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Abstract 28 

29 

Estimates of air pollution mortality in sub-Saharan Africa are limited by a lack of surface observations 30 

of fine particulate matter (PM2.5). Despite being large metropolises, Kinshasa, Democratic Republic31 

of the Congo (DRC), population 14.3 million, and Brazzaville, Republic of the Congo (ROC), 32 

* *Corresponding author. Tel: 1-845-365-8194

Email address: danielmw@ldeo.columbia.edu

mailto:danielmw@ldeo.columbia.edu


ACCEPTED M
ANUSC

RIP
T

 2 

population 2.4 million, have no reference air pollution monitors at the time of writing. Recently, a 33 

few reference monitors have been deployed in other parts of sub-Saharan Africa, including Kampala, 34 

Uganda. A low-cost PurpleAir PM2.5 monitor was collocated next to the Kampala US Embassy BAM-35 

1020 (Met One Beta Attenuation Monitor) starting in August 2019. Raw PurpleAir data are strongly 36 

correlated with the BAM (r2 = 0.88), but have a mean absolute error of approximately 14 μg m-3. Two 37 

calibration models, multiple linear regression and a random forest approach, decrease mean absolute 38 

error (MAE) from 14.3 μg m-3 to 3.4 µg m-3 or less and improve the the r2 from 0.88 to 0.96. Given 39 

the similarity in climate and emissions in Kampala, we apply the collocated field correction factors 40 

to four PurpleAir sensors in Kinshasa, DRC and one in neighboring Brazzaville, ROC deployed 41 

beginning April 2018. Annual average PM2.5 for 2019 in Kinshasa is estimated at 43.5 µg m-3, more 42 

than 4 times higher than WHO Interim Target 1 of 10 µg m-3. Surface PM2.5 and aerosol optical depth 43 

were each about 40% lower during the 2020 COVID19 lockdown period compared to the same time 44 

period in 2019, which cannot be explained by changes in meteorology or wildfire emissions alone. 45 

Our results highlight the need for clean air solutions implementation in the Congo.  46 

 47 

Keywords: low-cost sensors; particulate matter; air quality; Africa 48 

 49 

INTRODUCTION 50 

 51 

 Ambient air pollution is a major global public health crisis that causes an estimated 4.9 million 52 

premature deaths per year around the world. Air pollution is the fifth leading risk factor for all 53 

mortality (Health Effects Institute, 2019), and on average reduces life span by 20 months worldwide, 54 

rivaling the global impact of cigarette smoking. According to one air quality modeling study, air 55 

pollution may cause at least an estimated 780,000 premature deaths annually in Africa (Bauer et al., 56 

2019), and a significant number of diseases (comorbidities) that are known to be worsened by chronic 57 
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exposure to air pollution, like asthma, lung cancer, and chronic obstructive pulmonary disease 58 

(Burnett et al., 2018). However, sparse air pollution monitoring imparts high uncertainty to estimates 59 

of exposure and impact. Most of these ambient air pollution deaths come from PM2.5, or particulate 60 

mass concentrations for particles with diameter less than 2.5 µm.  61 

There is currently no publicly available PM2.5 monitoring in the city of Kinshasa, Democratic 62 

Republic of Congo or Brazzaville, Republic of Congo, either as regulatory monitors or citizen-63 

deployed low-cost sensors. Therefore, it is currently difficult to know the level of exposure and the 64 

potential health impacts of air pollution in Kinshasa and Brazzaville, an alarming gap in a pair of 65 

capital megacities containing more than 16 million people and experiencing rapid population growth. 66 

To address the lack of data in both cities, we deployed and calibrated a small network of 5 low-cost 67 

air quality sensors starting in 2018.   68 

Almost no prior published work has considered PM2.5 or air quality in Kinshasa or Brazzaville 69 

to this point. Mbelambela et al. (2017) used a portable sensor to calculate personal PM2.5, NO2, and 70 

SO2 exposure in a cohort of 517 subjects, mostly bus drivers. Data were only collected between April 71 

20 and May 14 of 2015 and are more representative of personal exposure rather than ambient 72 

concentrations. The authors reported PM2.5 exposure over the 3-week period ranging from 64 to 129 73 

µg m-3. The only other air quality study in the peer-reviewed literature in either city was a study of 74 

trace metals conducted in 1990 (Lobo et al., 1990), before the Democratic Republic of the Congo was 75 

known as such, and has limited relevance to present-day exposures. No studies on air quality in 76 

neighboring Brazzaville were found in the literature. Additionally, to our knowledge, there are no 77 

national ambient air quality standards in either country.  78 

Low-cost sensors (LCS) have the potential to improve air quality data coverage throughout 79 

the world, especially in resource-limited areas (Amegah, 2018). For LCS to provide high quality data, 80 
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understanding local conditions is vital. Calibration factors and sensor technical performance vary 81 

strongly with conditions such as temperature, relative humidity, particle size distribution, and particle 82 

loading (Hagan and Kroll, 2020; Levy Zamora et al., 2019; Tryner et al., 2020). Other factors such as 83 

sensor aging can also influence sensor performance and have been studied in both a laboratory and 84 

field setting (Malings et al., 2019; Tryner et al., 2020). Careful co-location, or side-by-side placement 85 

of LCS with reference monitors is an essential step to getting accurate data out of LCS. Several recent 86 

studies have performed either a field calibration or a laboratory calibration for a variety of different 87 

sensors in a variety of different environmental conditions, paving the way for additional studies in 88 

diverse environments (Hagan and Kroll, 2020; Holstius et al., 2014; Jayaratne et al., 2018; Jiao et al., 89 

2016; Johnson et al., 2016; Kelly et al., 2017; Tryner et al., 2020, 2019). However, to our knowledge, 90 

published LCS co-location and performance evaluation studies within sub-Saharan Africa are limited 91 

(R Subramanian, 2020). 92 

Here we present the first ever multi-year, field-calibrated ambient PM2.5 dataset in Kinshasa 93 

and Brazzaville. We first build a multiple linear regression model based on a collocation of sensors 94 

and reference  (Federal Equivalence Method, FEM)  PM2.5 monitors in Kampala, Uganda and develop 95 

a correction factor for low-cost sensors. We then apply the correction to our network in Kinshasa and 96 

Brazzaville. We analyze PM2.5 on monthly, weekly, daily, and hourly timescales. We interpret the 97 

data in the context of changing meteorology and changing human activity coinciding with COVID19-98 

related stay-at-home orders. Finally, we assess the air quality picture in Kinshasa as seen from satellite 99 

remote sensing.  100 

 101 

METHODS 102 

 103 

Description of PurpleAir low-cost sensors 104 
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 105 

We deploy 5 PurpleAir PA-II-SD low-cost PM2.5 devices (www.purpleair.com) in the 106 

Kinshasa-Brazzaville area and one PurpleAir device in Kampala for calibration purposes. PurpleAir 107 

uses dual Plantower PMS 5003 optical sensors to estimate PM2.5 mass concentrations and a Bosch 108 

BME280 sensor to estimate temperature, relative humidity, and pressure. Data are transmitted via 109 

wireless connectivity in real-time and recorded to an on-board 16GB microSD card. All PurpleAir 110 

data is available online on their website. The devices measure sensor readings in six size bins ranging 111 

from 300 nm to 10 µm at approximately a 60 second interval. A proprietary algorithm converts raw 112 

sensor measurements to PM1, PM2.5, and PM10 mass using assumptions about particle shape and 113 

density. We use the “CF=ATM” data field as provided by PurpleAir, which is actually the higher 114 

“CF=1” data field on account of mislabeled columns by PurpleAir. The CF=1 data has not been 115 

transformed nonlinearly and is a better input into regression models. PurpleAir PM2.5 is known to 116 

strongly correlate (r > 0.9) with reference grade monitors but are subject to biases at high relative 117 

humidity in particular (Jayaratne et al., 2018; Magi et al., 2020; Malings et al., 2019; Tryner et al., 118 

2020). Sensitivity to relative humidity has also been identified in other low-cost air pollution 119 

monitoring devices (Di Antonio et al., 2018; Hagan and Kroll, 2020; He et al., 2020; Jayaratne et al., 120 

2018; Kelleher et al., 2018). PA-II sensors cost approximately $250 USD per unit which are about 121 

100 times cheaper than reference PM2.5 monitors, making them attractive for multi-sensor networks. 122 

Their use, however, requires careful field calibration in order to achieve high quality data. Malings et 123 

al. (2019) developed a multiple linear regression-based calibration method which will be utilized in 124 

the following sections. 125 

 126 

Sampling locations and periods 127 

 128 

Kampala 129 

http://www.purpleair.com/
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 130 

 A PurpleAir was collocated at the US Embassy in Kampala, located at Plot 1577 Ggaba Road, 131 

about 3 kilometers from the city center, 0.301268 N latitude and 32.591711 E longitude. Sampling 132 

began in September 2019 and continues through the present. Also located at the US Embassy is a 133 

MetOne Beta Attenuation Monitor (BAM) 1020, which provides a calibration point for the PurpleAir. 134 

Data collection of PM2.5 with the BAM-1020 has been ongoing at the US Embassy since January 135 

2017 (https://www.airnow.gov/international/us-embassies-and-consulates/, last accessed 26 August 136 

2020). We use the 2019 September through February overlapping dataset with the BAM-1020 and 137 

PurpleAir for our calibration (see the Field Calibration Section of Methods).  138 

 139 

Kinshasa and Brazzaville 140 

 141 

 Four PurpleAir sensors were deployed throughout Kinshasa with a fifth in Brazzaville. 142 

Starting in March 2018 and continuing through present, a device was located at the US Embassy in 143 

Kinshasa at 310 Avenue des Aviateurs, latitude 4.3002 S and longitude 15.3138 E. In November of 144 

2019, sensors were added at L’université pédagogique nationale (UPN) located on Route de Matadi, 145 

latitude 4.4039 S and longitude 15.2572 E, and L’Ecole Régionale Postuniversitaire d’Aménagement 146 

et de Gestion Intégrés des Forêts et Territoires tropicaux (ERAIFT), latitude 4.4103 S and 15.3065 E. 147 

A fourth sensor was located in a residential area in the Kintambo area of Kinshasa at the Belle Vue 148 

Villas (abbrieviated CBV), latitude 4.3278 S and longitude 15.2722 E, starting in November 2019. 149 

Finally, a fifth sensor was located across the Congo River in Brazzaville, Republic of Congo, at the 150 

US Embassy in Brazzaville at latitude 4.2751 S and longitude 15.2561 E, starting in February 2020. 151 

A map of all sites is shown in Fig. 1.  152 

 153 

Field calibration 154 

 155 

https://www.airnow.gov/international/us-embassies-and-consulates/
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Multiple Linear Regression (MLR) 156 

 157 

We use both a multiple linear regression and a random forest approach for bias-correcting the 158 

PurpleAir data towards the reference monitor in Kampala. The collocation of the PurpleAir and the 159 

FEM monitor took place between September 2019 and March 2020. A randomly selected 75% of 160 

data during that time period is used to build the multiple linear regression model, and the remaining 161 

25% is used for validation. This model was developed using the base R statistics package. The 162 

multiple linear regression approach follows a similar methodology as in Malings et al. (2019) in which 163 

daily-averaged raw PurpleAir PM2.5, relative humidity, and temperature are used as explanatory 164 

variables to predict corrected PM2.5 concentration:  165 

 166 

PM2.5 = 0+ 1×purpleairPM2.5 + 2×T(°C) + 3×RH(%)      (1)  167 

 168 

The multiple linear regression model was evaluated based on coefficients of determination (r2) and 169 

Mean Absolute Error (MAE) defined as: 170 

𝑀𝐴𝐸 =  
∑ |𝑃𝑀𝑖

𝑟𝑒𝑓
−𝑃𝑀𝑖

𝐿𝐶𝑆|𝑖=𝑁
𝑖=1

𝑁
    (2) 171 

 172 

where PM refers to PM2.5 (in µg m-3), “ref” is the BAM-1020 reference monitor, “LCS” refers to the 173 

low-cost sensor data, N is total number of observations, and i is the timeseries variable. Since the 174 

MLR and RF methods result in similar correlation and mean bias improvements when the same 175 

averaging time periods are used and the MLR approach is more transparent (see Results and 176 

Discussion), we present further calibrated PM2.5 results based on MLR. Results obtained using the 177 

RF approach are not substantially different so they are presented in the Supplementary Information. 178 

The results of the MLR model correction are shown results subsection “Kampala co-location 179 

analysis”.  180 
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 181 

Satellite data 182 

 183 

We use remote sensing data from the NASA Aqua and Terra satellites, which contain the 184 

Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS views the Earth surface over the 185 

Congo region once per day with a daily overpass time around 12:30pm. We specifically use the 186 

Aerosol Optical Depth (AOD) at 550 nm wavelength using the Multi-Angle Implementation of 187 

Atmospheric Correction (MAIAC) Level 2 gridded data over land surfaces at 1 km pixel resolution 188 

(short name MCD19A2) (Lyapustin et al., 2018). We convert the pixel data in the H19V9 tile to 189 

latitude and longitude points using the MODLAND Tile Calculator 190 

(https://landweb.modaps.eosdis.nasa.gov/cgi-bin/developer/tilemap.cgi, last accessed 25 Aug 2020). 191 

Cloudy pixel data are removed as part of this data product, and only “best quality” flagged data are 192 

used in our analysis. Data are available on the NASA Earth Data repository 193 

(https://earthdata.nasa.gov/, last accessed 25 Aug 2020). We use daily MAIAC data from January 194 

2018 through July 2020 in our analysis. 195 

 196 

Meteorological data 197 

 198 

We use the NOAA National Centers for Environmental Information land-based station data for 199 

meteorology. In Kinshasa and Brazzaville, the most complete temperature records are at the N’Djili 200 

International Airport (Kinshasa) and Maya-Maya International Airport (Brazzaville). Temperature, 201 

relative humidity, and wind speed, is mostly a complete record at these locations. Greater than 58% 202 

of precipitation data between September 2017 and August 2020 are missing at each of these stations, 203 

rendering any precipitation analysis impossible. We therefore use temperature, relative humidity, and 204 

wind speed data from N’Djili Airport to analyze the impact of weather on PM2.5 observations.  205 

 206 

https://landweb.modaps.eosdis.nasa.gov/cgi-bin/developer/tilemap.cgi
https://earthdata.nasa.gov/
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RESULTS AND DISCUSSION 207 

 208 

Kampala co-location analysis  209 

 210 

In Table 1 we present the regression parameters for the Kampala co-location. Correlation 211 

between raw PurpleAir data and Embassy BAM-1020 is high (r2 = 0.88). The overall mean absolute 212 

error (MAE) in the raw data compared to the Embassy BAM is 14.8 µg m-3 which is partially driven 213 

by a large overprediction during times of very poor air quality (values greater than 100 µg m-3). Values 214 

less than 100 µg m-3 show less bias compared to the BAM-1020. Using the MLR model to correct the 215 

raw PM2.5 data towards FEM standard using the BAM-1020 results in a reduction of MAE to 3.4 µg 216 

m-3, quantified using only the remaining 25% of the collocated data reserved for testing and validation. 217 

The corrected PurpleAir PM2.5 data (turquoise line in Fig. 2) shows a substantial improvement in 218 

comparison against BAM PM2.5. Correlation is also improved by the MLR model (r2 = 0.96). Though 219 

hourly-averaged PM2.5 data from the PurpleAir and the BAM-1020 are noisy and therefore not as 220 

well suited for MLR, we also build an MLR model for the hourly-averaged PM2.5 data, which we 221 

only apply to any analysis that uses hourly mean data instead of daily mean data. Table 2 also contains 222 

the hourly-based MLR statistics.  223 

We apply the correction factors developed from the long term MLR collocation in Kampala 224 

to each of the 5 PurpleAir PM2.5 monitors deployed in Kinshasa and Brazzaville. Kampala is just 225 

under 2000 km away from Kinshasa; however, this is the closest reference PM2.5 monitor to Kinshasa. 226 

The climates of Kinshasa and Kampala are quite similar as both lie within the center of the tropics. 227 

Both cities have two wet seasons that peak around October-November and March-April. Unlike 228 

Kampala, Kinshasa has a true dry season in which there is no or very little precipitation. Kampala’s 229 

“drier” season coincides with Kinshasa’s (June-August) dry season. Annual mean temperature and 230 
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relative humidity are 30.4 ºC and 80% in Kinshasa and 27.8 ºC and 75% in Kampala. Differences in 231 

emissions characteristics in the two cities are also a possible influence on applicability of our 232 

calibration. Thus, we also analyzed emissions data from the Diffuse and Inefficient Combustion 233 

Emissions Inventory in Africa (DICE-Africa), comparing source profiles for SO2, BC, and OC 234 

emissions in a 25 km by 25 km grid boundary in each city. Results (Fig. S1) indicate that the source 235 

profiles have many similarities in the two cities, in particular household fuel usage which comprises 236 

about 50-75% of the total emissions of SO2, black carbon (BC), and organic carbon (OC) in each city. 237 

Though the total emissions are slightly higher in Kinshasa compared to Kampala, the similar source 238 

mix further justifies applicability of sensor calibrations between the two cities. Qualitative 239 

information about particle size in the two cities can be obtained through satellite retrievals of the 240 

Angstrom exponent, which we present in Fig. S2. The 2019 annual mean Angstrom exponent as 241 

retrieved by MODIS Terra Deep Blue retrieval algorithm is about 1.5 in Kampala and 1.6 in Kinshasa, 242 

indicating qualitative similarity in particle size distributions in each city. Though the geographic 243 

distance between Kinshasa and Kampala is a limitation of the work, given the similarities between 244 

the two environments, estimates of emissions sources, qualitative similarity in particle size, and the 245 

paucity of reference monitoring and resources for such monitoring in sub-Saharan Africa, we consider 246 

our sub-continental calibration to be sufficient for further analysis.  247 

 248 

PM2.5 time series at each sampling location 249 

  250 

  Figure 3 shows both the corrected (turquoise) and raw (purple) monthly averaged PurpleAir 251 

PM2.5 data collected at the US Embassy in Kinshasa (see Methods Section and Fig. 1) from March of 252 

2018 through July 2020. Often the calibrated data and raw data are within 10 µg m-3 of each other, 253 

except when the PM2.5 is above 100 µg m-3 or below 25 µg m-3. The 95% confidence interval for daily 254 
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averaged raw data ranges between ±0.1 to ±0.5 µg m-3, depending on the exact month in the data.  255 

PM2.5 data are nearly always above WHO air quality guidelines (10 µg m-3 on an annual mean basis, 256 

25 µg m-3 on a 24-hour mean basis). The 2018 average PM2.5 was 54.4 µg m-3, which was followed 257 

by a decrease in 2019 (43.5 µg m-3). Through July 2020 (time of last data collection), the average is 258 

35.7 µg m-3, though PM2.5 is typically high in August and later in the year. The 2018 average also 259 

does not include the months of January and February, which are typically lower in PM2.5. In addition 260 

to this, the decrease in PM2.5 between 2018 and 2019 is not expected to be related to emissions 261 

reductions. Emissions trends in recent years for DRC are not well known. However, to our knowledge 262 

there has been no emissions control mitigation or measures in the last 3 years. Meteorological data 263 

are also limited in Kinshasa and Brazzaville. In Fig. 3 we also plot the Kinshasa station available 264 

meteorological variables from January of 2018 to August 2020. To first order, several previous studies 265 

have reported that on a large-scale, PM2.5 can be positively correlated with temperature, negatively 266 

correlated with wind speed, and positively correlated with relative humidity (Fiore et al., 2015; Jacob 267 

and Winner, 2009; Westervelt et al., 2016). As seen in Fig. 3, dry season July 2019 temperatures are 268 

approximately the same between 2018, 2019, and 2020, suggesting that the temperature effects on 269 

PM2.5 cannot explain the observed decrease in PM2.5 in 2020. Relative humidity in 2020 is slightly 270 

higher or roughly the same compared to either 2019 or 2018, inconsistent with the strong 2020 PM2.5 271 

decreases. Wind speed is slightly lower in 2020 compared to 2018 or 2019, which would also have 272 

the effect of likely increasing PM2.5, and therefore cannot explain the observed decreases in PM2.5. 273 

We conclude that the decrease in PM2.5 between 2018, 2019, and 2020 cannot be directly attributed 274 

to at least these three meteorological factors. Another plausible explanation is a potential decrease in 275 

wildfire activity in the Congolese rainforest. Burned area was shown to decline by ~1.3% yr-1 between 276 

2003 and 2017 in the Central African Republic and South Sudan (Jiang et al., 2020), thousands of 277 
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kilometers from Kinshasa. Closer to Kinshasa, burned area was found to largely remain unchanged 278 

over the same time period. Given these contrasting results, it is not likely that fire activity is the main 279 

driver of observed PM2.5 decreases either, although it may contribute partially.  We will later attribute 280 

the 2020 decrease at least partially to decreases in activity associated with COVID19 lockdown.  281 

 In Fig. 4 we plot the monthly averaged corrected PM2.5 for each of the four other sites (see 282 

Fig. 1). Data collection began at 3 of these 4 sites in November of 2019 (UPN, ERAIFT, and Cite 283 

Belle Vue), and in February of 2020 at the Brazzaville US Embassy, continuing through September 284 

of 2020. Each of the sites show a similar seasonality, with lower concentrations in November 2019 285 

through April 2020, coinciding with the rainy season. PM2.5 concentrations in June and July are higher 286 

at 60-70 µg m-3 from 40 µg m-3 in the rainy season. This is qualitatively consistent with the typical 287 

seasonal behavior at the longer-term US Embassy Kinshasa location, though the dry season rebound 288 

in PM2.5 in 2020 at the Kinshasa embassy is smaller than at the other 4 sites. As with the Kinshasa 289 

embassy site, corrected PM2.5 levels are nearly always above WHO guidelines, even in the rainy 290 

season.  291 

 292 

Diurnal and weekly profiles at each sampling site 293 

  294 

We present in Fig. 5 the PM2.5 over the diurnal cycle in each of the Kinshasa-Brazzaville 295 

locations using the entire datasets available for each site. Each site tends to have similar diurnal 296 

variability, though the magnitude of the PM2.5 concentrations is different at each location. There is 297 

typically a very early morning minimum in the diurnal trend at all sites, around 5:00 West Africa 298 

Time (WAT), followed by a morning peak at around 8:00. Local traffic emissions and household 299 

cooking are expected to be a major contributor to these peaks. Except at UPN-DRC, there is a steady 300 
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increase throughout the course of the day, as local activity such as cooking and preparing of food, 301 

open burning, and other sources begin to contribute to PM2.5. The highest PM2.5 values of the day 302 

then peak at about 18:00 - 20:00, coinciding with evening vehicle traffic and cooking. After 20:00, 303 

PM2.5 values start to drop quickly overnight. The highest PM2.5 values occur at Brazzaville Embassy 304 

and UPN-DRC, peaking at around 60 µg m-3 in the evening. The lowest PM2.5 values occur at Cité 305 

Belle Vue, which is a higher-end residential area where some foreign diplomats tend to live. These 306 

areas are less likely to use high emitting cooking and open burning practices, potentially explaining 307 

the lower PM2.5. However, the PM2.5 data at Cité Belle Vue is also only available for the mostly wet 308 

season, which can also potentially explain the lower PM2.5 values. The 5-site average is shown in 309 

black in Fig. 5 and ranges from about 40 µg m-3 at minimum to above 50 µg m-3 at the peak.  310 

Average PM2.5 concentration by day of the week is plotted for each site and the area average 311 

in Fig. 6. Generally, there are substantial differences in the weekly PM2.5 variation between each 312 

location. As in the diurnal variation (Fig. 5), Brazzaville and UPN-DRC have the highest PM2.5 of all 313 

the sites, around 50-55 µg m-3. CBV on average is about 10 µg m-3 lower, though this is likely due to 314 

a limited data range that mainly includes the wet season. Sunday is generally one of the lowest days 315 

for PM2.5 in all sites (except CBV), coinciding with a low point in economic activity during the week. 316 

Each site has typically two days of the week in which PM2.5 peaks, though which day varies by site. 317 

At UPN-DRC, there is an early week peak Wednesday and then a lower Saturday peak, with a 318 

minimum on Thursday. Conversely, Kinshasa Embassy and Brazzaville Embassy are highest on 319 

Thursday, and ERAIFT-DRC is highest on Friday. This variation among weekday PM2.5 is likely 320 

explained by variation in type of location. Residential, educational, and diplomatic locations are 321 

represented among the 5 sites, each of which have different source signatures, emissions patterns, and 322 

micrometeorology.  323 
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 Figure 7 summarizes all daily mean data at all 5 sites and the 5-site average in a violin plot. 324 

Distributions of PM2.5 are mostly unimodal and right-skewed, with the majority of data points located 325 

around 50 µg m-3. As previously discussed, UPN-DRC and Brazzaville Embassy have the highest 326 

median and quartile ranges for PM2.5. The highest daily mean extreme value (nearly 180 µg m-3) is 327 

observed at the Kinshasa Embassy. However, Kinshasa embassy has the most extreme values with 328 

several daily means greater than 100 µg m-3, though it also represents the longest data record length. 329 

The PM2.5 distributions at every site except for Cité Belle Vue each have “long tails” with nonzero 330 

density as concentrations approach 100 µg m-3, indicating a higher frequency of poor air quality at 331 

these locations compared to other sites.  The 5-site average median daily PM2.5 value is 42.1 µg m-3, 332 

a factor of 4 higher than the WHO annual mean guideline of 10 µg m-3. 333 

 334 

Impact of COVID-19 lockdown on PM2.5 in Kinshasa 335 

 336 

We use our 29-month dataset (beginning March 2018) at the Kinshasa Embassy to assess the 337 

potential changes in PM2.5 concentrations attributable to COVID-19 related stay-at-home orders in 338 

Kinshasa. The Governor of Kinshasa announced a total lockdown for the city starting on March 28, 339 

which was later postponed. Starting April 6, Gombe, the administrative and commercial center of 340 

Kinshasa where the US Embassy is located, was closed for two weeks. We plot and compare the April 341 

for 2019 and 2020 in Fig. 8. On average, April 2020 daily mean PM2.5 is about 14.7 µg m-3 lower 342 

than the same time period in 2019, about a 40% decrease, larger than the amount of PM2.5 reduction 343 

in China during COVID-19 quarantine orders (Shi and Brasseur, 2020). In particular, the evening 344 

peak around 20:00 seen clearly in 2019 is mostly absent in 2020. Other than a flattening of the evening 345 

peak, the 2020 trend follows 2019 very closely, though offset by at least 10 µg m-3. Natural variability 346 

including fire activity may play a role in these decreases, though our preliminary meteorological 347 
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analysis (see Fig. 3 and associated discussion) suggests that meteorology cannot explain the observed 348 

PM2.5 decreases. Daily mean PM2.5 in April 2018 was 3.8 µg m-3 lower compared to April 2019, 349 

indicating that there was not an April PM2.5 decreasing trend prior to the COVID-19 pandemic.  350 

We also analyze satellite observations of AOD at 550 nm wavelength using the MAIAC Level 351 

2 gridded data over land surfaces at 1 km pixel resolution. Figure 9 shows MAIAC AOD for January-352 

June 2018, 2019, and 2020, and a 2020 versus 2019 difference over the Congo region. AOD levels 353 

are elevated over the larger region and especially over Kinshasa and Brazzaville (located around 15.3 354 

E latitude and 4.3 S latitude). Contrary to the surface level PM2.5 data, AOD was higher in January 355 

through July 2019 than 2018. Columnar AOD data is a very different measure than surface level PM2.5 356 

and do not necessarily vary together (Li et al., 2015; Van Donkelaar et al., 2016). Compared to 2019, 357 

AOD in 2020 is about 0.1-0.2 lower than 2019, but only 0.05 lower than 2018. These decreases are 358 

qualitatively consistent with our hypothesis of COVID19 lockdown impacts on air pollution in the 359 

Congo region, though could also be consistent with changes in fire activity. Malings, Westervelt, et 360 

al. (2020) further explored connections between MAIAC AOD and surface PM2.5 in both Africa and 361 

North America, including applications for converting column AOD to surface PM2.5.  362 

 363 

 364 

CONCLUSIONS 365 

 366 

 Air pollution causes millions of premature deaths and a host of illnesses in the world’s cities 367 

each year. This is especially true in sub-Saharan Africa, where sparse air pollution monitoring imparts 368 

high uncertainty to estimates of exposure and impact. Together, the Kinshasa-Brazzaville 369 

megalopolis is home to about 14 million inhabitants, and yet long-term, publicly available, systematic 370 

air quality data did not exist prior to this work. We developed a correction factor built from a MLR 371 

model developed in Kampala, a city of similar environmental conditions, and deployed 5 low-cost 372 
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sensor in the Kinshasa-Brazzaville area, starting in March 2018. Study-average network-wide PM2.5 373 

is 46.1 µg m-3, indicating severely impaired air quality in the two cities.  PM2.5 is highest in the dry 374 

season of June, July, and August, and lower in the remaining months where wet scavenging plays a 375 

dominant role. Wet season PM2.5 is about 5-10 µg m-3 lower on average than dry season, yet still four 376 

times higher than the WHO guideline. Decreases in PM2.5 between 2018 and 2020 cannot be 377 

explained by changing meteorology; however, a paucity of available data limits our analysis. PM2.5 378 

varies by site to some extent between our 5 sites, though average values are within 10 µg m-3 of each 379 

other, suggesting a coherent set of sampling locations indicative of average city-wide conditions. 380 

PM2.5 is generally highest around 20:00 WAT, corresponding to an early evening activity peak. 381 

Likewise, PM2.5 is lowest on Sundays, when activity is limited. During the 2020 COVID19 lockdown, 382 

PM2.5 decreased by 14.7 µg m-3 compared to an identical time period in 2019, which cannot alone be 383 

explained by changes in meteorology. Satellite observations of aerosol optical depth qualitatively 384 

confirm our surface findings.  385 

 This work represents a first step at understanding air quality in a fast-growing megacity in 386 

sub-Saharan Africa. Key limitations of the work include the lack of a reference grade monitor locally 387 

in Kinshasa, lack of robust weather data, and limited time periods of PM2.5 data. Future work should 388 

address these issues, and also explore the potential for air quality models and satellite observations to 389 

be better adapted to use over Kinshasa and the Congo.  390 

 391 
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 519 

 520 

 521 

 522 

 523 

 524 

TABLES 525 

 526 

Table 1: Regression coefficients of the MLR model 527 

 Daily 

model 

Hourly 

model 

0 64.7 86.9 

1 0.52 0.55 

2 -0.23 -1.28 

3 -0.59 -0.55 

 528 

 529 

 530 

Table 2: Statistics of the MLR and RF models  531 

Model Averaging 

time period 

R2 Mean Absolute 

Error (𝜇g/m3) 

Raw PurpleAir Data 

 

Daily 0.88 14.8 

Hourly 0.88 20.3 

Multiple Linear Regression 

 

Daily 0.96 3.4 

Hourly 0.90 7.3 
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Random Forest 

 

Daily 0.86 5.8 

Hourly 0.91 7.2 

 532 

 533 

 534 

 535 

Figure Captions 536 

Figure 1. Map of sensor locations in Kinshasa and Brazzaville. Background map ©  Google 2020.  537 

 538 

Figure 2. Performance evaluation and calibration of PurpleAir PM2.5 versus Federal Equivalent 539 

Method (FEM) PM2.5 between September 2019 and February 2020 at the US Embassy in Kampala, 540 

Uganda. Raw daily data is shown in purple, FEM data in orange, and corrected low-cost sensor data 541 

(using the MLR method) in turquoise.  542 

 543 

Figure 3.  Weekly mean raw (purple) and corrected (turquoise) PM2.5 data, as well as weekly mean 544 

temperature (ºC), wind speed (m s-1), and relative humidity (%) (NOAA data) at the Kinshasa US 545 

Embassy site between March 2018 and July 2020.  546 

 547 

Figure 4.  Monthly mean corrected data at 4 sites (excluding Kinshasa Embassy) between November 548 

2019 and July 2020. Shaded areas indicate the 95% confidence interval of the monthly average values.  549 

 550 

Figure 5. Diurnal average PM2.5 for the entire data record at each of the 5 sites and the site-wide 551 

average (black).  Shaded areas indicate the 95% confidence interval of the hourly averages. Hour 552 

indicates the local time (West Africa Time). 553 

 554 

Figure 6. Day-of-the-week averages for PM2.5 for the entire dataset at each of the 5 sites, and the site-555 

wide average. Shaded areas indicate the 95% confidence interval of the daily averages.    556 

 557 

Figure 7.  Violin plot of daily-averaged PM2.5 values for the entire dataset at each location and for 558 

the site-wide average. Boxes represent median and inter-quartile range.  559 

 560 

Figure 8. Analysis of PM2.5 changes during COVID19 at the US Embassy Kinshasa location. 561 

Averaging time period is April 6 through April 20. (Top) Diurnal PM2.5 in 2019 and 2020 by day of 562 

the week. (Bottom left) Diurnal mean PM2.5 (Bottom middle) Monthly mean PM2.5 (Bottom right) 563 

Day of the week average. Shaded region represents the 95% confidence interval in the mean.  564 

 565 

Figure 9. MAIAC Level 2 550 nm AOD at 1km resolution over the Congo region for a January 566 

through July average in (a) 2018, (b) 2019, (c) 2020, and (d) the difference between 2019 and 2020. 567 
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Boundaries represent level 2 administrative boundaries (districts and communes) provided by the 568 

United Nations Office for the Coordination of Humanitarian Affairs. The black dashed box indicates 569 

the Kinshasa-Brazzaville region and the inset in panel (d) shows the broader location within the 570 

African continent.  571 

 572 

 573 

FIGURES 574 

 575 

  576 

Figure 1. Map of sensor locations in Kinshasa and Brazzaville. Background map ©  Google 2020.  577 

 578 
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 579 

Figure 2. Performance evaluation and calibration of PurpleAir PM2.5 versus Federal Equivalent 580 

Method (FEM) PM2.5 between September 2019 and February 2020 at the US Embassy in Kampala, 581 

Uganda. Raw daily data is shown in purple, FEM data in orange, and corrected low-cost sensor data 582 

(using the MLR method) in turquoise.  583 

 584 

   585 
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 586 

Figure 3.  Weekly mean raw (purple) and corrected (turquoise) PM2.5 data, as well as weekly mean 587 

temperature (ºC), wind speed (m s-1), and relative humidity (%) (NOAA data) at the Kinshasa US 588 

Embassy site between March 2018 and July 2020.  589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 
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598 

Figure 4.  Weekly mean corrected data at 4 sites (excluding Kinshasa Embassy) between November 599 

2019 and September 2020.  600 

 601 
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 602 

Figure 5. Diurnal average corrected PM2.5 for the entire data record at each of the 5 sites and the site-603 

wide average (black).  Shaded areas indicate the 95% confidence interval of the hourly averages. 604 

Hour indicates the local time (West Africa Time). 605 

 606 
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 607 

Figure 6. Day-of-the-week averages for corrected PM2.5 for the entire dataset at each of the 5 sites, 608 

and the site-wide average. Shaded areas indicate the 95% confidence interval of the daily averages 609 

(corrected data).    610 

 611 

 612 
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 613 

Figure 7.  Violin plot of daily-averaged corrected PM2.5 values for the entire dataset at each location 614 

and for the site-wide average. Boxes represent median and inter-quartile range.  615 

 616 

 617 

 618 

 619 

 620 

 621 
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 623 

 624 



ACCEPTED M
ANUSC

RIP
T

 31 

 625 

 626 

Fig 8. Analysis of corrected PM2.5 changes during COVID19 at the US Embassy Kinshasa location. 627 

Diurnal PM2.5 in 2019 and 2020 by hour of the day. Averaging time period is the month of April. 628 

Shaded region represents the 95% confidence interval in the mean.  629 
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 630 

Figure 9. MAIAC Level 2 550 nm AOD at 1km resolution over the Congo region for a January 631 

through July average in (a) 2018, (b) 2019, (c) 2020, and (d) the difference between 2019 and 2020. 632 

Boundaries represent level 2 administrative boundaries (districts and communes) provided by the 633 

United Nations Office for the Coordination of Humanitarian Affairs. The black dashed box indicates 634 

the Kinshasa-Brazzaville region and the inset in panel (d) shows the broader location within the 635 

African continent.  636 
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Graphical Abstract:  640 
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 641 

Caption: Methodology and example data output from data collection campaign in Kinshasa, 642 

DRC, and Brazzaville, ROC.  643 




