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This research examined the feasibility of incorporating an acoustic metric into the opti-
mization of an aircraft trajectory to reduce the noise experienced by an observer. The method
investigated a perturbed path of an unmanned aerial systemwith specified boundary conditions
on position and velocity while maintaining a nominal flight speed. An acoustic model based
on Gutin’s work was developed to estimate propeller noise as a function of flight parameters,
propulsion characteristics, and spatial location. A trajectory was then optimized a priori to
reduce the noise experienced by an observer. Multiple simulations were performed and results
showed that integrating an acoustic metric into the path planning process could be used to
reduce the noise impact on an observer with no perturbation to the nominal flight speed.

I. Nomenclature
Acronyms
BC Boundary Condition
BPF Blade Passage Frequency
DEP Distributed Electric Propulsion
GL-10 Greased Lightning-10
OASPL Overall Sound Pressure Level
PNM Propeller Noise Model
RMS Root-Mean-Square
SPL Sound Pressure Level
UAM Urban Air Mobility
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
VTOL Vertical Takeoff and Landing
Greek Symbols
λ ∈ R4, Lagrangian multiplier vector
χ Heading angle (deg)
µ Constraint multiplier function
ν Flight velocity constraint (m/s)
Ω Propeller speed (rad/s)
ϑ Directivity angle between observer and axis of propeller rotation (rad)
Roman Symbols
C(x, u, t) Constraint function
F(λ0) Summation of squared final state errors
H(x, u, λ, t) Hamiltonian
J Performance index
Jqn(x) Bessel function of the first kind of order qn and argument x
L(u, t) Lagrangian
Lp Sound pressure level (dB re. 2 × 10−5 Pa)
M Mach number of the aircraft
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Me Mach number at an effective propeller radius
Mt Mach number of the propeller tip
N Number of vehicle states
Np Number of aircraft propellers
Pdisc = T/πR2

t , Pressure loading on the propeller disc (Pa)
Q Propeller torque (m N)
Rn Real vector space consisting of an n-sized tuple
Re Effective propeller radius, ranges from 0.7Rt to 0.8Rt (m)
Rt Propeller tip radius (m)
S(x, t) Vehicle state constraint function
T Propeller thrust (N)
c Speed of sound in air (m/s)
f (x, u, t) System dynamics
n Number of propeller blades
p0 = 2 × 10−5, Reference sound pressure (Pa)
prms Root-mean-square sound pressure at an observer (Pa)
q Harmonic index
r Distance from center of propeller rotation to observer (m)
ro/a Position vector of the acoustic observer relative to aircraft (m)
u ∈ R2, Control vector
va Aircraft velocity vector (m/s)
x = kR sin ϑ, Bessel function argument
x ∈ R4, State vector

II. Introduction

Urban air mobility (UAM) could provide a solution to traffic issues in heavily congested cities and surrounding
areas. To support the UAM market, a class of vehicles has been proposed that use rotors or a combination of rotors

and propellers such as a distributed electric propulsion (DEP) system. As these vehicles will most likely operate near
populated areas away from airports, it is important to develop technologies to mitigate the noise impact on communities.

Previous work by the authors showed that the flight control system could be augmented to modify flight speed to
reduce the sound pressure level (SPL) of a vehicle without perturbing the nominal flight path [1]. Augmenting the flight
control system in this way could create a rectilinear but variable speed trajectory such as the one shown in Fig. 1 starting
at point A and ending at point B.

The objective of the current work is to modify the trajectory of a vehicle to reduce the SPL at an observer without
perturbing the nominal flight speed. This work is a step toward developing a vehicle that considers its noise impact on
the surrounding environment during a mission, i.e., an acoustically aware vehicle. An example of this mission is shown
in Fig. 2, where a trajectory is presented to avoid acoustically sensitive areas; within one of these acoustically sensitive
areas exists an acoustic observer. This trajectory avoids direct overflight of an acoustic observer and achieves certain
departure and arrival conditions at points A and B. As sound pressure decays with distance from a noise source, the
fundamental approach in this work modifies the trajectory to increase the distance between the source and acoustic
observer to satisfy an SPL constraint. This approach could complement or provide an alternative solution to active noise
cancellation or passive noise reduction to reduce observer noise.

There have been a few efforts to optimize a trajectory while considering an acoustic constraint. Recently, Ackerman
and Gregory [2] developed an a priori trajectory generation framework based on Hermite interpolation using Bézier
polynomials that incorporates an acoustic constraint. This method formulated the path, dynamic, and acoustic constraints
as Bézier curves [3]. Their approach avoided discretization of the trajectory and constraint functions, which guaranteed
feasibility of the optimized trajectory. The acoustic model used overall sound pressure level (OASPL) as the acoustic
metric and scaled with propeller speed, distance to observer, and number of propeller blades. Ackerman and Gregory’s
method was computationally efficient and enabled near real-time path planning, but applied only to the acoustic model
considered in Ref. [2], in which the acoustic constraint could be formulated as a rational polynomial. This formulation
allowed the acoustic constraint to be represented as a Bézier curve, which was necessary for their optimization framework.

In 2019, Greenwood [4] proposed a method for rotorcraft trajectory optimization suitable for dynamic replanning,
inspired by similar research in robotics, unmanned aerial vehicles (UAVs), and autonomous ground vehicles [5–7].
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Fig. 1 Rectilinear Path with Variable Speed over Urban Community.

This method used a combinatorial optimization technique to determine the path of a rotorcraft around acoustically
sensitive areas according to a defined acoustic cost. First, a large database of rotorcraft maneuver segments was
generated and an acoustic cost for each segment was calculated using a semiempirical noise model. Then, individual
maneuver segments were combined based on the total acoustic cost to form an optimal flight path. This method was
computationally cheap, enabling near real-time dynamic replanning, but the optimality of the solution was constrained
by the discretized nature of the combined maneuver segments. There is potential for reduced noise at acoustically
sensitive areas with a continuous method that does not constrain the vehicle state at discrete locations, although likely at
a higher computational cost.

Falck et al. [8] described an initial study in generating quadrotor trajectories using direct gradient-based optimization
techniques. Their work coupled a six degree of freedom quadrotor model with an acoustic monopole model of constant
sound power to track the SPL perceived by a ground observer during a flyover. In doing this, they created trajectories
that did not violate limits placed on the SPL perceived by an observer. A potential limitation of this method is that the
acoustic source is a low fidelity acoustic model that is not dependent on the vehicle state.

Where previous methods have used direct optimization or Bézier polynomials, this current work uses functional
optimization, without prescribing the functional characteristics of the trajectory, to identify functions of time that
minimize a performance index [9]. These functions of time constitute the vehicle trajectory and control inputs without
assumptions of the type or class of curves that the aircraft will follow. The trajectory generation algorithm is a two-step
process, in which the first step uses indirect optimization to calculate a specified-time trajectory with control effort as a
performance index. Indirect optimization involves formulating the problem as a two-point boundary value problem,
which is then solved to calculate a set of initial conditions that result in the desired final boundary conditions (BCs) [9].
The second step of the trajectory generation algorithm consists of an iterative procedure that modifies the previously
calculated optimal trajectory using the flight duration as a degree of freedom to satisfy an acoustic constraint. This
algorithm requires the equations that dictate the optimal conditions and results in a specified-time trajectory that is
optimal with respect to control effort while constrained by an acoustic target. The result of the trajectory generation
algorithm will be an optimal path, generated a priori, for a path-following controller to use during flight.

The paper is organized in the following sections. Section III describes the Propeller Noise Model developed for this
work. Section IV presents the trajectory optimization algorithm. Section V provides simulations performed to test the
proposed algorithm and corresponding results. Conclusions and opportunities for future work are presented in §VI.

III. Propeller Noise Model Development
A sound metric and a noise model are necessary to incorporate noise into the trajectory optimization algorithm. In

this section, the vehicle of interest, the sound metric, the Propeller Noise Model (PNM), and implementation of the
PNM will be described.
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Fig. 2 Curvilinear Path with Constant Speed over Urban Community.

A. Vehicle
The vehicle chosen for the present work is the Greased Lightning-10 (GL-10), developed and built at the NASA

Langley Research Center [10, 11]. The GL-10 is a ten propeller, 50% scale DEP vehicle used to prototype flight controls
for vertical takeoff and landing (VTOL) aircraft. A nonlinear dynamics model developed from wind tunnel testing
[12], a flight control system, and a path-following controller [13] were available for this aircraft and were previously
implemented in Simulink [14]. The GL-10 uses three-bladed, 16.0×8.0 inch folding propellers and the propeller
arrangement on the GL-10 has been previously described by Pascioni and Rizzi [15].

B. Propeller Noise Model
As the vehicle model for this work is propeller driven, an estimation of propeller noise experienced by an observer is

required. Gutin was the first to estimate propeller noise based on the steady thrust and torque loads on a propeller; his
relationship will be used for a simple estimation of propeller noise [16]. Although limited in complexity, the Gutin
equation is a good candidate for a low fidelity model as it has been shown to provide good results for the first few
harmonics of the blade passage frequency (BPF) [17]. Additionally, the Gutin equation is an analytical model that can
easily be implemented in simulation.

According to Gutin [16], this model should only be used for stationary noise estimation without forward flight;
however, literature suggests that it can be acceptable for low speed forward flight when the vehicle speed is small
compared to the speed of sound [18]. This simple model was deemed acceptable due to the low propeller tip speeds in
this work [19, 20]. Sources of noise not considered in the Gutin formulation are: steady thickness noise, arising from
the displaced air, steady nonlinear quadrupole terms, arising from inviscid flow near the surface of the propeller blade,
and unsteady noise due to angle of attack or broadband noise [20, 21].

Gutin pressure constitutes the PNM for the trajectory simulation, however, the thrust and torque terms have been
substituted out in favor of a formula independent of the torque. Thrust and torque are not readily available from the
aircraft simulation, but rather will be derived from known quantities. Instead of using the relationship given by Ref. [16],
an engineering form based on Theodorsen and Regier [18] is used, which yields the root-mean-square (RMS) pressure
as

prms(Pdisc, r, Mt, M, Me, ϑ) =
Pdisc

2
√

2
Rt

r
Mt

(
M
M2

e

− cos ϑ
)

qnJqn (qnMe sin ϑ) , (1)

with the propeller disc pressure given as

Pdisc =
T
πR2

t

, (2)
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Fig. 3 Gutin Model Propeller Geometry.∗

in which T is the propeller thrust, Rt is the propeller tip
radius, r is the observer distance, Mt is the propeller tip
Mach number, M is the vehicle Mach number, Me is the
Mach number of the effective propeller radius (which is
0.75Rt ), ϑ is the directivity angle, q is the harmonic index,
and n is the number of propeller blades. Figure 3 shows
that the propeller rotates about the x-axis at a rate of Ω, r
lies at an angle ϑ away from the x-axis,† and θ lies in the
azimuthal plane, in which positive θ is in the direction of
the propeller rotation.

The directivity angle is calculated using the dot prod-
uct between the observer position vector and the aircraft
velocity vector,

ϑ = arccos
va · ro/a

|va |
��ro/a�� , (3)

in which va is the aircraft velocity vector expressed in the inertial frame, given by

va =
[
Ûx(t) Ûy(t) Ûz(t)

]
, (4)

and is in line with the propeller’s axis of rotation. The relative position of the observer to the aircraft is ro/a and taking
the norm of ro/a yields the distance to the observer from the center of the propeller, r .

To provide a conservative estimate of the observer SPL, uniform directivity is assumed using the angle at which
maximum SPL occurs. This modification simplified the PNM and reduced the trajectory computation time. Figure 4
shows a polar plot of the SPL as a function of the directivity angle, calculated using Eqs. (1) and (6), experienced by an
observer that is 2 m away from the propeller of the GL-10 flying at 30 m/s. As Gutin does not account for broadband
noise, Eqs. (1) and (6) estimate 0 dB at 0◦ and 180◦ in the figure; this is acceptable because the observer is not in line
with the propeller axis [16, 19]. Observe that the maximum SPL occurs at 0.6π rad (108◦ in Fig. 4) from the propeller
axis. Substituting the maximum SPL angle into Eq. (1) yields

p∗rms(Pdisc, r, Mt, M, Me) =
Pdisc

2
√

2
Rt

r
Mt

(
M
M2

e

− cos 0.6π
)

qnJqn (qnMe sin 0.6π) . (5)

A detailed comparison between the variable directivity and uniform directivity PNMs can be found in Ref. [23].
The acoustic model provides an estimate of the observer SPL as a result of one GL-10 propeller, given by
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Fig. 4 Sound Pressure Level vs. Directivity Angle
Between the Propeller Axis and the Observer.

Lp = 20 log10

(
p∗rms

p0

)
, (6)

in which Lp is the observer SPL and p0 is the reference
pressure. As the propellers are presumed to act as incoher-
ent noise sources, a term is simply added to account for
the additional GL-10 propellers. Thus, the new acoustic
model is

Lp = 20 log10

(
p∗rms

p0

)
+ 10 log10

(
Np

)
, (7)

in which Np is the number of propellers on the aircraft.
Multiplying the sound pressure by the number of pro-
pellers reduced the computation time and simplified the
PNM. For the simulations performed in this current work,
the propeller noise model comprising Eqs. (5) and (7) was used.

∗Figure modified from Zorumski and Weir [22].
†The observer position, ro/a , does not necessarily lie in the x-y plane.

5



IV. Optimal Trajectory Development
In this section, a method to modify the aircraft trajectory to satisfy an acoustic constraint at an observer without

perturbing the nominal flight velocity is described. After an overview of the path generation process is presented,
equations for optimality will be developed for a specified-time trajectory. Finally, incorporation of an acoustic constraint
into the optimization process will be presented.

A. Overview

Boundary
Conditions

Calculate
Minimum
Flight Time

Initial
Flight Time

Decrease
Flight Time

Optimize
Trajectory

Increase
Flight Time

Observer
SPL

Stop
Algorithm

> Target SPL

= Target SPL

< Target SPL

Fig. 5 Path Planning Flow Chart.

Aflowchart of the path generation process is presented
in Fig. 5. This process contains: (i) an optimization
routine to determine a specified-time trajectory between
starting and ending points subject to BCs and (ii) an
iterative algorithm to modify the flight time based on an
SPL constraint. There exists a unique flight path for a
specified flight time, constrained by the system dynamics
( Ûx), that results in an optimal trajectory. For the current
work, a trajectory was considered optimal if the control
effort (the performance index) was minimized. Initial
flight time and BCs are supplied to the optimization
routine. Increasing the flight time forces the trajectory to
deviate from a minimum-time trajectory, which curves the
flight path away from the observer. This curved flight path
is what provides the capability to avoid an acoustically
sensitive area. Since flight time is a degree of freedom, the
iterative algorithm increases the flight time if the observer
SPL is too high; conversely, the algorithm decreases the
flight time if the observer SPL is too low. The iterative
algorithm ends when the desired observer SPL constraint
is satisfied with a defined tolerance or an iteration limit is
reached.

B. Equations for Optimality
The indirect optimization method used in the current work is based on Bryson and Ho [9] and Pontryagin et al. [24].

The dynamic equations for optimality are called the state and costate (or adjoint) equations, and have been previously
derived in the literature for a one-dimensional case [25]. Additionally necessary for the current work is a constraint
equation, used to constrain the flight velocity to a nominal value. A scalar auxiliary function known as the Hamiltonian
binds the performance index to the state, costate, and constraint equations. The Hamiltonian, originally constructed
for Pontryagin’s maximum principle, is necessary to derive the costate equations [9, 24]. In this subsection, the state,
costate, and constraint equations for a two-dimensional vehicle point mass model will be presented, which, when
combined with a method to determine the appropriate initial conditions, will be used to calculate the optimal trajectory.

1. Dynamic System
As the altitude is assumed constant, the vehicle position is described by horizontal coordinates x and y. The vehicle

state can be represented by

x =
[

x(t) y(t) Ûx(t) Ûy(t)
]T
=

[
x1 x2 x3 x4

]T
, (8)

in which x ∈ R4 is a state vector, (x1, x2) are the vehicle positions, and (x3, x4) are the flight velocities. The control
vector input to the system, u ∈ R2, can be represented by the acceleration of the vehicle as

u =
[
Üx(t) Üy(t)

]T
=

[
u1 u2

]T
. (9)

The system dynamics are described by the state equation, which comprises the following linear differential equations

Ûx = f (x, u, t) = Ax + Bu , (10)
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for the time period t0 ≤ t ≤ t f . The system is subject to BCs on initial and final states, x0 and x f , respectively, and a
speed constraint of

x3
2 + x4

2 = ν2, (11)

in which ν is the specified flight speed.

2. Performance Index
To create an optimal trajectory, it is desired to find the control inputs, u, as functions of time that minimize the

equation

J =
∫ t f

t0

L(u, t) dt , (12)

in which J is the scalar performance index from initial to final time and L is the Lagrangian subject to the BCs and
state constraints of the system. The desired objective is to minimize the control effort of the aircraft, which means the
Lagrangian of this system is

L(u, t) =
1
2
uT u , (13)

resulting in the objective function

J =
1
2

∫ t f

t0

(u2
1 + u2

2) dt . (14)

3. State, Costate, and Constraint Equations
To derive the state, costate, and constraint equations for the optimal control problem presented in §IV.B.1 and

§IV.B.2, a function known as the Hamiltonian will be used. The Hamiltonian, a scalar value, is defined as

H(x, u, λ, t) = L(u, t) + λT f (x, u, t) + µC(x, u, t) , (15)

in which λ ∈ R4 is the Lagrangian multiplier vector, defined as

λ =
[
λ1(t) λ2(t) λ3(t) λ4(t)

]T
, (16)

µ is the constraint multiplier function and C is the constraint function on the state and control variables. In this problem,
only a constraint on the state variables exists, which, from Eq. (11), is given by

S(x, t) = x3
2 + x4

2 − ν2 , (17)

in which ν is the flight velocity constraint of 30 m/s. The constraint function, C(x, u, t), is related to Eq. (17) by‡

C(x, u, t) =
dS
dt
=
∂S
∂t
+
∂S
∂x

T

f (x, u, t) . (18)

As the state constraint is constant, the total time derivative of the state constraint in Eq. (18) is set to zero, from which
the final constraint equation can be derived:

0 = x3u1 + x4u2 . (19)

From the constraint equation and the Hamiltonian, respectively, Eqs. (19) and (15), the following equations of optimality
can be derived:

µ = − x3λ3+x4λ4
x32+x42

u1 = −λ3 − x3µ

u2 = −λ4 − x4µ

Ûx1 = x3

Ûx2 = x4

Ûx3 = u1

Ûx4 = u2

Ûλ1 = 0
Ûλ2 = 0
Ûλ3 = −λ1 − Ûx3µ

Ûλ4 = −λ2 − Ûx4µ .

(20)

Note that when µ equals zero, these governing equations collapse to the equations for optimality without a velocity
constraint. A full derivation of the constraint equation and equations for optimality, Eqs. (19) and (20), can be found in
Ref. [23].

‡Section 3.3 of Bryson and Ho [9].
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4. Solving for the Optimal Trajectory
To calculate the initial optimal trajectory, first a conservative estimate of required flight time based on the distance

between the initial and final BCs and aircraft velocity is calculated. Next, the initial Lagrangian multipliers required to
achieve the desired final BCs are needed; to calculate these initial values, the following nonlinear least squares problem
is posed:

F (λ0) =

N∑
i=1



xi(t f ) − xi, f


2
. (21)

A function of the initial Lagrangian multipliers, F(λ0), is based on the output of a Runge-Kutta integration, in which
λ0 = λ(t0) is the initial Lagrangian multiplier vector, xi(t f ) is the simulated final ith state of the aircraft, xi, f is the
desired final ith state, and N is the number of states. A Levenburg-Marquardt algorithm is used to solve this system for
the initial Lagrangian multipliers that result in the desired final BCs. Note that the final state BC error in Eq. (21) can be
reduced precisely to zero. After solving for the initial Lagrangian multipliers, the dynamic equations in Eq. (20) are
integrated with time to generate the optimal trajectory. After generating this trajectory that satisfies all appropriate BCs,
the flight time is reduced and the process is repeated until a trajectory is generated that takes the minimum amount of
time. The resulting minimum-time optimal trajectory describes the vehicle states and control inputs as functions of time.
Determination of this trajectory is fully contained within the “calculate minimum flight time” block (shown in Fig. 5)
and passes the minimum time to the optimize trajectory block .

C. Acoustic Constraint Incorporation
Once the initial optimal trajectory is determined, the maximum observer SPL during this flight is computed and

used as a baseline value. Then, a desired SPL reduction at the observer is set. If the SPL reduction is not satisfied, then
the flight duration is increased and the optimization is repeated. Increasing the flight duration forces the flight trajectory
to curve away from the acoustic observer with a corresponding reduction in SPL at the observer. Note that the trajectory
optimization is independent of the acoustic state, and that incorporating the acoustic constraint is an additional step, as
shown in Fig. 5. If the SPL reduction is satisfied, then the flight duration is reduced to see if a shorter flight trajectory
can be found that satisfies the SPL target. If the specified time is so short that no solution can be found, then the time is
increased. Adaptive gain logic is included to reduce the change in flight duration if a smaller change in SPL is necessary.
This iterative process continues until either the desired SPL reduction is met with a tolerance of 0.25 dB or 25 iterations
are reached.

V. Simulation Results
This section will present the results of simulations performed using the algorithm developed to optimize a trajectory

using the PNM. First, the nominal trajectory is described. Then, results of simulations to reduce observer SPL from the
baseline value will be presented, analyzed, and compared.

A. Nominal Trajectory
To analyze the effectiveness of incorporating the PNM into the trajectory optimization algorithm, it is necessary to

first define a baseline flight segment from which all simulations will be performed. The initial and final BCs for the
flight segment are

x0 = [ 0 0 ν cos χ0 ν sin χ0 ]
T (m, m/s) , (22)

x f = [ 1000 200 ν cos χf ν sin χf ]T (m, m/s) , (23)

in which ν is the nominal flight speed of 30 m/s, χ0 is the initial heading angle of 0◦, and χf is the final heading angle
of 0◦. An acoustic observer is placed at (500, 100) m on the ground, as shown in Fig. 6. To analyze the acoustic effects
on the ground plane, the area shown in Fig. 6 is divided into a grid of 1500 evenly spaced points. The PNM is used to
calculate the SPL at every time step and grid point on the ground plane based on the aircraft flying at a constant altitude
of 30 m. The flight duration for a minimum-time and minimum control effort trajectory was 34 s, which corresponds to
the trajectory shown in Fig. 6. The ground contour plot in Fig. 6 shows the maximum SPL at every grid point during the
flight segment and has a color bar range of 25 dB (blue) to 52 dB (red). Note that the trajectory depends on the BCs
and the flight duration may change for other initial and final states. The trajectory shown in Fig. 6 will henceforth be
referred to as the nominal trajectory.
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Fig. 6 Nominal Mininum-Time Trajectory with Ground Contour Plot of the Maximum SPL.

B. Simulations
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Fig. 7 Trajectories with Various Maximum Sound
Pressure Levels at an Observer.

Results of the nominal trajectory and five
noise reduction simulations are presented in
Table 1; respective trajectories are plotted in
Fig. 7. These results include the desired max-
imum observer SPL reduction (∆Lmax, desired),
calculated maximum SPL (Lmax), maximum
SPL reduction achieved (∆Lmax), flight dura-
tion (t f ), and change in flight duration from
the nominal (∆t f ).

The nominal trajectory corresponds to the
first row of Table 1 and the blue trajectory in
Fig. 7, in which the vehicle flew directly over
the acoustic observer. This trajectory resulted
in a maximum SPL at the observer of 51 dB
and a flight duration of 34 s. As the desired
maximum SPL was reduced in subsequent
simulations, the iterative algorithm increased
the flight time, thereby forcing the trajectory
to curve away from the observer and decreasing the maximum observer SPL. This trend is apparent in Table 1; as the
flight times in columns 4 and 5 increase, the maximum observer SPL decreases for most of the simulations presented.

Results for a 15 dB reduction in maximum observer SPL are shown in the 4th row of Table 1 and correspond to the
red trajectory in Fig. 7. To satisfy the noise reduction goal, the iterative algorithm increased the flight time by 2.63 s,
creating a trajectory that curved away from the observer. This curved trajectory resulted in the maximum SPL contour
shown in Fig. 8.

The results for a 20 dB reduction in maximum observer SPL are presented in the 5th row of Table 1 and the purple
trajectory in Fig. 7. The actual reduction in observer SPL was the desired 20 dB with an increased flight duration of
13 s. Observe in Fig. 7 that the trajectory curved much further away from the acoustic observer when compared to the 5,
10, and 15 dB reduction trajectories. The ground contour plot (see Fig. 9) suggests that the maximum observer SPL was
a result of the vehicle flying closer to the acoustic observer to satisfy the final BCs. Evidence to support this suggestion
is presented below.

The trajectory generation process worked well for the previous cases, but failed to satisfy the BCs and the acoustic
constraint when attempting to reduce the maximum observer SPL by 25 dB, which corresponds to the 6th row of Table 1
and the brown trajectory in Fig. 7. The actual maximum SPL reduction in this simulation was 20 dB and the flight
duration increased by 33 s. Observe in Fig. 10 that the maximum SPL at the acoustic observer was due to the vehicle
operating near the point (800, 0)m to satisfy the final BCs. The optimization algorithm attempted to calculate a trajectory

9



Fig. 8 Optimal Trajectory and Maximum SPL Contour for Desired Reduction of 15 dB at the Observer.

Table 1 Summary of Attempts to ReduceObserver Noise.

∆Lmax, desired Lmax ∆Lmax t f ∆t f
(dB re. p0) (dB re. p0) (dB re. p0) (sec) (sec)

0 51.42 0 34.05 0
-5 46.47 -4.95 34.49 0.44
-10 41.41 -10.01 35.02 0.97
-15 36.47 -14.95 36.68 2.63
-20 31.63 -19.79 47.49 13.44
-25 31.44 -19.98 67.49 33.44

that would satisfy the acoustic constraint, but the pro-
cess could not find a solution within the 25-iteration
limit described in §IV.C. As a result, the process failed
to generate a trajectory that satisfied both the time con-
straint and the final BCs. The trajectory solution at the
25th iteration, shown in Fig. 10, extended past the final
point on the flight path. Increasing the 25-iteration
limit only increased the flight duration, which was
demonstrated in Ref. [23]. In this scenario, curving the
trajectory away from the acoustic observer provided no
further acoustic benefit and only resulted in increased
flight time.

VI. Conclusions and Future Work
This paper investigated incorporating acoustics into the path planning process with the objective of reducing observer

noise during a flyby event. To meet this objective, a simple Propeller Noise Model was combined with a two-dimensional
aircraft dynamics model to study trajectory optimization with an acoustic constraint on the ground. The generated
trajectories minimized control effort and flight time to destination with a nominal flight speed. Six simulations were
studied; these included a nominal, minimum-time flight path, plus five trajectories with increasing levels of noise
reduction at a ground observer. The method successfully generated trajectories that satisfied the acoustic constraint for
four of the five cases. In the fifth case, the optimization process could not generate a trajectory that satisfied both the
acoustic constraint and the boundary conditions on the flight path.

The approach presented in this paper had limitations, some of which could be addressed in future work. It is difficult
to incorporate an acoustic model directly into the cost function of the optimization framework developed here for a
number of reasons. First, indirect optimization requires derivation of the differential equations that govern the change in
both Lagrangian multipliers and state variables throughout the simulation. Second, a derivation of the state, costate, and
constraint equations is required for each acoustic model used due to the differentiation of the cost function and acoustic
model with respect to time and states. Finally, this issue is compounded as more complicated (and potentially more
realistic) acoustic models are used. The present approach did not incorporate the acoustic model in the performance
index, but rather included it in an iterative algorithm outside of the trajectory optimization routine.

While there are certain limitations to the work presented, this investigation demonstrated the capability that acoustics
can be considered during the path planning process when calculating an optimized trajectory that minimizes control
effort and time to destination for constant speed flight.

Future work will include incorporating higher fidelity acoustic models into the trajectory optimization framework.
Additionally, direct optimization could be used to embed the acoustic model directly into the optimal control theory.
This approach may allow for a more direct trajectory while satisfying acoustic constraints, thus reducing flight time.
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Fig. 9 Optimal Trajectory and Maximum SPL Contour for Desired Reduction of 20 dB at the Observer.
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