PIC tracer, which will improve ocean 

model’s representation of alkalinity by allowing for a relaxation of the current strong 

dependence of alkalinity on net primary production, and by having a dissolution rate that 

depends on the saturation state. It will also focus on the inclusion of the explicit 

representation of denitrification, nitrification, and remineralization that depend on oxygen 

concentration. This will allow for an improved representation of the ocean’s carbon and 

nitrogen cycles, which should improve the model’s distribution of biomass, productivity, 

DIC, and nutrients.  

 Besides the enhancements in the dynamical levels and details of the land and ocean 

models described above, additional coupled carbon cycle processes to be developed in GISS 

ModelE2.1 include natural fire dynamics and biomass burning, and the effect of ash from 

land on ocean nutrient inputs and on aerosol and dust feedbacks to radiation. Such additions 

will couple both disturbance and nutrient dynamics, as well as add further coupling between 

land, ocean, and atmospheric chemistry.  

Following this study’s introduction of the NASA GISS ESM ModelE as a contributor 

to C4MIP, the GISS carbon cycle group will continue to conduct further analyses of these 

and additional experiments in more coupled model intercomparison projects. Since all models 

have structural uncertainty and also currently no modeling groups are able to cover the full 

complexity of the Earth system’s carbon cycle, the unique aspects of the NASA GISS ESM’s 

implementation, and ongoing developments, should further contribute to understanding of 

carbon cycle-climate feedbacks and impacts of different human greenhouse gas emissions 

trajectories on dynamics of the system.   

 

Appendix A 

Atmospheric CO2 mass/concentration ratio 

 The atmospheric CO2 mass to concentration conversion factor, 𝑚, used in Section 

4.3.1 is derived as follows: the product of mass of atmosphere (5.1 × 1018 kg) and the 

quotient of molecular weights of carbon (12.01 g/mol) and air (28.93 g/mol) gives  5.1 ×
1018 × (12.01/28.93) ≅ 2.117 × 1018 kg. Volume mixing ratio of CO2 in parts per million 

(ppm) is 1 × 10−6/ppm which then gives 𝑚 = 2.117 × 1018 × 1 × 10−6 = 2.117 × 1012 

kgC/ppm, or approximately 2.12 GtC/ppm. 
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Appendix B 

The tables in this section summarize the C4MIP data request variables for tier-1 and a 

subset of tier-2, as described in Jones et al. (2016) for 9 experiments discussed in this study 

and the preindustrial control experiment. Updates since Jones et al. (2016) include the carbon 

flux to the atmosphere from land use change.  

  

Appendix C   

Köppen-Geiger classes 
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C4MIP hist-bgc: https://doi.org/10.22033/esgf/cmip6.7087  
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Table 1. Summary of all experiments conducted by GISS ModelE2.1 for C4MIP of CMIP6. 
Experiments used in this study are indicated in bold letters. Dashed lines in the category 
column indicate experiments not defined in the protocols, but still conducted by our group. 
Biogeochemically coupled experiments have land and ocean carbon cycle components that 
experience changing levels of CO2, but there is no radiative warming due to emissions. 
Similarly, in a radiatively coupled experiment, the climate is changing due to radiative effects 
of increased emissions, but the land and ocean components experience constant levels of 
CO2 in the atmosphere similar to the preindustrial era. Direct climate change due to rising 
surface air temperatures is only present in the full and the radiatively coupled experiments.  

Category Experiment ID Driving Type Period Coupling 

DECK 

piControl Concentration 1850 Full* 

esm-piControl Emission 1850–2100 Full 

1pctCO2 Concentration 1850–2000 Full* 

Historical 

historical Concentration 1850–2015 Full* 

esm-hist Emission 1850–2015 Full 

Tier-1 

1pctCO2-bgc Concentration 1850–2000 Biogeochemical 

esm-ssp585 Emission 2015–2100 Full 

Tier-2 

1pctCO2-rad Concentration 1850–2000 Radiative 

hist-bgc Concentration 1850–2015 Biogeochemical 

ssp585-bgc Concentration 2015–2100 Biogeochemical 

---------- esm-hist-bgc Emission 1850–2015 Biogeochemical 

---------- hist-rad Concentration 1850–2015 Radiative 

*Concentration driven runs are not “fully coupled” strictly speaking, since the land/ocean carbon sinks do not feed back to 
climate. 
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Table B1.  Summary of tier-1 land carbon budgets for the GISS ModelE2.1 C4MIP 
experiments.  A subset of tier-2 carbon pools for land are also listed.  

  piControl* historical 

Year 2014 

hist-bgc 

Year 

2014 

1pctCO2 

Year 140 

1pctCO2

-bgc 

Year 140 

1pctCO2-

rad 

Year 140 

esm-hist 

Year 2014 

esm-hist-

bgc 

Year 140 

esm-ssp585 

Year 2100 

ssp585-bgc 

Year 2100 

              

Fluxes 

(GtC/year) 

GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year 

Gross primary 

production 

(GPP) 

99.7  116.7 114.5  202.5 192.1 102.3 117.6 114.2 198.9 185.7 

Autotrophic 

respiration 

(RA) 

65.9  72.9 69.4  118.4 105.2 72.5 72.9 69.9 113.5 100.3 

Net primary 

productivity 

(NPP) 

 33.8 43.8 45.1  84.0 86.9 29.8 44.7 44.3 85.4 85.4 

Heterotrophic 

respiration 

(RH) 

33.8  44.1 42.7  79.9 80.1 31.8 44.3 43.1 81.3 79.0 

           

Fire natural 

emission to 

atmosphere 

(fFireNet) 

Not 

simulated 

 Not 

simulated 

Not 

simulated 

 Not 

simulated 

 Not 

simulated 

 Not 

simulated 

 Not 

simulated 

 Not 

simulated 

Not 

simulated 

Not 

simulated 

Net flux from 

land use change 

to atmosphere 

(cProduct) 

NA < 10-6 < 10-6  NA NA NA < 10-6 < 10-6 0.4 0.4 

Net flux to 

atmosphere 

(netAtmosLand

CO2flux) 

0.0  0.3 -2.4 - 4.1 -6.8 1.9 -0.4 -1.2 -3.8 -6.0 

              

Stocks (GtC) GtC GtC GtC GtC GtC GtC GtC GtC GtC GtC 

Organic  

 cVeg total 

   cLeaf 

   cStem 

   cRoot 

   cOther 

cSoil 

 

571.1 

7.6 

341.9 

25.6 

196.0 

1550.3 

 

562.7 

6.8 

310.3 

23.3 

222.3 

1566.7 

 

563.0 

6.8 

309.9 

23.3 

223.0 

1596.6 

 

585.8 

7.6  

341.3 

25.5 

219.0 

1894.3 

 

591 

7.6 

341.6 

25.6 

216.2 

2113.7 

 

567.3 

7.6 

342.3 

25.6 

191.8 

1362.3 

 

562.7 

6.8 

310.6 

23.3 

222.0 

1566.7 

 

563.2 

6.8 

310.5 

23.3 

222.6 

1591.8 

 

572.6 

6.8 

295.0 

23.0 

250.1 

1713.9 

 

572.0 

6.8 

295.12 

23.1 

249.4 

1837.3 
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Inorganic Not 

simulated 

Not 

simulated 

Not 

simulated 

 Not 

simulated 

Not 

simulated 

Not 

simulated 

Not 

simulated 

Not 

simulated 

Not 

simulated 

Not 

simulated 

*The piControl value is the average of the last 30 years of the spin-up, as initial conditions for other experiments. 

 

Table B2.  Summary of tier-1 ocean carbon budgets for the GISS ModelE2.1 C4MIP 
experiments.  

  piControl* historical 

Year 2014 

hist-bgc 

Year 

2014 

1pctCO2 

Year 140 

1pctCO2-

bgc 

Year 140 

1pctCO2-

rad 

Year 140 

esm-hist 

Year 2014 

esm-hist-

bgc 

Year 2014 

esm-ssp585 

Year 2100 

ssp585-bgc 

Year 2100 

             

Fluxes 

(GtC/year) 

GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year GtC/year 

Riverflux of 

carbon 

0.64 0.67 0.63 0.71 0.68 0.66 0.69 0.64 0.74 0.70 

Air-to-sea flux 

of carbon 

0.10 1.96 2.64 5.02 6.55 -1.18 2.54 2.50 5.17 7.20 

Grazing 12.95 12.52 14.49 11.43 15.53 11.18 12.44 12.84 9.28 12.07 

Phytoplankton 

growth 

21.63 21.07 23.42 19.24 24.76 18.96 20.88 21.47 16.46 20.27 

Phytoplankton + 

zooplankton 

respiration 

2.95 2.92 3.21 2.76 3.37 2.73 2.89 2.95 2.37 2.86 

Remin. of 

organic carbon 

18.70 18.53 20.11 16.49 21.13 16.35 18.39 19.05 14.23 16.86 

Ocean net 

primary 

production  

19.5 19.0 21.1 17.3 21.8 17.1 18.8 19.3 14.82 18.24 

Carbon export 3.82 3.76 4.12 3.25 4.26 3.23 3.77 3.91 2.83 3.41 

Calcite flux 0.44 0.43 0.48 0.39 0.50 0.39 0.23 0.44 0.34 0.42 

              

Stocks (GtC) GtC GtC GtC GtC GtC GtC GtC GtC GtC GtC 

Phytoplankton 0.46 0.42 0.48 0.34 0.47 0.34 0.40 0.47 0.31 0.37 

Zooplankton 0.11 0.10 0.13 0.08 0.12 0.08 0.10 0.12 0.07 0.09 

Detritus organic 

carbon 

0.089 0.081 0.102 0.057 0.097 0.057 0.078 0.098 0.049 0.065 

Dissolved 

organic carbon 

45.2 44.1 46.6 37.4 46.9 37.2 43.7 45.8 34.3 39.2 
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Dissolved 

inorganic carbon 

35258.4 35395.0 35405.7 35860.9 35981.7 35206.1 35389.9 35385.9 35811.1 35854.7 

*The piControl value is the average of the last 30 years of the spin-up, as initial conditions for other experiments.  

 

Table B3.  Summary of tier-1 ocean nitrate, ammonium, iron, silicate, and alkalinity budgets 
for the GISS ModelE2.1 C4MIP experiments. 

  piControl* historical 

Year 

2014 

hist-bgc 

Year 

2014 

1pctCO2 

Year 140 

1pctCO2-

bgc 

Year 140 

1pctCO2-

rad 

Year 140 

esm-hist 

Year 2014 

esm-hist-

bgc 

Year 2014 

esm-ssp585  

Year 2100 

ssp585-bgc  

Year 2100 

              

Stocks (Gt) Gt Gt Gt Gt Gt Gt Gt Gt Gt Gt 

Nitrate 421.7 447.3 447.0 459.5 456.0 459.4 447.4 446.9 420.5 419.0 

Ammonium 6.34 6.74 6.74 6.95 6.88 6.95 6.75 6.74 6.34 6.30 

Iron  1.06 1.06 1.06 1.05 1.06 1.05 1.06 1.06 1.05 1.05 

Silicate  3012.4 3030.6 3029.5 3046.2 3036.3 3046.2 3031.2 3029.4 3021.9 3017.9 

Alkalinity 3211.00 3210.58 3210.59 3210.37 3210.44 3210.37 3210.58 3210.60 3211.01 3211.03 

*The piControl value is the average of the last 30 years of the spin-up, as initial conditions for other experiments. 

 

Table B4.  Total carbon stocks 

 Total Carbon 

(GtC) 

piControl* historical 

Year 

2014 

hist-bgc 

Year 

2014 

1pctCO2 

Year 140 

1pctCO2-

bgc 

Year 140 

1pctCO2-

rad 

Year 140 

esm-hist 

Year 2014 

esm-hist-

bgc 

Year 

2014 

esm-ssp585 

Year 2100 

ssp585-bgc 

year 2100 

Ocean 35304.3 35440.0 35453.0 36029.4 35898.9 35243.9 35434.3 35432.5 35845.8 35894.5 

Land 2121.4 2129.4 2159.6 2487.9 2704.6 1919.6 2129.5 2155.0 2286.9 2409.6 

Atmosphere 603.2 842.4 842.4 2428.0 2428.5 603.1 858.1 833.4 2458.9 2407.76 

*The piControl value is the average of the last 30 years of the spin-up, as initial conditions for other experiments. 
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Table C1.  Köppen-Geiger biome/climate classes, with color scheme from http://koeppen-
geiger.vu-wien.ac.at/ 

 Class Description 

1 Af Equatorial rainforest 

2 Am Equatorial monsoon 

3 As Equatorial savannah with dry summer 

4 Aw Equatorial savannah with dry winter 

5 BWk Arid desert cold 

6 BWh Arid desert hot 

7 BSk Arid steppe cold  

8 BSh Arid steppe hot 

9 Csa Warm temperate with dry hot summer 

10 Csb Warm temperate with dry warm summer 

11 Csc Warm temperate with dry cool summer and cold winter 

12 Cwa Warm temperate with dry winter and hot summer 

13 Cwb Warm temperate with dry winter and warm summer 

14 Cwc Warm temperate with dry cold winter and cool summer 

15 Cfa Warm temperate fully humid with hot summer 

16 Cfb Warm temperate fully humid with warm summer 

17 Cfc Warm temperate fully humid with cool summer and cold winter 

18 Dsa Snow with dry hot summer 

19 Dsb Snow with dry warm summer 

20 Dsc Snow with dry cool summer and cold winter 

21 Dsd  Snow with dry summer extremely continental 

22 Dwa Snow with dry winter and hot summer 

23 Dwb Snow with dry winter and warm summer 

24 Dwc Snow with dry cold winter and cool summer 

25 Dwd Snow with dry winter extremely continental 

26 Dfa Snow fully humid with hot summer 

27 Dfb Snow fully humid with warm summer 

28 Dfc Snow fully humid with cool summer and cold winter 

29 Dfd Snow fully humid extremely continental 

30 EF Polar frost 

31 ET Polar tundra 
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Figure 1. (a) Global land use change area prescribed in GISS ModelE2.1 for 1850-2014 (GISS-
E2.1 CMIP5 crops+pastr incl. range), compared to the CMIP6 Land Use Harmonization v.2 

(LUHv2) components of land use change. (b) Ent Terrestrial Biosphere Model plant functional 
types prescribed with CMIP5 historical cover change in GISS ModelE2.1. In the CMIP5 data 

set, rangeland was included in pasture, while in CMIP6 they are separated. Trend differences 
due to including rangeland increase after 1900, with a steep rise over 1950-1960. Legend 

abbreviations are crops (the sum of 5 crop types in the LUH or LUH2), pastr (pasture), range 
(rangeland), primf (primary forest), secdf (secondary forest), urban (urban). 
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Figure 2. a) Yearly global mean atmospheric CO2 concentration (in ppm) computed 
prognostically by the model in the emissions-driven experiment (esm-hist) compared to 

CMIP6 forcing atmospheric CO2 data (Meinshausen et al., 2017) used in the concentration-
driven historical experiment. b) Annual global mean simulated surface air temperature 

anomalies from the historical (hist) experiment, esm-hist experiment, and the GISTEMP v4 
observation (GISTEMP Team, 2020; Lenssen et al., 2019). Anomaly is defined as the deviation 

from the mean of 1951-1980 period which are 13.96 °C and 13.88 °C for the historical and 
esm-hist experiments, respectively. The GISTEMP record is from 1880 to 2019 and is based 
on combined land-surface air and sea-surface water data. The red shaded areas indicate 

annual uncertainties at 95% confidence interval. 
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Figure 3. Distribution of 2010-2014 mean, column-averaged atmospheric CO2 concentration 
differences in a) the GISS ModelE2.1 emissions-driven experiment (esm-hist) and compared 
to the same 5 year mean of b) CarbonTracker CT2017 atmospheric CO2 mole fraction data 

(Peters et al., 2007) and c) GOSAT global atmospheric CO2 gas concentration data 
(JAXA/NIES/MOE). Values shown are anomalies from the global mean for each of the 

distributions (400, 390, and 390 ppm for esm-hist, CarbonTracker, and GOSAT, respectively). 
For CarbonTracker, monthly global CO2 mole fraction netCDF files were downloaded. For 

GOSAT, level L4B annual global CO2 distribution netCDF files (each containing monthly data) 
were downloaded. The labels on the left indicate seasonal means as (d,e,f,) DJF: December, 
January, February; (g,h,i) MAM: March, April, May; (j,k,l) JJA: June, July, August; and (m,n,o) 
SON: September, October, November. ANN indicates annual mean. The model, CT2017, and 

GOSAT resolutions are 2° lat × 2.5° lon, 2° lat × 3° lon, and 2.5° lat × 2.5° lon, respectively, 
and they were all interpolated into a common grid 2° lat × 2.5° lon. 
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Figure 4. (a) Yearly global mean terrestrial biosphere CO2 flux and (b) ocean CO2 flux 
(positive into surface) in historical and esm-hist experiments. Red lines are global mean CO2 

flux estimates from CarbonTracker CT2017 data. The red shaded areas indicate the root-
mean-square sum of one standard deviation uncertainties from CT2017 data. (c) Cumulative 
CO2 uptake by the land and (d) ocean in historical and esm-hist experiments. Negative values 

indicate outgassing. 
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Figure 5. Comparison of the components of the total air-to-land flux for the esm-hist 
experiment. Positive flux is into the land surface. The difference between 𝑛𝑝𝑝 and 𝑟ℎ equals 
the flux in the absence of the carbon flux in products of land use change. The terms 𝑛𝑝𝑝 −
𝑟ℎ and 𝑐𝑃𝑟𝑜𝑑𝑢𝑐𝑡 have similar values in opposite signs which leads to relatively small uptake 

of carbon by the land by the end of simulation. The concentration-driven historical 
experiment has very similar trends. 
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Figure 6. Boxplot summarizing the 2000-2014 mean (a) terrestrial biosphere and (b) ocean 
CO2 flux (positive into surface) from the historical and esm-hist experiments and 

CarbonTracker CT2017 data (Peters et al., 2007). Boxes and middle lines inside the boxes 
indicate the interquartile range (IQR; 25th to 75th percentile) and median, respectively. 

Whiskers and points indicate ±1.5 × IQR and outliers, respectively. Land in the South polar (S. 
polar) region is covered with ice and has no flux. The ranges of latitudes used to define 

regions are North polar (N. polar): +60 to +90, N. mid. lat.: +30 to +60, N. subtropics: +15 to 
+30, Tropics: -15 to +15, S. subtropics: -15 to -30, S. mid. lat.: -30 to -60, S. polar: -60 to -90. 
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Figure 7. Distribution of 2000-2014 mean terrestrial biosphere and ocean CO2 flux (positive 
into surface) in (a) historical and (b) esm-hist simulations compared to the same 15 year 

mean of (c) CarbonTracker CT2017 data (Peters et al., 2007). Distribution of seasonal 
terrestrial biosphere flux are shown. The labels on the left indicate seasonal means as (d,e,f) 

DJF: December, January, February; (g,h,i) MAM: March, April, May; (j,k,l) JJA: June, July, 
August; and (m,n,o) SON: September, October, November. ANN indicates annual mean (note 

different colorbar scale). The model ocean grid has been converted to 2° lat × 2.5° lon grid 
consistent with the land. CT2017 data has also been converted to 2° lat × 2.5° lon. For land, 

high latitudes in CT2017 data have especially high uncertainties. The coefficient of 
determination (r2), bias, and standard error of the fluxes from historical and esm-hist 

experiments relative to fluxes from CarbonTracker are shown in Supplementary Information 
Table S1. 
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Figure 8. (a) Yearly global mean surface temperature comparing the fully and 
biogeochemically coupled versions of concentration-driven historical simulations. (b) Yearly 

global mean surface temperature comparing the fully and biogeochemically coupled versions 
of emissions-driven esm-hist simulations. (c,d) Yearly global mean land and ocean 
cumulative uptake comparing the fully and biogeochemically coupled versions of 

concentration-driven historical simulations. (e,f) Yearly global mean land and ocean 
cumulative uptake comparing the fully and biogeochemically coupled versions of emissions-

driven esm-hist simulations. 
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Figure 9. The distribution of differences in 2000-2014 mean air-to-land and air-to-sea flux 
between the fully and biogeochemically coupled historical simulations. (a) Difference in air-
to-land and air-to-sea annual CO2 flux between the historical and hist-bgc experiments. (b) 
Difference in air-to-land and air-to sea annual CO2 flux between esm-hist and esm-hist-bgc 

experiments. (c,e,g,i) Distribution of differences in 2000-2014 seasonal air-to-land flux 
between the historical and hist-bgc experiments. (d,f,h,j) Distribution of differences in 2000-

2014 seasonal air-to-land flux between the esm-hist and esm-hist-bgc experiments. The 
labels on the left indicate seasonal means as (c,d) DJF: December, January, February; (e,f) 
MAM: March, April, May; (g,h) JJA: June, July, August; and (i,j) SON: September, October, 

November. ANN indicates annual mean (note different colorbar scale). The model ocean grid 
has been converted to 2° lat × 2.5° lon grid consistent with the land. Positive flux is defined 

as CO2 into the land or ocean surface. 
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Figure 10. Selected diagnostics from the three variations of 1pctCO2 experiments. Yearly 
global means of: (a) air-to-land CO2 flux, (b) air-to-sea CO2 flux, (c) cumulative land CO2 

uptake, (d) cumulative ocean CO2 uptake, (e) land GPP, (f) land NPP, (g) total soil carbon, 
and (h) surface air temperature. Flux convention is defined as positive into the land or the 

ocean surface. 
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Figure 11. Spatial distribution of change in stored land and ocean carbon from year 0 to year 
140 (time to quadruple CO2) of the three 1pctCO2 simulations: (a) fully coupled 1%/yr 

concentration-driven experiment, (b) biogeochemically coupled 1%/yr concentration-driven 
experiment, and (c) radiatively coupled 1%/yr concentration-driven experiment. The ocean 

flux has been interpolated onto 2° lat × 2.5° lon grid consistent with the land. 
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Figure 12. The yearly global feedback parameters (a) the carbon-climate feedback 𝛾 
computed with 𝐶𝑂𝑈 − 𝐵𝐺𝐶 method (equation 5), (b) the carbon-climate feedback 𝛾 

computed with the 𝑅𝐴𝐷 method (equation 6), and, (c) the carbon-concentration feedback, 𝛽 
computed with equation 4. Units of 𝛽 and 𝛾 terms are GtC/ppm and GtC/K, respectively. (d) 
Quantification, in fractions, of the land carbon-concentration, ocean carbon-concentration, 

land carbon-climate, and ocean carbon-climate feedback strengths along with the 
atmospheric carbon burden for each year derived from the 𝛽 and 𝛾 feedback parameters. At 

any given year, the sum of the magnitudes of the five components equals one. Colors 
indicate the different carbon reservoirs. Hash and dot patterns indicate the total carbon-

concentration and carbon-climate feedback contributions, respectively. 𝛾 in (d) is computed 
using the 𝐶𝑂𝑈 − 𝐵𝐺𝐶 method. 
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Figure 13. Distribution of (a) carbon-concentration (𝛽) and (b) carbon-climate (𝛾) feedback 
parameters per unit area at the end of the 1pctCO2 simulation computed using method from 

equations 4 and 5 for each grid point with global mean 𝛥𝐶𝐴
𝐵𝐺𝐶  and 𝛥𝑇𝐶𝑂𝑈. Ocean grid has 

been converted to 2° lat × 2.5° lon grid consistent with the land. 
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Figure 14. Combined historical and SSP5-8.5 (esm-ssp585 and ssp585-bgc experiments) 
yearly global mean trajectories of (a) the atmospheric CO2 concentration, (b) surface air 

temperature, (c) air-to-land flux, (d) air-to-sea flux, and cumulative (e)  land and (f) ocean 
uptake. Left and right of the gray dashed line corresponds to the historical periods (historical 

and esm-hist experiments) and future periods (ssp585-bgc and esm-ssp585 experiments), 
respectively. Positive flux is defined as flux into the land/ocean surface. In e and f, 

atmospheric storage of carbon is also shown for comparison. 
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Figure 15. Distribution of change in surface air temperature for (a,c) esm-ssp585 and (b,d) 
ssp585-bgc experiments. (a,b) Difference between 2015-2024 mean and 2045-2054 mean. 

(c,d) Difference between 2015-2024 mean and 2091-2100 mean. 
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Figure 16. Distribution of change in stored land and ocean carbon for (a,c) esm-ssp585 and 
(b,d) ssp585-bgc experiments. (a,b) Difference between 2015-2024 mean and 2045-2054 

mean. (c,d) Difference between 2015-2024 mean and 2091-2100 mean. The ocean grid has 
been interpolated onto 2° lat × 2.5° lon grid consistent with the land. 
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Figure 17. Components of the carbon budget in terms of CO2 flux for the 1850-2100 period 
from esm-hist and esm-ssp585 experiments. Positive flux is defined as CO2 emitted from 

fossil fuel/industry and land use change, and negative flux is defined as partitioning of CO2 
into the atmosphere, land, and ocean reservoirs. Land component excludes land use change. 

Left and right of the gray dashed line corresponds to the 2014 boundary between the 
historical periods (esm-hist experiment) and future periods (esm-ssp585 experiment), 

respectively. 
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Figure 18.  Köppen-Geiger classification of climates for land biomes for climates from: (a) 
surface temperature observations from the Climate Research Unit TS-3.22 (CRU TS-3.22) and 

precipitation from the Global Precipitation Climatology Centre (GPCC); (b) esm-hist 2005-
2014 GISS ModelE2.1 simulation; and (c) esm-ssp585 2091-2100 GISS ModelE2.1 simulation. 

A detailed legend to Köppen-Geiger categories is provided in Appendix C. 

 

 


