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Formal Verification of the Interaction Between
Semi-Algebraic Sets and Real Analytic Functions

Anonymous Author(s)

Abstract
Semi-algebraic sets and real analytic functions are fundamen-
tal concepts in Real Algebraic Geometry and Real Analysis,
respectively. These concepts interact in the study of Differen-
tial Equations, where the real analytic solution to a differen-
tial equation is known to enter or exit a semi-algebraic set in
a predicable way. Motivated to enhance the capability to rea-
son about differential equations in the Prototype Verification
System (PVS), a formalization of multivariate polynomials,
semi-algebraic sets, and real analytic functions is developed.
The favorable way that a real analytic function enters and
exits a semi-algebraic set is proven. It is further shown that
if the function is assumed to be smooth, a slightly weaker
assumption than real analytic, these favorable interactions
with semi-algebraic sets may fail.

Keywords: formal verification, PVS, semi-algebraic sets

1 Introduction
Differential equations are a powerful tool for modeling the
evolution of continuous states in dynamical systems [15, 34].
While a variable is modeled as a solution to a differential
equation, semi-algebraic (SA) sets can be used to define en-
vironment constraints and control properties of the variable.
In the context of safety-critical applications, the interaction
between a solution to a differential equation and a semi-
algebraic set is crucial for verifying the safety properties of
the given system. In particular, the way that a solution to a
differential equation leaves and enters an SA set can inform
when a safety violation has occurred or ended. One specific
example is two aircraft maintaining a safe distance from one
another [11].
Differential dynamic logic (DDL) is a logic that allows

formal reasoning about hybrid systems, using properties of
solutions of differential equations, in some cases without
having needed the explicit solution[26, 27]. Under modest
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assumptions, the solution of a differential equation is guar-
anteed to be a real analytic function (see, e.g. [9], Chapter
1.D, or [35], Chapter 9.37), and so reasoning about how a
solution to a differential equation interacts with its domain
can often be reduced to reasoning about the behavior of real
analytic functions and SA sets [18, 32].
This work focuses on the formal specification and verifi-

cation of the interactions between SA sets and real analytic
functions in the Prototype Verification System (PVS) [24, 25].
The main motivation is the eventual implementation of a
formally verified version of DDL in PVS that allows users
to reason about cyber-physical systems using DDL interac-
tively in PVS. To do this, the deduction rules for DDL must
be formally verified in PVS, and as noted above, these in-
volve reasoning about real analytic functions and SA sets.
SA sets are defined using collections of multivariate poly-
nomial constraints, allowing a wide variety of sets to be
defined. The formalization provided in this paper allows for
reasoning about general SA sets and particular user-specified
instantiations of these sets.

A formal specification of the theory of real analytic func-
tions is also developed. Real analytic functions can be written
in terms of their power series, which includes functions like
polynomials, trigonometric functions, exponential and log-
arithmic functions, and products, sums, and compositions
of such functions. Importantly, even functions that are not
explicitly specified may be known to be real analytic, the
motivating example being solutions to many differential
equations.
The way that a real analytic function interacts with the

boundary of an SA set is known to have certain favorable
geometric properties, which are important for reasoning
in DDL. An example of this behavior is shown in Figure 1,
where the analytic solution of a differential equation leaves
an SA set for a complete interval of time before entering
again. These interactions are formally verified in PVS. It is
also shown that relaxing the assumption of real analytic to
smooth (i.e., infinitely differentiable) removes the favorable
interactions that are guaranteed between real analytic func-
tions and SA sets. This offers practical insight regarding the
subtle difference between real analytic and smooth functions.
Furthermore, the challenges of implementing this theory in
PVS give educational insight into proofs and allows further
development of the growing NASA PVS library. 1

1https://github.com/nasa/pvslib
1
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Figure 1. An analytic solution to a differential equation moves in and out of a semi-algebraic set

The remaining sections are organized as follows. Section 2
gives a brief review of multivariate polynomials and SA sets.
Section 3 introduces real analytic functions and describes
the way they interact with SA sets. Related work is discussed
in Section 4. Conclusions and future directions are discussed
in Section 5.
The mathematics presented in Sections 2 and 3 have all

been specified and verified in PVS by the authors, except that
in a few cases, some important concept or theorem is taken
from NASA’s PVS library (NASALib). This will be explicitly
noted when needed.

2 Polynomials & Semi-Algebraic Sets
Real Algebraic Geometry is a branch of mathematics con-
cerned with the study of SA sets. An SA set is a set of points
that satisfy a finite sequence of multivariate polynomial
equalities and inequalities, or a union of such sets [2]. As
noted in the introduction, SA sets are also important to the
theory of general real-valued functions, particularly how a
real analytic function behaves on such a set. This section
discusses a formalization of multivariate polynomials and
semi-algebraic sets in PVS.

2.1 Multivariate polynomials over the reals
When mathematicians consider multivariate polynomials
over the reals, it is often unclear what kind of formal objects
they are referring to. Such a polynomial may be considered a
member of the polynomial ring R[X0,X1, . . . ,Xm−1] withm
indeterminants and real coefficients, or for inductive reasons
a member of the ring (R[X0,X1, . . . ,Xm−2])[Xm−1]) with a
single indeterminant and polynomial coefficients, or as a
function from Rm into R, or many other possible definitions.
Indeed, the fact that polynomials can be considered in differ-
ent settings is part of what makes them so useful.
From the formalization standpoint, one particular repre-

sentation for such polynomials has to be chosen, and trans-
lations or interpretations for any of the other definitions

have to be specified and justified. The author Zippel, in [36],
identifies three decision points with respect to choosing how
polynomial might be represented. Expanded vs. recursive
representation concerns whether coefficients are real num-
bers and multiple variables are allowed (expanded), or a
single variable has (recursively) multivariate polynomials
as coefficients. Variable sparse vs. variable dense refers to
whether the representation includes variables with exponent
zero (dense) or excludes them (sparse) in a monomial defi-
nition. Degree sparse vs. degree dense refers to whether all
monomials up to a given multidegree are included in the
representation by using a zero coefficient (dense) or if only
those with non-zero coefficient are recorded (sparse). For
this formalization, an expanded, (essentially) variable dense,
and (essentially) degree sparse representation was chosen,
as described below.

The polynomials considered here are real-linear combina-
tions ofmonomials, expressions of the formXα := X α0

0 · · ·X αm−1
m−1 ,

where α = (α0,α1, . . . αm−1) ∈ N
m , andm ∈ N. The num-

ber of entries in α is called the dimension of the monomial,
i.e., dim (Xα ) = m, while the degree of the of monomial is
deg (Xα ) =

∑m−1
i=0 αi . A monomial is then cXα , where c ∈ R.

The implementation of this is done with record datatype

monomial: TYPE =
[# C : = real, alpha : = list[nat] #],

with a particular instantiation of this type taking the form

m = (# C : = c, alpha : = L #).

The symbol “ ’ ” is field accessor of a record, i.e., m’alpha
= L . This is equivalent to the dot notation in programming
languages like Java.
Note in particular that the implementation above allows

for coefficients to be zero, hence not forcing degree sparsity.
A multivariate polynomial function has the form

p =
n∑

k=0
ckXα (k ), (1)

2
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where n ∈ N is finite, ck ∈ R, and α (k) ∈ Nm for each
i ∈ N≤n . The implementation represents this simply as a list,
MultPoly: TYPE = list[monomial].

This intentionally allows for different expressions to be given
for the same polynomial. For example, consider the (syntac-
tically distinct) expressions

p1 =X
2
0 + X0,

p2 =X0 + X
2
0 ,

p3 =X0X
0
1 + X

2
0 ,

p4 =X0 + 3X 2
0 + (−2)X

2
0 , and

p5 =X0 + X
2
0 + 0X

3
0 ,

(2)

represented in PVS as
p1: MultPoly = (: (# C: = 1, alpha: = (: 2 :) #),

(# C: = 1, alpha: = (: 1 :) #) :)

p2: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p3: MultPoly = (: (# C: = 1, alpha: = (: 1, 0 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p4: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 3, alpha: = (: 2 :) #),
(# C: = -2, alpha: = (: 2 :) #) :)

p5: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #),
(# C: = 0, alpha: = (: 3 :) #) :).

These expressions are different, and yet are meant to ex-
press the same polynomial. Indeed, considered as functions,
these are the same, and simple algebraic manipulation can
turn any one into the other. This general form of polyno-
mials allows for the easy definition of ring operations on
polynomials (addition is just list concatenation), but in or-
der to unambiguously define the dimension and degree of a
polynomial, a standard form is defined.

Definition 2.1. A multivariate polynomial representation
given by Equation (1) is said to be in standard form when the
following properties hold:

1. The dimension of each monomial in the expression is
the same, and some term uses the last variable non-
trivially. That is, there existsm ∈ N such that dim (αk ) =

m for all k ∈ N≤n, and there exists n0 ∈ N≤n with
αm (n0) > 0.

2. For i , j ∈ N≤n , αi , α j . In other words, each expo-
nent vector α can appear at most one time in (1).

3. The coefficient ck , 0 for each k ∈ N≤n (note that the
identically zero polynomial is the empty list).

4. The monomial terms in the expression (1) are ordered
by some total order on the monomials inm variables.

In the PVS formalization, each of these properties is de-
fined using a predicate on a polynomial p. In addition, func-
tions are defined that operate on a general polynomial and

give it the corresponding property. Property 1 is defined us-
ing the predicate minlength?(p), and bestowed by applying
cut(p), which removes trailing zeroes from exponents, and
lift(p), which pad exponents with zeroes to be the longest
exponent length occurring in the polynomial. Property 2 is
defined using the predicate simplified?(p), and bestowed
by simplify(p). Property 3 is defined using the predicate
allnonzero?(p), and bestowed by allnonzero(p). Prop-
erty 4, with respect to the graded lexographical (GL) ordering
described below, is defined using the predicate is_sorted?(p),
and bestowed by mv_sort(p). Using these functions, Defini-
tion 2.1 is specified as a single predicate mv_standard_form?(p)
that holds when all 4 predicates hold, and the corresponding
function mv_standard_form(p) gives all four properties to
the polynomial p.

The particularmonomial ordering chosen for sortingmono-
mials is the graded lexographical ordering. The ordering sorts
first by the total degree of the monomial (graded), and breaks
ties comparing the degrees of individual variables in order
(lexicographic). Specifically, Xα (0) < Xα (1) exactly when :

1. deg
(
Xα (0)) < deg

(
Xα (1)) , or

2. deg
(
Xα (0)) = deg

(
Xα (1)) and

∃j ∈ N≤m−1
(
α j (0) < α j (1) ∧ ∀i ∈ N<j αi (0) = αi (1)

)
.

As an example, the fourmonomials in the ringR[X0,X1,X2]

below are listed in increasing GL order.

X1X2, X
2
0X

2
1 , X

2
0X

1
1X

1
0 , X

4
0 .

Given a polynomial whose representation is in standard
form, the degree and dimension are each well-defined. The
dimension is the length of the longest exponent (or in fact
any exponent due to the lift function), and the degree is the
maximum degree (or the degree of the last monomial, due
to mv_sort). Functions for polynomial addition, scalar and
polynomial multiplication, and polynomial exponentiation
are specified, which, by definition, preserve standard form.

Multivariate polynomials so far defined have the structure
of a ring, and hence can be combined and manipulated, but
cannot yet be used as functions from Rm → R. To do so, an
evaluation function on polynomials is defined. In fact, two
forms of evaluation are defined. Partial evaluation takes a
list of indices and a list of values, and evaluates only those
variables listed in the indices, using the corresponding values.
This returns a polynomial of the same dimension as the
original, where the evaluated variables have exponent zero.
Full evaluation takes a list of values, at least as long as the
dimension of the polynomial, and replaces the variables with
the corresponding values ,ignoring values past the dimension
of the polynomial, returning a real number.

The main purpose of the evaluation function is for use in
defining the semi-algebraic sets of Section 2.2. A secondary
use of the evaluation function is in proving the uniqueness
of the standard form defined above.

3
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Theorem 2.2. Given a function σ that returns the standard
form of a polynomial as in Definition 2.1, andp1,p2 polynomial
expressions of the form (1),

σ (p1) = σ (p2)

if and only if for all x ∈ Rm ,

p1(x) = p2(x).

2.2 Semi-algebraic sets
Given a dimensionm, a semi-algebraic set is a subset S ⊆ Rn

defined by satisfying a finite collection multivariate polyno-
mial relations , or a finite union of such sets. This corresponds
to satisfying the disjunction (or join) of the conjunction (or
meet) of a collection of polynomial relations. A boolean for-
mula in this form is said to be in disjunctive normal form.
In some situations, it is more convenient to consider the
a general form of a quantifier-free boolean formula over
multivariate polynomial relations built using the boolean
operators ∨,∧,¬, and⇒ . Noting that every such quantifier-
free boolean formula can be written in disjunctive normal
form [5], the restricted definition as the join of meets is cho-
sen without loss of generality. The technical definition and
formalization details are developed below.
An atomic polynomial formula over the variables X :=

X0, · · · ,Xm−1 is defined as p ▷ 0 where p is a polynomial in
R[X] and ▷ ∈ {≥, >, ≤, <}. 2 The implementation of this in
PVS done with record datatype
atomic_poly: TYPE =
[# poly:(mv_standard_form?), ineq:INEQ #],

where
INEQ: TYPE = { ff: [real,real -> bool] |

(ff = <= ) OR (ff = >= ) OR
(ff = < ) OR(ff = > ) }.

Note, in the type INEQ above the expression a higher order
equality is used to compare functions, where the inequalities
<=, >=, < , and > are functions that return the truth value of
the inequality based on the two real operands.

The formulas to be considered are expressed as

φ =
I∨
i=1

Ji∧
j=1

pi j ▷ 0, where ▷ ∈ {≥, >, ≤, <}, (3)

and a subset S of Rm is a semi-algebraic set, if there is a
quantifier free polynomial formula φ such that

S = {x ∈ Rm | φ(x) is true}.

In the formalization, the conjunction of atomic polynomial
formulas is specified simply as a list,
meeting TYPE = list[atomic_poly],

and a disjunction of these conjunctions is specified as
joining: TYPE = list[meeting].

2The functions = and , are excluded for simplicity of the embedding of SA
sets. Note that they can be described with the relations allowed.

Of course, the atomic polynomials and lists of them have
no inherent meaning, being just lists. To define an SA set,
evaluation functionsmust be defined. The functions atom_eval,
meet, and join are defined successively to take a point
x ∈ Rm and return the truth value of an atomic polyno-
mial formula, the meet of such formulas, and the join of
meets evaluated at the point.

A semi-algebraic set S(φ) defined by φ is then specified in
PVS by
semi_alg(j:joining)(n:nat | n >= meet_max(j)):
set[VectorN(n)] =
{ x:VectorN(n) | join(j)(x) }.

One of themost important basic properties of semi-algebraic
sets is that they are closed under finite set operations. The
following theorem expresses this.

Theorem 2.3. For two semi algebraic sets S1 and S2, the fol-
lowing properties hold:

1. The union S1 ∪ S2 is an SA set.
2. The intersection S1 ∩ S2 is an SA set.
3. The compliment ¬S1 is an SA set.

This theorem is clear intuitively (union is join, intersection
is meet, and complement is negation), but due to the formal-
ization definition, the formal proof requires translating the
conjunction and disjunction of two joining expressions
in disjunctive normal form into another expression that is
in disjunctive normal form. For union this is as simple as
concatenating the to two lists using the append function:
union_join: LEMMA

FORALL(j1,j2:joining,
x: list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) OR join(j2)(x)) =
join(append(j1,j2))(x).

For intersection, the formula for the conjunction of two
joining expressions in disjunctive normal form (3) is given
by
cap_join(j1,j2:joining): RECURSIVE joining =
IF j1 = null THEN null
ELSIF j2 = null THEN null
ELSE append(append_to_each(car(j1),j2),
cap_join(cdr(j1),j2))
ENDIF
MEASURE length(j1).

Here, the append_to_each function takes each conjunc-
tion in the second joining and appends it to each of the
conjunctions in the first joining. This is because distribut-
ing a conjunction over disjunctions has the following form(

I∨
i=1

Ji∧
j=1

pi j ▷ 0

)
∧ (q ▷ 0) =

I∨
i=1

Ji+1∧
j=1

wi j ,

4
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where

wi , j =

{
pi , j j ≤ Ji

q j = Ji + 1.

Using the cap_join function, it can be shown that the con-
junction of two disjunctive normal form expressions can be
written in disjunctive normal form.
intersect_join: LEMMA

FORALL(j1,j2:joining,
x:list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) AND join(j2)(x)) =
join(cap_join(j1,j2))(x).

Noting that the complement of an SA set is given by the
negation of the corresponding formula, consider the negation
of (3) which can be written

¬φ =
I∧
i=1

Ji∨
j=1

pi j¬ ▷ 0 where ¬▷ ∈ {≥, >, ≤, <}. (4)

Here ¬▷ is defined according to the following table:
▷ ¬▷

≥ <
≤ >
> ≤

< ≥

The expression in equation (4) is transformed into disjunctive
normal form by repeated use of the cap_join function:
not_join(j:joining): RECURSIVE joining =

IF j = null THEN(: (: :) :)
ELSE
cap_join(negative_atom_meet(car(j)),
not_join(cdr(j)))
ENDIF
MEASURE length(j).

The equivalence is expressed by
not_join: LEMMA

FORALL(j:joining, x:list[real] |
length(x) >= meet_max(j)):
(NOT join(j)(x)) = join(not_join(j))(x).

As noted above, the proofs here could have been made
simpler by allowing for more general boolean expressions
in the definition of semi-algebraic sets. On the other hand,
this would have incurred an overhead cost in the original
specification, as well as in the evaluation functions. The
design choice of using only formulas in disjunctive normal
form allows for a much cleaner representation, at the cost of
some tedious proofs.

3 Real-analytic Functions
For an open set D ⊆ R, A real function f : D → R is said
to be real analytic at a point c ∈ D when there exists a real
sequence {ak }∞k=0 and an r ∈ R>0 such that

f (x) =
∞∑
k=0

ak (x − c)k ∀x ∈ (c0 − r , c0 + r ) . (5)

Furthermore, f is analytic on aV ⊆ D if it is analytic at each
x ∈ V . In PVS, the sequence {ak } and real number r in (5)
are defined by the predicate
analytic_parts?(c0:real,f:[real->real])
(M:posreal, ak:sequence[real]): bool =

FORALL(x:real| abs(x-c0) < M):
convergent?(powerseries(ak)(x-c0)) AND
f(x) = inf_sum(powerseq(ak,x-c0)),

Using this predicate, an analytic function f : R → R at a
point c0 is defined by
analytic?(c0:real)(f:[real -> real]): bool =
EXISTS(r:posreal, ak:sequence[real]):
analytic_parts?(c0,f)(r,ak).

For a function f : D → R, where D is open, the definition
in (5) is equivalent to
analytic?(c0:real)(lift(D,f))

where lift(D, f) trivially extends the domain of f to all of
R, i.e.,
lift(D:(open?),f:[D -> real])(x:real): real =

IF D(x) THEN f(x) ELSE 0 ENDIF.

In (5), the number r is called the the radius of convergence
of f at x . If there is not a r such that (5) holds, the maximal
radius of convergence is said to be 0, while if (5) holds for
all r ∈ R≥0, the maximal radius of convergence is said to be
infinity. In all other cases there is an rmax ∈ Rwhich is called
the maximal radius of convergence.
From the definition in (5), it is clear that the infinite sum∑∞
k=0 ak (x − c0)

k , x ∈ (c0 − r , c0 + r ) converges. Using stan-
dard properties of convergent series, it can be shown that
analyticity is closed under addition and scalar multiplica-
tion. To show that the product of two analytic functions is
analytic, the following lemma is required.

Lemma 3.1 (Absolute Convergence). Suppose f : D → R
is analytic at a point c0 ∈ D, as stated in (5). For each x ∈

(c − r , c + r ), the sum

A =
∞∑
k=0

���ak (x − c)k
���

converges.

Lemma 3.1 shows that if a function is analytic, then the
series representation of the function converges absolutely.
This lemma has been previously proven in NASALib’s series
library, so the proof will not be presented here.

With the lemma above, enough machinery is available to
show that being analytic at a point is closed under summa-
tion, scalar multiplication, and multiplication.
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Theorem 3.2. Suppose f : D → R and д : D → R are
analytic at a point c0 ∈ D with radius of convergence rf and
rд respectively. i.e.,

f (x) =
∞∑
k=0

ak (x − c0)
k ∀x ∈

(
c0 − rf , c0 + rf

)
(6)

д(x) =
∞∑
k=0

bk (x − c0)
k ∀x ∈

(
c0 − rд, c0 + rд

)
and let rmin = min

(
rf , rд

)
, then the following statements hold:

1. f + д is analytic with radius of convergence rmin,
2. c · f is analytic with radius of convergence rf , and
3. f · д is analytic with radius of convergence rmin

(д ∗ f ) (x) =
∞∑
k=0

conv (k,a,b) (x − c0)
k ,

where conv(k,a,b) is thekth convolution of the sequences
a and b

conv (k,a,b) =
k∑
i=0

aibk−1.

Proof. Parts 1 and 2 follow from basic convergence properties
of series. For 3, let x ∈

(
c0 − rf , c0 + rf

)
,

Sn =
n∑

k=0
conv (k,a,b) (x − c0)

k , and (7)

Rn =
∞∑

k=n+1
bk (x − c0)

k . (8)

By using (6) and (3), Sn can be re-written as

Sn = д(x)
n∑

k=0
ak (x − c0)

k −

n∑
k=0

ak (x − c0)
k Rn−k . (9)

By using equation (6) the first term in this expression con-
verges

lim
n→∞

д(x)
n∑

k=0
ak (x − c0)

k = д(x)f (x).

It remains to show that

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

Let ϵ > 0, Choose N0 ∈ N such that for all N ≥ N0, |RN | <

ϵ/(2A), where A =
∑∞

k=0

���ak (x − c)k
��� is finite from Lemma

3.1. This N0 exists since limn→∞ Rn = 0.
Choose N1 ∈ N such that for N ≥ N1,

��aN (x − c0)
N �� <

ϵ/(2N0R), where R = maxi ∈R≤N0
|Ri |. This exists since an(x−

c0)
n → 0.

Now, let N ≥ N0 + N1. Using the triangle inequality����� N∑
k=0

ak (x − c0)
k RN−k

�����
≤

�����N−N0∑
k=0

ak (x − c0)
k RN−k

����� +
����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� .
The first summation has the bound�����N−N0∑

k=0
ak (x − c0)

k RN−k

����� ≤ N−N0∑
k=0

���ak (x − c0)
k
��� |RN−k |

≤
ϵ

2A

N−N0∑
k=0

���ak (x − c0)
k
���

≤
ϵ

2
.

The second summation has the bound����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� ≤ N∑
k=N−N0+1

���ak (x − c0)
k
��� |RN−k |

≤

N∑
k=N−N0+1

ϵ |RN−k |

2N1R

≤

N∑
k=N−N0+1

ϵ

2N0

=
ϵN0

2N0
≤
ϵ

2
.

(10)
Therefore ����� N∑

k=0
ak (x − c0)

k RN−k

����� ≤ ϵ,

and thus

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

The result is shown. □

This proof above has the same general structure as the
proof in [16] (Ch. 1, page 4-5). The largest departure is the
introduction of N2 ∈ N, which guarantees the bound shown
in (10) for N ≥ N0+N1. In the original proof, the summation
in (10) is said to converge to 0 “by holding N0 fixed as letting
N go to infinity." This combination of an ϵ based argument
and a limit based argument is not easily translated into PVS,
so a clearer ϵ argument was constructed.

Additionally, implementation proof of Theorem 3.2 in PVS
required non-trivial manipulations of finite sums. A finite
sum in PVS is defined using the sigma function defined in
the real number library of NASALib,
sigma(low, high, F): RECURSIVE real =

IF low > high THEN 0
ELSE F(high) + sigma(low, high-1, F) ENDIF
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MEASURE (LAMBDA low, high, F:
abs(high+1-low)).

To get from the definition of Sn in (7) to the form in (9)
required a number of intermediate lemmas, including
sig_a_pull_conv: LEMMA

FORALL (c0:real, a, b :sequence[real],
x:real, n:nat, i:below(j+1)):
sigma(i, n, LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x- c0) k̂)
=
sigma(i, n, LAMBDA(k:nat): a(k)*
sigma(i,n, LAMBDA(m:nat): IF k<=m THEN
b(m-k)*(x-c0)^m ELSE 0 ENDIF)) ,

The Lemma sig_a_pull_conv required inducting on the
quantity n-i in PVS, and allowed writing Sn as

Sn =
n∑

k=0
ak

n∑
m=k

bm−k (x − c0)
m,

one of the intermediate steps between (7) and (9). These
manipulations are done almost automatically by a mathe-
matician at a blackboard, but can be difficult when doing a
formal proof. From Theorem 3.2 the following useful lemma
can be shown
Lemma 3.3. For a function f : D → R that is analytic at a
point c0 with radius of convergence r ∈ R+. For k ∈ N and
c ∈ R the function

д(x) = c f (x)k

is analytic at c0 with radius of convergence r ∈ R+.

This section focused primarily on analytic functionswhose
codomain is R. This definition can be extended to a function
f , with codomain in Rn , for n ∈ N in the following way. f
is analytic at a point c0 means that each of its sub-functions
{ fi }

n
i=1 are analytic at c0, where

f (x) =


f0(x)
...

fn−1(x).

 . (11)

The radius of convergence of f (x) is the minimal of all the
radii of convergence of the fi functions. In PVS this definition
uses the nth function:
analytic?(n:nat,c0:real)

(f:[real -> VectorN(n)]): bool =
FORALL(i:below(n)): analytic?(c0)(nth(f,i)).

3.1 Analytic vs. Smooth
The way a real analytic function interacts with SA sets is
preferable to the way a smooth function might interact with
an SA set. To describe the difference, first this section inves-
tigates establishes the difference between the two classes
of functions. A function f is smooth at a a point c0 means
that f (n)(c0) exists for all n ∈ N. The following theorem
establishes that every analytic function is smooth.

Theorem 3.4. Suppose f : D → R is analytic at a point
c0 ∈ D with radius of convergence r , given in (5). Then f is
smooth on the interval (c0 − r , c0 + r ). Furthermore:

ak =
f (k )(c0)

k!
and

f (n)(x) =
∞∑
k=0

n−1∏
i=0

(k + n − i)akx
k .

This theorem was already established in the series library
in NASALib so it is stated without proof.
From Theorem 3.4 it can be shown that the power series

representation of an analytic function is unique:

f (x) =
∞∑
k=0

f (n) (c) (x − c)k ∀x ∈ (c0 −M, c0 +M) .

(12)

Although an analytic function is smooth, the converse is not
necessarily true. Take

sm(x) =

{
e−1/x sin(1/x) x > 0
0 x ≤ 0.

(13)

This function is clearly smooth for x , 0. Showing that
sm(x) is smooth at x = 0, but not analytic3 requires a few
helpful lemmas.

Lemma 3.5. For x > 0, n ∈ N, and sm(x) defined in (13)
1. There are sequences of polynomials {pn} and {qn} such

that the nth derivative of s at x is given by

sm(n)(x) =
e−1/x (pn(x) sin(1/x) + qn(x) cos(1/x))

x2n
. (14)

2. The limit of sm(n)(x) towards 0 from the right hand side
is zero, i.e.,

lim
x→0+

sm(n)(x) = 0. (15)

The proof of (14) in Lemma 3.5 in PVS uses induction
on n. The polynomial sequences {pn} and {qn} are defined
recursively with p0(x) = 1 and q0(x) = 0, and for n ∈ N≥1

pn(x) = pn−1(x) + p
′
n−1(x) + qn−1(x) − 2nxpn(x) and

qn(x) = qn−1(x) − pn−1(x) + q
′
n−1(x) − 2nxqn−1(x)

where p ′n−1(x) and q
′
n−1(x) are the derivatives of pn−1(x) and

qn−1(x), respectively. This required a proof that a single vari-
ate polynomial is differentiable in PVS, which was straight-
forward using the differentiation rules already present in
the analysis library of NASALib. In fact, once {pn} and {qn}
were defined in PVS, the inductive proof showing (14) made
repeated use of the chain, quotient, product, and power rules
already available in the analysis library.
3There are other, simpler, smooth but not analytic functions, but this choice
will serve in the next section.
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The proof of (15) in Lemma 3.5 first required showing
there exists a Cn ∈ R such that, for 0 ≤ x ≤ 1

|sm(n)(x)| ≤ Cn

����e−1/xx2n

���� . (16)

This result follows from the continuity ofh(x) = pn(x) sin(1/x)+
qn(x) cos(1/x) on the interval [0, 1]. Using (16) and

lim
x→0+

e−1/x

x2n
= lim

x→∞

x2n

ex

= 0

gives the desired result. Typically, one would use induction
and L’Hôpital’s rule to show

lim
x→∞

x2n

ex
= 0.

NASALib does not have L’Hôpital’s rule, so a different proof
for (3.1) had to be found that uses properties of the natural
log, exponential function, and existing analysis rules had to
be used. The proof is described as follows. For all x ≥ 0, note
that

x2n

ex
=

1
ex−2n ln(x ).

The function h1(x) = x − 2n ln(x) is less than or equal to
h2(x) =

1
2 (x−4n)+(4n−2n ln(4n)) for all x ≥ 4n. This can be

seen since h1(4n) = h2(4n) and h′
1(x) ≤ h′

2(x) for all x ≥ 4n.
Therefore for x ≥ 4n

0 ≤

���e−h1(x )��� ≤ ���e−h2(x )��� .
Since limx→∞ e−h2(x ) = 0, limx→∞ e−h1(x ) = 0, and the

result is shown.
Lemma 3.5 part 1 establishes the value of sm(n)(x) for

x > 0. For x < 0, sm(n)(x) = 0. Also sm(n)(x) is continuous
for x , 0, and Lemma 3.5 part 2 establishes that sm(n)(x) is
continuous at x = 0. The next theorem establishes that the
nth derivative of of sm at x = 0 is sm(n)(x) = 0, showing
smoothness at x = 0.

Theorem 3.6. For function sm defined in (13), the following
statement holds

1. s is smooth, with sm(n)(0) = 0 for each n ∈ N,
2. sm is not analytic at x = 0.

The proof of Theorem 3.6 part 1 was done by induction.
The crux of the argument was the following equalities

sm(n) (0) = lim
h→0

sm(n−1) (h) − sm(n−1)(0)
h

= lim
h→0

sm(n) (c(h))
= lim

h→0
sm(n) (h)) .

= 0,

Where the existence of ch ∈ (0,h) is given by the Mean Value
Theorem. The conditions of the Mean Value Theorem are

satisfied since sm(n−1) is differentiable on the open interval
(0,h) and continuous, on the interval [0,h].
The Mean Value Theorem in NASALib’s analysis library

required that sm(n) be differentiable on the closed interval
[0,h], which could not be assumed, since it is exactly what
is trying to be proven. This required a new Mean Value The-
orem to be specified with the slightly weaker assumptions
on the function:
mean_value_gen: THEOREM

FORALL(f:[real->real], a:real,
b:bb:real|bb>a):
(derivable?[open_interval(a,b)](f) AND
continuous?[closed_interval(a,b)](f)) IMPLIES
EXISTS (c:real): a < c AND c < b AND
deriv(f, c) * (b - a) = f(b) - f(a).

As a result, this more general version of the Mean Value
Theorem was proven and has been added to NASALib.

For the proof of part 2 of Theorem 3.6, the proof was by
contradiction. If sm was analytic at 0, by Theorem 3.4 then
there would be some r ∈ R≥0 such that

f (x) =
∞∑
k=1

f (k )(0)
k!

xk , ∀x ∈ (−r , r ) .

Using part 1 of this theorem this would mean f (x) = 0
on the interval (−r , r ). This is a contradiction since f (x) =
e−1/x sin(1/x), for all x > 0, and is therefore not the zero
function in any neighborhood around x = 0. This is a fact
that a mathematician would accept without proof, but PVS
required the following reasoning. For n ∈ N and

xn =
2

π (4 ∗ n + 1)
,

sm(xn) = e
π (4∗n+1)

2 sin( π ∗4n+12 ) = e
π (4∗n+1)

2 > 0. for all n ∈ N.
Since

lim
n→∞

xn = 0,

sm is not the zero in any open interval around x = 0.
Below is the PVS definition of sm, and the PVS theorem

stating that it is smooth everywhere, but not analytic at 0.
sm(x:real): real = IF x <= 0 THEN 0

ELSE exp(- 1 / x) * sin(1/x) ENDIF

smooth_not_analytic: THEOREM
smooth?(sm) AND NOT analytic(0)(sm).

3.2 Semi-algebraic Sets and Analytic Functions
This section investigates the interaction between SA sets
and real analytic functions. The goal is to show, in a sense
that will be made precise, that a real analytic function leaves
(or enters) an SA set at a single point, or for an interval.

First, the following lemma discusses the behavior of an
analytic function around a root. This will be key to showing
the favorable properties of an analytic function entering and
leaving an SA set.
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Lemma 3.7. For an analytic function f at a point t with
radius of convergence r , the following properties hold:

1. If f (t) > 0 then there exists an ϵ ∈ R>0 such that
f (x) > 0 for all x ∈ (t − ϵ, t + ϵ)

2. If f (t) < 0 then there exists an ϵ ∈ R>0 such that
f (x) < 0 for all x ∈ (t − ϵ, t + ϵ)

3. If f (t) = 0 then there exists an ϵ ∈ R>0 such that either
a. f (x) = 0 for all x ∈ (t − ϵ, t + ϵ), or
b. f (x) , 0 for x , t and x ∈ (t − ϵ, t + ϵ).

Proof. Parts 1 and 2 follow from the fact that f is continu-
ous. For part 3 the proof is by contradiction. Assume that
f (t) = 0 and f is not all zero on any open interval around
t . Also assume that there is a sequence {tk }

∞
k=1 such that

tk ∈
(
t − 1

k , t +
1
k

)
, f (tk ) = 0 and tk , t . Since f is analytic

it takes the form in (5). Since f is non-zero on (c0 − t, c0 + t)
there must be an n ∈ N such that f (n)(t) , 0. Assume that
n is the minimal number that has this property. By Taylor’s
remainder theorem there exists a ψk between t and tk , i.e.,
|ψk − t | ≤ |tk − t | such that

f (tk ) =
n−1∑
i=1

f (i) (t) (x − α)i + f (n)(ψk )(t − tk )

= f (n)(ψk )(t − tk ).

This implies f (n) (ψk ) = 0 since tk , 0. Furthermoreψk → t
since tk → t . Since f is analytic, f (n)(t) is continuous this
means f (n)(t) = 0, which contradiction that n is the minimal
number such that f (n)(t) , 0. The result is shown. □

Parts 1 and 2 of the proof above required basic proper-
ties of continuity that were found in NASALib’s analysis
library. Part 3 required Taylor’s theorem, which was also in
NASALib’s analysis library.

To study the the way an analytic function comes into con-
tact with an SA set, it is necessary to study the interaction of
between the function composed with a multivariate polyno-
mial. The next lemma shows the composition of an analytic
function with a multivariate polynomial is analytic.

Lemma 3.8. For a function f : D→ Rn , analytic at a point
c0 ∈ R, the following statements are true

1. For any monomialm : Rn → R. the compositionm ◦ f
is analytic.

2. Furthermore, for any polynomial p : Rn → R, the com-
position p ◦ f is analytic.

Proof of both parts 1 and 2 of Lemma 3.8 were proved using
induction. For part 1, this was done using the recursion, for
a monomialm : Rn → R and f : R→ Rn ,

m ◦ f (x) = (m̂ ◦ f̂ (x)) · (c(f0(x))
k ), (17)

where c is the coefficient of the monomialm, f0 is the first
of the functions that f is comprised of (defined in (11)), and
where m̂ : Rn−1 → R and f̂ : R → Rn−1 are the original

monomialm and function f projected on the lastn−1 entries.
In PVS , m̂ and f̂ are defined as
hat(m:mm:monomial| cons?(mm‘alpha)):

{mm:monomial | length(mm‘alpha) =
length(m‘alpha) - 1 } =

(# C: = 1 , alpha : = cdr[nat](m‘alpha) #)

hat(n:posnat)(f:[real -> VectorN(n)]):
[real -> VectorN(n-1)] =
LAMBDA(x:real): cdr(f(x)),

with the property in (17) specified by the lemma
eval_hat_equiv: LEMMA

FORALL(n:posnat, m:monomial |
length(m‘alpha) = n, f:[real->VectorN(n)]):
(LAMBDA(x:real): full_eval(m)(f(x)))
=
(LAMBDA(x:real): m‘C * car(f(x)) ^

car[nat](m‘alpha) *
full_eval(hat(m))(hat(n)(f)(x))).

With the recursion in (17) verified, the rest of the proof of
Lemma (3.8), part 1 follows from applying Theorem 3.2, part
3 and Lemma 3.3.
Part 2 of Lemma (3.8) follows from the fact that that the

polynomial p is the finite sum of n ∈ N monomials

p =m1 +m2 + · · · +mn,

and the composition p ◦ f (x) is nothing more that the sum
of f composed with monomials

p ◦ f (x) =m1 ◦ f +m2 ◦ f + · · · +mn ◦ f .

By an induction argument that uses Lemma 3.2 part 1, this
proof was shown in PVS.
Lemma 3.8 is very helpful, because it allows reasoning

about p ◦ f directly as an analytic function, instead of as
the composition of an analytic function and a multivariate
polynomial. The next lemma describes the behavior of an
analytic function around an SA set created by a conjunction
of atomic polynomial formulas, at any point in the function’s
domain.

Lemma 3.9. For a connected D ⊂ R, a function f : D →

Rn that is analytic on D, and φ be a conjunction of atomic
polynomial formulas {pj }nj=1,

φ =

J∧
j=1

pj ▷ 0 where ▷ ∈ {≥, >, ≤, <}. (18)

For x0 ∈ D there exists an ϵ > 0 such that either
1. for all 0 < t < ϵ , f (x0 + t) ∈ S(φ), or
2. for all 0 < t < ϵ , f (x0 + t) < S(φ).

Because of the result in Lemma 3.8, this can be proven as a
simple extension of Lemma 3.7. For eachpj in the conjunction
(18), there is an ϵj such that there are no roots of pi ◦ f on
(x0, x0 + ϵ) for any i ≤ n. From this, it was straightforward
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to show that there exists an ϵmin > 0 such that no pi ◦ f in
for i ∈ N≤ J has a root on the interval (x0, x0 + ϵmin):
min_eps LEMMA

FORALL (m:meeting,x0:real,
f:(analytic?(atom_max(m),x0))):
EXISTS(eps_min:posreal):
FORALL(i:below(length(m)), t:real):
(x0 < t AND t < x0 + eps_min) IMPLIES
full_eval(nth(m,i)‘poly)(f(x0 + t)) /= 0.

With the existence of this ϵmin, it is clear that the truth
value of φ in (18) is constant on the interval (x0, x0 + ϵmin),
finishing the proof.
With Lemma 3.9 above, the main result of the paper is

ready to be shown. The next two theorems classify how an
analytic function can leave or enter an SA set.

Theorem 3.10. For a connected D ⊂ R, a function f : D →

Rn , that is analytic on D, a semi algebraic set S (φ) where φ is
defined in Equation (3), and a x0 ∈ R such that f (x0) ∈ S (φ).
Then one of the following cases is true

1. f (x) ∈ S for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, f (x∗) < S ,

and there exists an ϵ such that f (x∗ + t) ∈ S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, there exists
an ϵ such that f (x∗ + t) < S(φ) for all 0 < t < ϵ .

Note that if the first condition is not satisfied,

t∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}

exists. By using Lemma (3.9), an ϵmin can be found such that
for each i ∈ N≤I the conjunction

J∧
j=1

pi j ▷ 0

has a constant truth value on the interval (x∗, x∗ +ϵmin). The
result follows from this. In PVS the theorem is specified as
clean_exit: THEOREM

FORALL(j:joining, x0:real,
f:(analytic?(meet_max(j),x0))):
semi_alg(j)(meet_max(j))(f(x0)) IMPLIES (
% Condition 1
(FORALL(x:real): x >= x0
IMPLIES semi_alg(j)(meet_max(j))(f(x)) OR
% Condition 2
EXISTS(eps:posreal):
FORALL(t:real): inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) < t
AND t < inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) + t
IMPLIES semi_alg(j)(meet_max(j))(f(t)) OR
% Condition 3
EXISTS(eps:posreal): FORALL(t:real):
inf({xx:real |

Figure 2. A visualization of Example 3.12. The function sm
defined in Equation (13) is smooth, not analytic, and has
infinity many points inside and outside of the SA set S(φ)
around x = 0, violating the conclusion of Theorem 3.10.

NOT semi_alg(j)(meet_max(j))(f(xx))}) < t AND
t > inf(xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))) + t
IMPLIES NOT semi_alg(j)(meet_max(j))(f(t))).

Theorem 3.11. For a connected D ⊂ R, a function f : D →

Rn , where that is analytic on D, a semi algebraic set S (φ)
where φ is defined in Equation (3), and a x0 ∈ R such that
f (x0) < S (φ). Then one of the following cases is true

1. f (x) < S(φ) for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} f (x∗) ∈ S

and there exists an ϵ such that f (x∗ + t) < S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} there exists
an ϵ such that f (x∗ + t) ∈ S for all 0 < t < ϵ .

A proof of Theorem 3.11 can be found by applying Theo-
rem 3.10with f and Sc . These theorems show that an analytic
function leaves or enters an SA set in a “clean" way, i.e., at a
a single point, or for a complete interval of time. When the
assumption that f is weakened from analytic to smooth, this
result does not hold, as shown in the following example.

Example 3.12. Consider the SA set S(φ)whereφ = (X1 ≤ 0),
and the function sm : R→ R is defined in Equation (13), see
Figure 2. Using Theorem 3.6, sm is smooth, but not analytic.
For all x ≤ 0, sm(x) ∈ S(φ). Furthermore, x∗ = inf{x ∈

R|sm(x) < S(φ)} = 0 since for xn = 1
π (n+1) , sm(xn) = 0 ∈ S

and xn → 0. On the other hand, for yn = 2
π (4n+1) , sm(yn) =

e−1/yn < S . Because of the infinite oscillations around the
origin, the conclusions in Theorem 3.10 are not satisfied, i.e.,
for all ϵ > 0 there exists 0 < x1, x2 < ϵ such that x1 ∈ S(φ)
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and x2 < S(φ). In PVS, this counter example is shown in the
lemma below

% Define variables
p1:(mv_standard_form?) =

(: (# C: = 1, alpha: = (: 1 :) #) :)
atom1: atomic_poly =
(# poly : = p1, ineq: = <= #)

SA: set[VectorN(1)] =
semi_alg( (: (: atom1 :) :))(2)

% Smoothness is not enough for "clean break"
not_clean_break: LEMMA

inf(xx:real | NOT SA((: sm(xx) :))) = 0 AND
EXISTS(xn,yn:sequence[real]):
convergence(xn,0) AND convergence(yn,0) AND
FORALL(i:nat): SA((: sm(xn(i)) :)) AND
xn(i) > 0 AND
NOT SA((: sm(xn(i)) :) ) AND
yn(i) > 0

4 Related Work
The development of analytic functions and SA sets in PVS
is a part of an ongoing project to implement a differential
dynamic logic (DDL) in PVS. The purpose of this formaliza-
tion is to help reason about hybrid systems, i.e., systems that
have both discrete variables and continuous variables, the
latter defined by solutions to ordinary differential equations,
without having to explicitly solve the differential equations
in some cases [28–30]. An example of an implementation
of DDL is a theorem prover called KeYmaera X, which is a
formal verification tool to interactively and formally reason
about hybrid systems [10]. To verify the soundness of DDL,
it has been formalized in both Isabelle and Coq [3].

Often, solving the differential equation explicitly is overly
cumbersome or not feasible, so it is easier to reason about the
solution without finding it. The deduction that the solution
of an ODE is analytic is possible with general assumptions
about the underlying ODEs. DDL allows this reasoning but
requires knowledge of how such a function interacts with
constraints modeled as SA sets. There has been significant
research done on reasoning about differential invariants in
DDL, where the domain of the differential equation and a set
of system constraints are modeled as SA sets. Of particular
interest is how such a solution leaves and enters a set of
constraints, motivating this work. [12, 31–33]

Although the interactions between analytic functions and
SA sets have been studied (e.g., [19]), to the best of the au-
thor’s knowledge, there is no known formalization of these
behaviors. A constructive formalization of SA sets was under-
taken in Coq, to specify and formally verify the cylindrical
algebraic decomposition (CAD) algorithm, which takes a set
of polynomials and decomposes their domain space into SA
sets, where the sign of each polynomial is constant [7, 8].

This is one of the most fundamental and important algo-
rithms in real algebraic geometry. In addition to the CAD
implementation [20, 21], multivariate polynomials have been
implemented and used in Coq several ways [1, 4, 6]. In Is-
abelle/Hol, formalization of multivariate polynomials [13]
and the CAD algorithm [17] are active areas of research.
Implementation of univariate polynomials was done in the
formalization of Sturm’s theorem in HolLight [14] and in the
PVS implementation of Sturm’s and Tarski’s theorems [23].
Multivariate Bernstein polynomials have also been formal-
ized in PVS [22], which is a powerful tool for approximating
continuous functions.

5 Conclusions and Future Work
This paper describes the formalization of multivariate poly-
nomials with a sparse representation and semi-algebraic sets
in PVS, as well as real analytic functions and their interac-
tions with SA sets.

The primary goal of this work is to eventually formalize a
version of DDL that can be used in an interactive way in PVS.
To this end, there is much interesting work to be done. The
theory of differential equations must be formalized including,
at the least, the existence and uniqueness theorems which
guarantee a real analytic solution to a differential equation
exists. The soundness of the differential rules in DDL will
also need to be shown, which will depend on the theory of
differential equations.

With respect to the SA set formalization there are several
directions that the research can be extended. The current
embedding in PVS assumes the an SA set is already in dis-
junctive normal form. An extension that allows conditional
statements of polynomial formulas would add to the expres-
siveness of the library, and and implementation of a disjunc-
tive normal form transformation would make this extension
fit into the theory that has been established in this paper.
Additionally, one of the fundamental theorems in real al-

gebraic geometry is the Tarski-Seidenberg Theorem, which
says that every quantified formula over multivariate poly-
nomial constraints is equivalent to a quantifier-free formula
used to define semi-algebraic sets. A proof of this theorem, as
well as specification and proof of CADmethods for quantifier
elimination, are long-term goals for the PVS formalization.
As noted in Section 4, this is an on-going area of research in
many theorem provers.
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