
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Formal Verification of the Interaction Between
Semi-Algebraic Sets and Real Analytic Functions

Anonymous Author(s)

Abstract
Semi-algebraic sets and real analytic functions are fundamen-
tal concepts in Real Algebraic Geometry and Real Analysis,
respectively. These concepts interact in the study of Differen-
tial Equations, where the real analytic solution to a differen-
tial equation is known to enter or exit a semi-algebraic set in
a predicable way. Motivated to enhance the capability to rea-
son about differential equations in the Prototype Verification
System (PVS), a formalization of multivariate polynomials,
semi-algebraic sets, and real analytic functions is developed.
The favorable way that a real analytic function enters and
exits a semi-algebraic set is proven. It is further shown that
if the function is assumed to be smooth, a slightly weaker
assumption than real analytic, these favorable interactions
with semi-algebraic sets may fail.

Keywords: formal verification, PVS, semi-algebraic sets

1 Introduction
Differential equations are a powerful tool for modeling the
evolution of continuous states in dynamical systems [15, 34].
While a variable is modeled as a solution to a differential
equation, semi-algebraic (SA) sets can be used to define en-
vironment constraints and control properties of the variable.
In the context of safety-critical applications, the interaction
between a solution to a differential equation and a semi-
algebraic set is crucial for verifying the safety properties of
the given system. In particular, the way that a solution to a
differential equation leaves and enters an SA set can inform
when a safety violation has occurred or ended. One specific
example is two aircraft maintaining a safe distance from one
another [11].
Differential dynamic logic (DDL) is a logic that allows

formal reasoning about hybrid systems, using properties of
solutions of differential equations, in some cases without
having needed the explicit solution[26, 27]. Under modest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Certified Programs and Proofs ’21, Jan 18–19, 2021,

assumptions, the solution of a differential equation is guar-
anteed to be a real analytic function (see, e.g. [9], Chapter
1.D, or [35], Chapter 9.37), and so reasoning about how a
solution to a differential equation interacts with its domain
can often be reduced to reasoning about the behavior of real
analytic functions and SA sets [18, 32].
This work focuses on the formal specification and verifi-

cation of the interactions between SA sets and real analytic
functions in the Prototype Verification System (PVS) [24, 25].
The main motivation is the eventual implementation of a
formally verified version of DDL in PVS that allows users
to reason about cyber-physical systems using DDL interac-
tively in PVS. To do this, the deduction rules for DDL must
be formally verified in PVS, and as noted above, these in-
volve reasoning about real analytic functions and SA sets.
SA sets are defined using collections of multivariate poly-
nomial constraints, allowing a wide variety of sets to be
defined. The formalization provided in this paper allows for
reasoning about general SA sets and particular user-specified
instantiations of these sets.

A formal specification of the theory of real analytic func-
tions is also developed. Real analytic functions can be written
in terms of their power series, which includes functions like
polynomials, trigonometric functions, exponential and log-
arithmic functions, and products, sums, and compositions
of such functions. Importantly, even functions that are not
explicitly specified may be known to be real analytic, the
motivating example being solutions to many differential
equations.
The way that a real analytic function interacts with the

boundary of an SA set is known to have certain favorable
geometric properties, which are important for reasoning
in DDL. An example of this behavior is shown in Figure 1,
where the analytic solution of a differential equation leaves
an SA set for a complete interval of time before entering
again. These interactions are formally verified in PVS. It is
also shown that relaxing the assumption of real analytic to
smooth (i.e., infinitely differentiable) removes the favorable
interactions that are guaranteed between real analytic func-
tions and SA sets. This offers practical insight regarding the
subtle difference between real analytic and smooth functions.
Furthermore, the challenges of implementing this theory in
PVS give educational insight into proofs and allows further
development of the growing NASA PVS library. 1

1https://github.com/nasa/pvslib
1

https://github.com/nasa/pvslib

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

y0

y′ = f(y, t)

Rn

Figure 1. An analytic solution to a differential equation moves in and out of a semi-algebraic set

The remaining sections are organized as follows. Section 2
gives a brief review of multivariate polynomials and SA sets.
Section 3 introduces real analytic functions and describes
the way they interact with SA sets. Related work is discussed
in Section 4. Conclusions and future directions are discussed
in Section 5.
The mathematics presented in Sections 2 and 3 have all

been specified and verified in PVS by the authors, except that
in a few cases, some important concept or theorem is taken
from NASA’s PVS library (NASALib). This will be explicitly
noted when needed.

2 Polynomials & Semi-Algebraic Sets
Real Algebraic Geometry is a branch of mathematics con-
cerned with the study of SA sets. An SA set is a set of points
that satisfy a finite sequence of multivariate polynomial
equalities and inequalities, or a union of such sets [2]. As
noted in the introduction, SA sets are also important to the
theory of general real-valued functions, particularly how a
real analytic function behaves on such a set. This section
discusses a formalization of multivariate polynomials and
semi-algebraic sets in PVS.

2.1 Multivariate polynomials over the reals
When mathematicians consider multivariate polynomials
over the reals, it is often unclear what kind of formal objects
they are referring to. Such a polynomial may be considered a
member of the polynomial ring R[X0,X1, . . . ,Xm−1] withm
indeterminants and real coefficients, or for inductive reasons
a member of the ring (R[X0,X1, . . . ,Xm−2])[Xm−1]) with a
single indeterminant and polynomial coefficients, or as a
function from Rm into R, or many other possible definitions.
Indeed, the fact that polynomials can be considered in differ-
ent settings is part of what makes them so useful.
From the formalization standpoint, one particular repre-

sentation for such polynomials has to be chosen, and trans-
lations or interpretations for any of the other definitions

have to be specified and justified. The author Zippel, in [36],
identifies three decision points with respect to choosing how
polynomial might be represented. Expanded vs. recursive
representation concerns whether coefficients are real num-
bers and multiple variables are allowed (expanded), or a
single variable has (recursively) multivariate polynomials
as coefficients. Variable sparse vs. variable dense refers to
whether the representation includes variables with exponent
zero (dense) or excludes them (sparse) in a monomial defi-
nition. Degree sparse vs. degree dense refers to whether all
monomials up to a given multidegree are included in the
representation by using a zero coefficient (dense) or if only
those with non-zero coefficient are recorded (sparse). For
this formalization, an expanded, (essentially) variable dense,
and (essentially) degree sparse representation was chosen,
as described below.

The polynomials considered here are real-linear combina-
tions ofmonomials, expressions of the formXα := X α0

0 · · ·X αm−1
m−1 ,

where α = (α0,α1, . . . αm−1) ∈ N
m , andm ∈ N. The num-

ber of entries in α is called the dimension of the monomial,
i.e., dim (Xα) = m, while the degree of the of monomial is
deg (Xα) =

∑m−1
i=0 αi . A monomial is then cXα , where c ∈ R.

The implementation of this is done with record datatype

monomial: TYPE =
[# C : = real, alpha : = list[nat] #],

with a particular instantiation of this type taking the form

m = (# C : = c, alpha : = L #).

The symbol “ ’ ” is field accessor of a record, i.e., m’alpha
= L . This is equivalent to the dot notation in programming
languages like Java.
Note in particular that the implementation above allows

for coefficients to be zero, hence not forcing degree sparsity.
A multivariate polynomial function has the form

p =
n∑

k=0
ckXα (k), (1)

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Formal Verification of the Interaction Between Semi-Algebraic Sets and Real Analytic Functions Certified Programs and Proofs ’21, Jan 18–19, 2021,

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

where n ∈ N is finite, ck ∈ R, and α (k) ∈ Nm for each
i ∈ N≤n . The implementation represents this simply as a list,
MultPoly: TYPE = list[monomial].

This intentionally allows for different expressions to be given
for the same polynomial. For example, consider the (syntac-
tically distinct) expressions

p1 =X
2
0 + X0,

p2 =X0 + X
2
0 ,

p3 =X0X
0
1 + X

2
0 ,

p4 =X0 + 3X 2
0 + (−2)X

2
0 , and

p5 =X0 + X
2
0 + 0X

3
0 ,

(2)

represented in PVS as
p1: MultPoly = (: (# C: = 1, alpha: = (: 2 :) #),

(# C: = 1, alpha: = (: 1 :) #) :)

p2: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p3: MultPoly = (: (# C: = 1, alpha: = (: 1, 0 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p4: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 3, alpha: = (: 2 :) #),
(# C: = -2, alpha: = (: 2 :) #) :)

p5: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #),
(# C: = 0, alpha: = (: 3 :) #) :).

These expressions are different, and yet are meant to ex-
press the same polynomial. Indeed, considered as functions,
these are the same, and simple algebraic manipulation can
turn any one into the other. This general form of polyno-
mials allows for the easy definition of ring operations on
polynomials (addition is just list concatenation), but in or-
der to unambiguously define the dimension and degree of a
polynomial, a standard form is defined.

Definition 2.1. A multivariate polynomial representation
given by Equation (1) is said to be in standard form when the
following properties hold:

1. The dimension of each monomial in the expression is
the same, and some term uses the last variable non-
trivially. That is, there existsm ∈ N such that dim (αk) =

m for all k ∈ N≤n, and there exists n0 ∈ N≤n with
αm (n0) > 0.

2. For i , j ∈ N≤n , αi , α j . In other words, each expo-
nent vector α can appear at most one time in (1).

3. The coefficient ck , 0 for each k ∈ N≤n (note that the
identically zero polynomial is the empty list).

4. The monomial terms in the expression (1) are ordered
by some total order on the monomials inm variables.

In the PVS formalization, each of these properties is de-
fined using a predicate on a polynomial p. In addition, func-
tions are defined that operate on a general polynomial and

give it the corresponding property. Property 1 is defined us-
ing the predicate minlength?(p), and bestowed by applying
cut(p), which removes trailing zeroes from exponents, and
lift(p), which pad exponents with zeroes to be the longest
exponent length occurring in the polynomial. Property 2 is
defined using the predicate simplified?(p), and bestowed
by simplify(p). Property 3 is defined using the predicate
allnonzero?(p), and bestowed by allnonzero(p). Prop-
erty 4, with respect to the graded lexographical (GL) ordering
described below, is defined using the predicate is_sorted?(p),
and bestowed by mv_sort(p). Using these functions, Defini-
tion 2.1 is specified as a single predicate mv_standard_form?(p)
that holds when all 4 predicates hold, and the corresponding
function mv_standard_form(p) gives all four properties to
the polynomial p.

The particularmonomial ordering chosen for sortingmono-
mials is the graded lexographical ordering. The ordering sorts
first by the total degree of the monomial (graded), and breaks
ties comparing the degrees of individual variables in order
(lexicographic). Specifically, Xα (0) < Xα (1) exactly when :

1. deg
(
Xα (0)) < deg

(
Xα (1)) , or

2. deg
(
Xα (0)) = deg

(
Xα (1)) and

∃j ∈ N≤m−1
(
α j (0) < α j (1) ∧ ∀i ∈ N<j αi (0) = αi (1)

)
.

As an example, the fourmonomials in the ringR[X0,X1,X2]

below are listed in increasing GL order.

X1X2, X
2
0X

2
1 , X

2
0X

1
1X

1
0 , X

4
0 .

Given a polynomial whose representation is in standard
form, the degree and dimension are each well-defined. The
dimension is the length of the longest exponent (or in fact
any exponent due to the lift function), and the degree is the
maximum degree (or the degree of the last monomial, due
to mv_sort). Functions for polynomial addition, scalar and
polynomial multiplication, and polynomial exponentiation
are specified, which, by definition, preserve standard form.

Multivariate polynomials so far defined have the structure
of a ring, and hence can be combined and manipulated, but
cannot yet be used as functions from Rm → R. To do so, an
evaluation function on polynomials is defined. In fact, two
forms of evaluation are defined. Partial evaluation takes a
list of indices and a list of values, and evaluates only those
variables listed in the indices, using the corresponding values.
This returns a polynomial of the same dimension as the
original, where the evaluated variables have exponent zero.
Full evaluation takes a list of values, at least as long as the
dimension of the polynomial, and replaces the variables with
the corresponding values ,ignoring values past the dimension
of the polynomial, returning a real number.

The main purpose of the evaluation function is for use in
defining the semi-algebraic sets of Section 2.2. A secondary
use of the evaluation function is in proving the uniqueness
of the standard form defined above.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Theorem 2.2. Given a function σ that returns the standard
form of a polynomial as in Definition 2.1, andp1,p2 polynomial
expressions of the form (1),

σ (p1) = σ (p2)

if and only if for all x ∈ Rm ,

p1(x) = p2(x).

2.2 Semi-algebraic sets
Given a dimensionm, a semi-algebraic set is a subset S ⊆ Rn

defined by satisfying a finite collection multivariate polyno-
mial relations , or a finite union of such sets. This corresponds
to satisfying the disjunction (or join) of the conjunction (or
meet) of a collection of polynomial relations. A boolean for-
mula in this form is said to be in disjunctive normal form.
In some situations, it is more convenient to consider the
a general form of a quantifier-free boolean formula over
multivariate polynomial relations built using the boolean
operators ∨,∧,¬, and⇒ . Noting that every such quantifier-
free boolean formula can be written in disjunctive normal
form [5], the restricted definition as the join of meets is cho-
sen without loss of generality. The technical definition and
formalization details are developed below.
An atomic polynomial formula over the variables X :=

X0, · · · ,Xm−1 is defined as p ▷ 0 where p is a polynomial in
R[X] and ▷ ∈ {≥, >, ≤, <}. 2 The implementation of this in
PVS done with record datatype
atomic_poly: TYPE =
[# poly:(mv_standard_form?), ineq:INEQ #],

where
INEQ: TYPE = { ff: [real,real -> bool] |

(ff = <=) OR (ff = >=) OR
(ff = <) OR(ff = >) }.

Note, in the type INEQ above the expression a higher order
equality is used to compare functions, where the inequalities
<=, >=, < , and > are functions that return the truth value of
the inequality based on the two real operands.

The formulas to be considered are expressed as

φ =
I∨
i=1

Ji∧
j=1

pi j ▷ 0, where ▷ ∈ {≥, >, ≤, <}, (3)

and a subset S of Rm is a semi-algebraic set, if there is a
quantifier free polynomial formula φ such that

S = {x ∈ Rm | φ(x) is true}.

In the formalization, the conjunction of atomic polynomial
formulas is specified simply as a list,
meeting TYPE = list[atomic_poly],

and a disjunction of these conjunctions is specified as
joining: TYPE = list[meeting].

2The functions = and , are excluded for simplicity of the embedding of SA
sets. Note that they can be described with the relations allowed.

Of course, the atomic polynomials and lists of them have
no inherent meaning, being just lists. To define an SA set,
evaluation functionsmust be defined. The functions atom_eval,
meet, and join are defined successively to take a point
x ∈ Rm and return the truth value of an atomic polyno-
mial formula, the meet of such formulas, and the join of
meets evaluated at the point.

A semi-algebraic set S(φ) defined by φ is then specified in
PVS by
semi_alg(j:joining)(n:nat | n >= meet_max(j)):
set[VectorN(n)] =
{ x:VectorN(n) | join(j)(x) }.

One of themost important basic properties of semi-algebraic
sets is that they are closed under finite set operations. The
following theorem expresses this.

Theorem 2.3. For two semi algebraic sets S1 and S2, the fol-
lowing properties hold:

1. The union S1 ∪ S2 is an SA set.
2. The intersection S1 ∩ S2 is an SA set.
3. The compliment ¬S1 is an SA set.

This theorem is clear intuitively (union is join, intersection
is meet, and complement is negation), but due to the formal-
ization definition, the formal proof requires translating the
conjunction and disjunction of two joining expressions
in disjunctive normal form into another expression that is
in disjunctive normal form. For union this is as simple as
concatenating the to two lists using the append function:
union_join: LEMMA

FORALL(j1,j2:joining,
x: list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) OR join(j2)(x)) =
join(append(j1,j2))(x).

For intersection, the formula for the conjunction of two
joining expressions in disjunctive normal form (3) is given
by
cap_join(j1,j2:joining): RECURSIVE joining =
IF j1 = null THEN null
ELSIF j2 = null THEN null
ELSE append(append_to_each(car(j1),j2),
cap_join(cdr(j1),j2))
ENDIF
MEASURE length(j1).

Here, the append_to_each function takes each conjunc-
tion in the second joining and appends it to each of the
conjunctions in the first joining. This is because distribut-
ing a conjunction over disjunctions has the following form(

I∨
i=1

Ji∧
j=1

pi j ▷ 0

)
∧ (q ▷ 0) =

I∨
i=1

Ji+1∧
j=1

wi j ,

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Formal Verification of the Interaction Between Semi-Algebraic Sets and Real Analytic Functions Certified Programs and Proofs ’21, Jan 18–19, 2021,

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

where

wi , j =

{
pi , j j ≤ Ji

q j = Ji + 1.

Using the cap_join function, it can be shown that the con-
junction of two disjunctive normal form expressions can be
written in disjunctive normal form.
intersect_join: LEMMA

FORALL(j1,j2:joining,
x:list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) AND join(j2)(x)) =
join(cap_join(j1,j2))(x).

Noting that the complement of an SA set is given by the
negation of the corresponding formula, consider the negation
of (3) which can be written

¬φ =
I∧
i=1

Ji∨
j=1

pi j¬ ▷ 0 where ¬▷ ∈ {≥, >, ≤, <}. (4)

Here ¬▷ is defined according to the following table:
▷ ¬▷

≥ <
≤ >
> ≤

< ≥

The expression in equation (4) is transformed into disjunctive
normal form by repeated use of the cap_join function:
not_join(j:joining): RECURSIVE joining =

IF j = null THEN(: (: :) :)
ELSE
cap_join(negative_atom_meet(car(j)),
not_join(cdr(j)))
ENDIF
MEASURE length(j).

The equivalence is expressed by
not_join: LEMMA

FORALL(j:joining, x:list[real] |
length(x) >= meet_max(j)):
(NOT join(j)(x)) = join(not_join(j))(x).

As noted above, the proofs here could have been made
simpler by allowing for more general boolean expressions
in the definition of semi-algebraic sets. On the other hand,
this would have incurred an overhead cost in the original
specification, as well as in the evaluation functions. The
design choice of using only formulas in disjunctive normal
form allows for a much cleaner representation, at the cost of
some tedious proofs.

3 Real-analytic Functions
For an open set D ⊆ R, A real function f : D → R is said
to be real analytic at a point c ∈ D when there exists a real
sequence {ak }∞k=0 and an r ∈ R>0 such that

f (x) =
∞∑
k=0

ak (x − c)k ∀x ∈ (c0 − r , c0 + r) . (5)

Furthermore, f is analytic on aV ⊆ D if it is analytic at each
x ∈ V . In PVS, the sequence {ak } and real number r in (5)
are defined by the predicate
analytic_parts?(c0:real,f:[real->real])
(M:posreal, ak:sequence[real]): bool =

FORALL(x:real| abs(x-c0) < M):
convergent?(powerseries(ak)(x-c0)) AND
f(x) = inf_sum(powerseq(ak,x-c0)),

Using this predicate, an analytic function f : R → R at a
point c0 is defined by
analytic?(c0:real)(f:[real -> real]): bool =
EXISTS(r:posreal, ak:sequence[real]):
analytic_parts?(c0,f)(r,ak).

For a function f : D → R, where D is open, the definition
in (5) is equivalent to
analytic?(c0:real)(lift(D,f))

where lift(D, f) trivially extends the domain of f to all of
R, i.e.,
lift(D:(open?),f:[D -> real])(x:real): real =

IF D(x) THEN f(x) ELSE 0 ENDIF.

In (5), the number r is called the the radius of convergence
of f at x . If there is not a r such that (5) holds, the maximal
radius of convergence is said to be 0, while if (5) holds for
all r ∈ R≥0, the maximal radius of convergence is said to be
infinity. In all other cases there is an rmax ∈ Rwhich is called
the maximal radius of convergence.
From the definition in (5), it is clear that the infinite sum∑∞
k=0 ak (x − c0)

k , x ∈ (c0 − r , c0 + r) converges. Using stan-
dard properties of convergent series, it can be shown that
analyticity is closed under addition and scalar multiplica-
tion. To show that the product of two analytic functions is
analytic, the following lemma is required.

Lemma 3.1 (Absolute Convergence). Suppose f : D → R
is analytic at a point c0 ∈ D, as stated in (5). For each x ∈

(c − r , c + r), the sum

A =
∞∑
k=0

���ak (x − c)k
���

converges.

Lemma 3.1 shows that if a function is analytic, then the
series representation of the function converges absolutely.
This lemma has been previously proven in NASALib’s series
library, so the proof will not be presented here.

With the lemma above, enough machinery is available to
show that being analytic at a point is closed under summa-
tion, scalar multiplication, and multiplication.

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Theorem 3.2. Suppose f : D → R and д : D → R are
analytic at a point c0 ∈ D with radius of convergence rf and
rд respectively. i.e.,

f (x) =
∞∑
k=0

ak (x − c0)
k ∀x ∈

(
c0 − rf , c0 + rf

)
(6)

д(x) =
∞∑
k=0

bk (x − c0)
k ∀x ∈

(
c0 − rд, c0 + rд

)
and let rmin = min

(
rf , rд

)
, then the following statements hold:

1. f + д is analytic with radius of convergence rmin,
2. c · f is analytic with radius of convergence rf , and
3. f · д is analytic with radius of convergence rmin

(д ∗ f) (x) =
∞∑
k=0

conv (k,a,b) (x − c0)
k ,

where conv(k,a,b) is thekth convolution of the sequences
a and b

conv (k,a,b) =
k∑
i=0

aibk−1.

Proof. Parts 1 and 2 follow from basic convergence properties
of series. For 3, let x ∈

(
c0 − rf , c0 + rf

)
,

Sn =
n∑

k=0
conv (k,a,b) (x − c0)

k , and (7)

Rn =
∞∑

k=n+1
bk (x − c0)

k . (8)

By using (6) and (3), Sn can be re-written as

Sn = д(x)
n∑

k=0
ak (x − c0)

k −

n∑
k=0

ak (x − c0)
k Rn−k . (9)

By using equation (6) the first term in this expression con-
verges

lim
n→∞

д(x)
n∑

k=0
ak (x − c0)

k = д(x)f (x).

It remains to show that

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

Let ϵ > 0, Choose N0 ∈ N such that for all N ≥ N0, |RN | <

ϵ/(2A), where A =
∑∞

k=0

���ak (x − c)k
��� is finite from Lemma

3.1. This N0 exists since limn→∞ Rn = 0.
Choose N1 ∈ N such that for N ≥ N1,

��aN (x − c0)
N �� <

ϵ/(2N0R), where R = maxi ∈R≤N0
|Ri |. This exists since an(x−

c0)
n → 0.

Now, let N ≥ N0 + N1. Using the triangle inequality����� N∑
k=0

ak (x − c0)
k RN−k

�����
≤

�����N−N0∑
k=0

ak (x − c0)
k RN−k

����� +
����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� .
The first summation has the bound�����N−N0∑

k=0
ak (x − c0)

k RN−k

����� ≤ N−N0∑
k=0

���ak (x − c0)
k
��� |RN−k |

≤
ϵ

2A

N−N0∑
k=0

���ak (x − c0)
k
���

≤
ϵ

2
.

The second summation has the bound����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� ≤ N∑
k=N−N0+1

���ak (x − c0)
k
��� |RN−k |

≤

N∑
k=N−N0+1

ϵ |RN−k |

2N1R

≤

N∑
k=N−N0+1

ϵ

2N0

=
ϵN0

2N0
≤
ϵ

2
.

(10)
Therefore ����� N∑

k=0
ak (x − c0)

k RN−k

����� ≤ ϵ,

and thus

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

The result is shown. □

This proof above has the same general structure as the
proof in [16] (Ch. 1, page 4-5). The largest departure is the
introduction of N2 ∈ N, which guarantees the bound shown
in (10) for N ≥ N0+N1. In the original proof, the summation
in (10) is said to converge to 0 “by holding N0 fixed as letting
N go to infinity." This combination of an ϵ based argument
and a limit based argument is not easily translated into PVS,
so a clearer ϵ argument was constructed.

Additionally, implementation proof of Theorem 3.2 in PVS
required non-trivial manipulations of finite sums. A finite
sum in PVS is defined using the sigma function defined in
the real number library of NASALib,
sigma(low, high, F): RECURSIVE real =

IF low > high THEN 0
ELSE F(high) + sigma(low, high-1, F) ENDIF

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Formal Verification of the Interaction Between Semi-Algebraic Sets and Real Analytic Functions Certified Programs and Proofs ’21, Jan 18–19, 2021,

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

MEASURE (LAMBDA low, high, F:
abs(high+1-low)).

To get from the definition of Sn in (7) to the form in (9)
required a number of intermediate lemmas, including
sig_a_pull_conv: LEMMA

FORALL (c0:real, a, b :sequence[real],
x:real, n:nat, i:below(j+1)):
sigma(i, n, LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x- c0) k̂)
=
sigma(i, n, LAMBDA(k:nat): a(k)*
sigma(i,n, LAMBDA(m:nat): IF k<=m THEN
b(m-k)*(x-c0)^m ELSE 0 ENDIF)) ,

The Lemma sig_a_pull_conv required inducting on the
quantity n-i in PVS, and allowed writing Sn as

Sn =
n∑

k=0
ak

n∑
m=k

bm−k (x − c0)
m,

one of the intermediate steps between (7) and (9). These
manipulations are done almost automatically by a mathe-
matician at a blackboard, but can be difficult when doing a
formal proof. From Theorem 3.2 the following useful lemma
can be shown
Lemma 3.3. For a function f : D → R that is analytic at a
point c0 with radius of convergence r ∈ R+. For k ∈ N and
c ∈ R the function

д(x) = c f (x)k

is analytic at c0 with radius of convergence r ∈ R+.

This section focused primarily on analytic functionswhose
codomain is R. This definition can be extended to a function
f , with codomain in Rn , for n ∈ N in the following way. f
is analytic at a point c0 means that each of its sub-functions
{ fi }

n
i=1 are analytic at c0, where

f (x) =

f0(x)
...

fn−1(x).

 . (11)

The radius of convergence of f (x) is the minimal of all the
radii of convergence of the fi functions. In PVS this definition
uses the nth function:
analytic?(n:nat,c0:real)

(f:[real -> VectorN(n)]): bool =
FORALL(i:below(n)): analytic?(c0)(nth(f,i)).

3.1 Analytic vs. Smooth
The way a real analytic function interacts with SA sets is
preferable to the way a smooth function might interact with
an SA set. To describe the difference, first this section inves-
tigates establishes the difference between the two classes
of functions. A function f is smooth at a a point c0 means
that f (n)(c0) exists for all n ∈ N. The following theorem
establishes that every analytic function is smooth.

Theorem 3.4. Suppose f : D → R is analytic at a point
c0 ∈ D with radius of convergence r , given in (5). Then f is
smooth on the interval (c0 − r , c0 + r). Furthermore:

ak =
f (k)(c0)

k!
and

f (n)(x) =
∞∑
k=0

n−1∏
i=0

(k + n − i)akx
k .

This theorem was already established in the series library
in NASALib so it is stated without proof.
From Theorem 3.4 it can be shown that the power series

representation of an analytic function is unique:

f (x) =
∞∑
k=0

f (n) (c) (x − c)k ∀x ∈ (c0 −M, c0 +M) .

(12)

Although an analytic function is smooth, the converse is not
necessarily true. Take

sm(x) =

{
e−1/x sin(1/x) x > 0
0 x ≤ 0.

(13)

This function is clearly smooth for x , 0. Showing that
sm(x) is smooth at x = 0, but not analytic3 requires a few
helpful lemmas.

Lemma 3.5. For x > 0, n ∈ N, and sm(x) defined in (13)
1. There are sequences of polynomials {pn} and {qn} such

that the nth derivative of s at x is given by

sm(n)(x) =
e−1/x (pn(x) sin(1/x) + qn(x) cos(1/x))

x2n
. (14)

2. The limit of sm(n)(x) towards 0 from the right hand side
is zero, i.e.,

lim
x→0+

sm(n)(x) = 0. (15)

The proof of (14) in Lemma 3.5 in PVS uses induction
on n. The polynomial sequences {pn} and {qn} are defined
recursively with p0(x) = 1 and q0(x) = 0, and for n ∈ N≥1

pn(x) = pn−1(x) + p
′
n−1(x) + qn−1(x) − 2nxpn(x) and

qn(x) = qn−1(x) − pn−1(x) + q
′
n−1(x) − 2nxqn−1(x)

where p ′n−1(x) and q
′
n−1(x) are the derivatives of pn−1(x) and

qn−1(x), respectively. This required a proof that a single vari-
ate polynomial is differentiable in PVS, which was straight-
forward using the differentiation rules already present in
the analysis library of NASALib. In fact, once {pn} and {qn}
were defined in PVS, the inductive proof showing (14) made
repeated use of the chain, quotient, product, and power rules
already available in the analysis library.
3There are other, simpler, smooth but not analytic functions, but this choice
will serve in the next section.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

The proof of (15) in Lemma 3.5 first required showing
there exists a Cn ∈ R such that, for 0 ≤ x ≤ 1

|sm(n)(x)| ≤ Cn

����e−1/xx2n

���� . (16)

This result follows from the continuity ofh(x) = pn(x) sin(1/x)+
qn(x) cos(1/x) on the interval [0, 1]. Using (16) and

lim
x→0+

e−1/x

x2n
= lim

x→∞

x2n

ex

= 0

gives the desired result. Typically, one would use induction
and L’Hôpital’s rule to show

lim
x→∞

x2n

ex
= 0.

NASALib does not have L’Hôpital’s rule, so a different proof
for (3.1) had to be found that uses properties of the natural
log, exponential function, and existing analysis rules had to
be used. The proof is described as follows. For all x ≥ 0, note
that

x2n

ex
=

1
ex−2n ln(x).

The function h1(x) = x − 2n ln(x) is less than or equal to
h2(x) =

1
2 (x−4n)+(4n−2n ln(4n)) for all x ≥ 4n. This can be

seen since h1(4n) = h2(4n) and h′
1(x) ≤ h′

2(x) for all x ≥ 4n.
Therefore for x ≥ 4n

0 ≤

���e−h1(x)��� ≤ ���e−h2(x)��� .
Since limx→∞ e−h2(x) = 0, limx→∞ e−h1(x) = 0, and the

result is shown.
Lemma 3.5 part 1 establishes the value of sm(n)(x) for

x > 0. For x < 0, sm(n)(x) = 0. Also sm(n)(x) is continuous
for x , 0, and Lemma 3.5 part 2 establishes that sm(n)(x) is
continuous at x = 0. The next theorem establishes that the
nth derivative of of sm at x = 0 is sm(n)(x) = 0, showing
smoothness at x = 0.

Theorem 3.6. For function sm defined in (13), the following
statement holds

1. s is smooth, with sm(n)(0) = 0 for each n ∈ N,
2. sm is not analytic at x = 0.

The proof of Theorem 3.6 part 1 was done by induction.
The crux of the argument was the following equalities

sm(n) (0) = lim
h→0

sm(n−1) (h) − sm(n−1)(0)
h

= lim
h→0

sm(n) (c(h))
= lim

h→0
sm(n) (h)) .

= 0,

Where the existence of ch ∈ (0,h) is given by the Mean Value
Theorem. The conditions of the Mean Value Theorem are

satisfied since sm(n−1) is differentiable on the open interval
(0,h) and continuous, on the interval [0,h].
The Mean Value Theorem in NASALib’s analysis library

required that sm(n) be differentiable on the closed interval
[0,h], which could not be assumed, since it is exactly what
is trying to be proven. This required a new Mean Value The-
orem to be specified with the slightly weaker assumptions
on the function:
mean_value_gen: THEOREM

FORALL(f:[real->real], a:real,
b:bb:real|bb>a):
(derivable?[open_interval(a,b)](f) AND
continuous?[closed_interval(a,b)](f)) IMPLIES
EXISTS (c:real): a < c AND c < b AND
deriv(f, c) * (b - a) = f(b) - f(a).

As a result, this more general version of the Mean Value
Theorem was proven and has been added to NASALib.

For the proof of part 2 of Theorem 3.6, the proof was by
contradiction. If sm was analytic at 0, by Theorem 3.4 then
there would be some r ∈ R≥0 such that

f (x) =
∞∑
k=1

f (k)(0)
k!

xk , ∀x ∈ (−r , r) .

Using part 1 of this theorem this would mean f (x) = 0
on the interval (−r , r). This is a contradiction since f (x) =
e−1/x sin(1/x), for all x > 0, and is therefore not the zero
function in any neighborhood around x = 0. This is a fact
that a mathematician would accept without proof, but PVS
required the following reasoning. For n ∈ N and

xn =
2

π (4 ∗ n + 1)
,

sm(xn) = e
π (4∗n+1)

2 sin(π ∗4n+12) = e
π (4∗n+1)

2 > 0. for all n ∈ N.
Since

lim
n→∞

xn = 0,

sm is not the zero in any open interval around x = 0.
Below is the PVS definition of sm, and the PVS theorem

stating that it is smooth everywhere, but not analytic at 0.
sm(x:real): real = IF x <= 0 THEN 0

ELSE exp(- 1 / x) * sin(1/x) ENDIF

smooth_not_analytic: THEOREM
smooth?(sm) AND NOT analytic(0)(sm).

3.2 Semi-algebraic Sets and Analytic Functions
This section investigates the interaction between SA sets
and real analytic functions. The goal is to show, in a sense
that will be made precise, that a real analytic function leaves
(or enters) an SA set at a single point, or for an interval.

First, the following lemma discusses the behavior of an
analytic function around a root. This will be key to showing
the favorable properties of an analytic function entering and
leaving an SA set.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Formal Verification of the Interaction Between Semi-Algebraic Sets and Real Analytic Functions Certified Programs and Proofs ’21, Jan 18–19, 2021,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Lemma 3.7. For an analytic function f at a point t with
radius of convergence r , the following properties hold:

1. If f (t) > 0 then there exists an ϵ ∈ R>0 such that
f (x) > 0 for all x ∈ (t − ϵ, t + ϵ)

2. If f (t) < 0 then there exists an ϵ ∈ R>0 such that
f (x) < 0 for all x ∈ (t − ϵ, t + ϵ)

3. If f (t) = 0 then there exists an ϵ ∈ R>0 such that either
a. f (x) = 0 for all x ∈ (t − ϵ, t + ϵ), or
b. f (x) , 0 for x , t and x ∈ (t − ϵ, t + ϵ).

Proof. Parts 1 and 2 follow from the fact that f is continu-
ous. For part 3 the proof is by contradiction. Assume that
f (t) = 0 and f is not all zero on any open interval around
t . Also assume that there is a sequence {tk }

∞
k=1 such that

tk ∈
(
t − 1

k , t +
1
k

)
, f (tk) = 0 and tk , t . Since f is analytic

it takes the form in (5). Since f is non-zero on (c0 − t, c0 + t)
there must be an n ∈ N such that f (n)(t) , 0. Assume that
n is the minimal number that has this property. By Taylor’s
remainder theorem there exists a ψk between t and tk , i.e.,
|ψk − t | ≤ |tk − t | such that

f (tk) =
n−1∑
i=1

f (i) (t) (x − α)i + f (n)(ψk)(t − tk)

= f (n)(ψk)(t − tk).

This implies f (n) (ψk) = 0 since tk , 0. Furthermoreψk → t
since tk → t . Since f is analytic, f (n)(t) is continuous this
means f (n)(t) = 0, which contradiction that n is the minimal
number such that f (n)(t) , 0. The result is shown. □

Parts 1 and 2 of the proof above required basic proper-
ties of continuity that were found in NASALib’s analysis
library. Part 3 required Taylor’s theorem, which was also in
NASALib’s analysis library.

To study the the way an analytic function comes into con-
tact with an SA set, it is necessary to study the interaction of
between the function composed with a multivariate polyno-
mial. The next lemma shows the composition of an analytic
function with a multivariate polynomial is analytic.

Lemma 3.8. For a function f : D→ Rn , analytic at a point
c0 ∈ R, the following statements are true

1. For any monomialm : Rn → R. the compositionm ◦ f
is analytic.

2. Furthermore, for any polynomial p : Rn → R, the com-
position p ◦ f is analytic.

Proof of both parts 1 and 2 of Lemma 3.8 were proved using
induction. For part 1, this was done using the recursion, for
a monomialm : Rn → R and f : R→ Rn ,

m ◦ f (x) = (m̂ ◦ f̂ (x)) · (c(f0(x))
k), (17)

where c is the coefficient of the monomialm, f0 is the first
of the functions that f is comprised of (defined in (11)), and
where m̂ : Rn−1 → R and f̂ : R → Rn−1 are the original

monomialm and function f projected on the lastn−1 entries.
In PVS , m̂ and f̂ are defined as
hat(m:mm:monomial| cons?(mm‘alpha)):

{mm:monomial | length(mm‘alpha) =
length(m‘alpha) - 1 } =

(# C: = 1 , alpha : = cdr[nat](m‘alpha) #)

hat(n:posnat)(f:[real -> VectorN(n)]):
[real -> VectorN(n-1)] =
LAMBDA(x:real): cdr(f(x)),

with the property in (17) specified by the lemma
eval_hat_equiv: LEMMA

FORALL(n:posnat, m:monomial |
length(m‘alpha) = n, f:[real->VectorN(n)]):
(LAMBDA(x:real): full_eval(m)(f(x)))
=
(LAMBDA(x:real): m‘C * car(f(x)) ^

car[nat](m‘alpha) *
full_eval(hat(m))(hat(n)(f)(x))).

With the recursion in (17) verified, the rest of the proof of
Lemma (3.8), part 1 follows from applying Theorem 3.2, part
3 and Lemma 3.3.
Part 2 of Lemma (3.8) follows from the fact that that the

polynomial p is the finite sum of n ∈ N monomials

p =m1 +m2 + · · · +mn,

and the composition p ◦ f (x) is nothing more that the sum
of f composed with monomials

p ◦ f (x) =m1 ◦ f +m2 ◦ f + · · · +mn ◦ f .

By an induction argument that uses Lemma 3.2 part 1, this
proof was shown in PVS.
Lemma 3.8 is very helpful, because it allows reasoning

about p ◦ f directly as an analytic function, instead of as
the composition of an analytic function and a multivariate
polynomial. The next lemma describes the behavior of an
analytic function around an SA set created by a conjunction
of atomic polynomial formulas, at any point in the function’s
domain.

Lemma 3.9. For a connected D ⊂ R, a function f : D →

Rn that is analytic on D, and φ be a conjunction of atomic
polynomial formulas {pj }nj=1,

φ =

J∧
j=1

pj ▷ 0 where ▷ ∈ {≥, >, ≤, <}. (18)

For x0 ∈ D there exists an ϵ > 0 such that either
1. for all 0 < t < ϵ , f (x0 + t) ∈ S(φ), or
2. for all 0 < t < ϵ , f (x0 + t) < S(φ).

Because of the result in Lemma 3.8, this can be proven as a
simple extension of Lemma 3.7. For eachpj in the conjunction
(18), there is an ϵj such that there are no roots of pi ◦ f on
(x0, x0 + ϵ) for any i ≤ n. From this, it was straightforward

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

to show that there exists an ϵmin > 0 such that no pi ◦ f in
for i ∈ N≤ J has a root on the interval (x0, x0 + ϵmin):
min_eps LEMMA

FORALL (m:meeting,x0:real,
f:(analytic?(atom_max(m),x0))):
EXISTS(eps_min:posreal):
FORALL(i:below(length(m)), t:real):
(x0 < t AND t < x0 + eps_min) IMPLIES
full_eval(nth(m,i)‘poly)(f(x0 + t)) /= 0.

With the existence of this ϵmin, it is clear that the truth
value of φ in (18) is constant on the interval (x0, x0 + ϵmin),
finishing the proof.
With Lemma 3.9 above, the main result of the paper is

ready to be shown. The next two theorems classify how an
analytic function can leave or enter an SA set.

Theorem 3.10. For a connected D ⊂ R, a function f : D →

Rn , that is analytic on D, a semi algebraic set S (φ) where φ is
defined in Equation (3), and a x0 ∈ R such that f (x0) ∈ S (φ).
Then one of the following cases is true

1. f (x) ∈ S for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, f (x∗) < S ,

and there exists an ϵ such that f (x∗ + t) ∈ S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, there exists
an ϵ such that f (x∗ + t) < S(φ) for all 0 < t < ϵ .

Note that if the first condition is not satisfied,

t∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}

exists. By using Lemma (3.9), an ϵmin can be found such that
for each i ∈ N≤I the conjunction

J∧
j=1

pi j ▷ 0

has a constant truth value on the interval (x∗, x∗ +ϵmin). The
result follows from this. In PVS the theorem is specified as
clean_exit: THEOREM

FORALL(j:joining, x0:real,
f:(analytic?(meet_max(j),x0))):
semi_alg(j)(meet_max(j))(f(x0)) IMPLIES (
% Condition 1
(FORALL(x:real): x >= x0
IMPLIES semi_alg(j)(meet_max(j))(f(x)) OR
% Condition 2
EXISTS(eps:posreal):
FORALL(t:real): inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) < t
AND t < inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) + t
IMPLIES semi_alg(j)(meet_max(j))(f(t)) OR
% Condition 3
EXISTS(eps:posreal): FORALL(t:real):
inf({xx:real |

Figure 2. A visualization of Example 3.12. The function sm
defined in Equation (13) is smooth, not analytic, and has
infinity many points inside and outside of the SA set S(φ)
around x = 0, violating the conclusion of Theorem 3.10.

NOT semi_alg(j)(meet_max(j))(f(xx))}) < t AND
t > inf(xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))) + t
IMPLIES NOT semi_alg(j)(meet_max(j))(f(t))).

Theorem 3.11. For a connected D ⊂ R, a function f : D →

Rn , where that is analytic on D, a semi algebraic set S (φ)
where φ is defined in Equation (3), and a x0 ∈ R such that
f (x0) < S (φ). Then one of the following cases is true

1. f (x) < S(φ) for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} f (x∗) ∈ S

and there exists an ϵ such that f (x∗ + t) < S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} there exists
an ϵ such that f (x∗ + t) ∈ S for all 0 < t < ϵ .

A proof of Theorem 3.11 can be found by applying Theo-
rem 3.10with f and Sc . These theorems show that an analytic
function leaves or enters an SA set in a “clean" way, i.e., at a
a single point, or for a complete interval of time. When the
assumption that f is weakened from analytic to smooth, this
result does not hold, as shown in the following example.

Example 3.12. Consider the SA set S(φ)whereφ = (X1 ≤ 0),
and the function sm : R→ R is defined in Equation (13), see
Figure 2. Using Theorem 3.6, sm is smooth, but not analytic.
For all x ≤ 0, sm(x) ∈ S(φ). Furthermore, x∗ = inf{x ∈

R|sm(x) < S(φ)} = 0 since for xn = 1
π (n+1) , sm(xn) = 0 ∈ S

and xn → 0. On the other hand, for yn = 2
π (4n+1) , sm(yn) =

e−1/yn < S . Because of the infinite oscillations around the
origin, the conclusions in Theorem 3.10 are not satisfied, i.e.,
for all ϵ > 0 there exists 0 < x1, x2 < ϵ such that x1 ∈ S(φ)

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Formal Verification of the Interaction Between Semi-Algebraic Sets and Real Analytic Functions Certified Programs and Proofs ’21, Jan 18–19, 2021,

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

and x2 < S(φ). In PVS, this counter example is shown in the
lemma below

% Define variables
p1:(mv_standard_form?) =

(: (# C: = 1, alpha: = (: 1 :) #) :)
atom1: atomic_poly =
(# poly : = p1, ineq: = <= #)

SA: set[VectorN(1)] =
semi_alg((: (: atom1 :) :))(2)

% Smoothness is not enough for "clean break"
not_clean_break: LEMMA

inf(xx:real | NOT SA((: sm(xx) :))) = 0 AND
EXISTS(xn,yn:sequence[real]):
convergence(xn,0) AND convergence(yn,0) AND
FORALL(i:nat): SA((: sm(xn(i)) :)) AND
xn(i) > 0 AND
NOT SA((: sm(xn(i)) :)) AND
yn(i) > 0

4 Related Work
The development of analytic functions and SA sets in PVS
is a part of an ongoing project to implement a differential
dynamic logic (DDL) in PVS. The purpose of this formaliza-
tion is to help reason about hybrid systems, i.e., systems that
have both discrete variables and continuous variables, the
latter defined by solutions to ordinary differential equations,
without having to explicitly solve the differential equations
in some cases [28–30]. An example of an implementation
of DDL is a theorem prover called KeYmaera X, which is a
formal verification tool to interactively and formally reason
about hybrid systems [10]. To verify the soundness of DDL,
it has been formalized in both Isabelle and Coq [3].

Often, solving the differential equation explicitly is overly
cumbersome or not feasible, so it is easier to reason about the
solution without finding it. The deduction that the solution
of an ODE is analytic is possible with general assumptions
about the underlying ODEs. DDL allows this reasoning but
requires knowledge of how such a function interacts with
constraints modeled as SA sets. There has been significant
research done on reasoning about differential invariants in
DDL, where the domain of the differential equation and a set
of system constraints are modeled as SA sets. Of particular
interest is how such a solution leaves and enters a set of
constraints, motivating this work. [12, 31–33]

Although the interactions between analytic functions and
SA sets have been studied (e.g., [19]), to the best of the au-
thor’s knowledge, there is no known formalization of these
behaviors. A constructive formalization of SA sets was under-
taken in Coq, to specify and formally verify the cylindrical
algebraic decomposition (CAD) algorithm, which takes a set
of polynomials and decomposes their domain space into SA
sets, where the sign of each polynomial is constant [7, 8].

This is one of the most fundamental and important algo-
rithms in real algebraic geometry. In addition to the CAD
implementation [20, 21], multivariate polynomials have been
implemented and used in Coq several ways [1, 4, 6]. In Is-
abelle/Hol, formalization of multivariate polynomials [13]
and the CAD algorithm [17] are active areas of research.
Implementation of univariate polynomials was done in the
formalization of Sturm’s theorem in HolLight [14] and in the
PVS implementation of Sturm’s and Tarski’s theorems [23].
Multivariate Bernstein polynomials have also been formal-
ized in PVS [22], which is a powerful tool for approximating
continuous functions.

5 Conclusions and Future Work
This paper describes the formalization of multivariate poly-
nomials with a sparse representation and semi-algebraic sets
in PVS, as well as real analytic functions and their interac-
tions with SA sets.

The primary goal of this work is to eventually formalize a
version of DDL that can be used in an interactive way in PVS.
To this end, there is much interesting work to be done. The
theory of differential equations must be formalized including,
at the least, the existence and uniqueness theorems which
guarantee a real analytic solution to a differential equation
exists. The soundness of the differential rules in DDL will
also need to be shown, which will depend on the theory of
differential equations.

With respect to the SA set formalization there are several
directions that the research can be extended. The current
embedding in PVS assumes the an SA set is already in dis-
junctive normal form. An extension that allows conditional
statements of polynomial formulas would add to the expres-
siveness of the library, and and implementation of a disjunc-
tive normal form transformation would make this extension
fit into the theory that has been established in this paper.
Additionally, one of the fundamental theorems in real al-

gebraic geometry is the Tarski-Seidenberg Theorem, which
says that every quantified formula over multivariate poly-
nomial constraints is equivalent to a quantifier-free formula
used to define semi-algebraic sets. A proof of this theorem, as
well as specification and proof of CADmethods for quantifier
elimination, are long-term goals for the PVS formalization.
As noted in Section 4, this is an on-going area of research in
many theorem provers.

References
[1] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub.

2016. Formal proofs of transcendence for e and pi as an application
of multivariate and symmetric polynomials. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs. 76–87.

[2] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. 2013. Real
algebraic geometry. Vol. 36. Springer Science & Business Media.

[3] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André
Platzer. 2017. Formally verified differential dynamic logic. In Proceed-
ings of the 6th ACM SIGPLAN Conference on Certified Programs and

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Certified Programs and Proofs ’21, Jan 18–19, 2021, Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

Proofs. 208–221.
[4] Cyril Cohen. 2013. Pragmatic quotient types in Coq. In International

Conference on Interactive Theorem Proving. Springer, 213–228.
[5] Brian A Davey and Hilary A Priestley. 2002. Introduction to lattices

and order. Cambridge university press.
[6] Maxime Dénès, Anders Mörtberg, and Vincent Siles. 2012. A

refinement-based approach to computational algebra in Coq. In Inter-
national Conference on Interactive Theorem Proving. Springer, 83–98.

[7] Boris Djalal. 2018. A constructive formalisation of Semi-algebraic sets
and functions. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 240–251.

[8] Boris Djalal. 2018. Formalisations en Coq pour la décision de problèmes
en géométrie algébrique réelle. Ph.D. Dissertation. Côte d’Azur.

[9] Gerald B Folland. 1995. Introduction to partial differential equations.
Vol. 102. Princeton university press.

[10] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and
André Platzer. 2015. KeYmaera X: An axiomatic tactical theorem
prover for hybrid systems. In International Conference on Automated
Deduction. Springer, 527–538.

[11] Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer,
Geoffrey J Gordon, and Peter Capell. 2014. Hybrid theorem proving of
aerospace systems: Applications and challenges. Journal of Aerospace
Information Systems 11, 10 (2014), 702–713.

[12] Khalil Ghorbal, Andrew Sogokon, and André Platzer. 2017. A hierarchy
of proof rules for checking positive invariance of algebraic and semi-
algebraic sets. Computer Languages, Systems & Structures 47 (2017),
19–43.

[13] Florian Haftmann, Andreas Lochbihler, and Wolfgang Schreiner. 2014.
Towards abstract and executable multivariate polynomials in Isabelle.
In Isabelle Workshop, Vol. 201.

[14] John Harrison. 1997. Verifying the accuracy of polynomial approx-
imations in HOL. In International Conference on Theorem Proving in
Higher Order Logics. Springer, 137–152.

[15] Hassan K Khalil and Jessy W Grizzle. 2002. Nonlinear systems. Vol. 3.
Prentice hall Upper Saddle River, NJ.

[16] Steven G Krantz and Harold R Parks. 2002. A primer of real analytic
functions. Springer Science & Business Media.

[17] Wenda Li. 2019. Towards justifying computer algebra algorithms in
Isabelle/HOL. Ph.D. Dissertation. University of Cambridge.

[18] Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-
algebraic invariants for polynomial dynamical systems. In Proceedings
of the ninth ACM international conference on Embedded software. 97–
106.

[19] Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-
algebraic invariants for polynomial dynamical systems. In Proceedings
of the ninth ACM international conference on Embedded software. 97–
106.

[20] Assia Mahboubi. 2006. Programming and certifying a CAD algorithm
in the Coq system. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[21] Assia Mahboubi. 2007. Implementing the cylindrical algebraic decom-
position within the Coq system. Mathematical Structures in Computer
Science 17, 1 (2007), 99.

[22] César Muñoz and Anthony Narkawicz. 2013. Formalization of Bern-
stein polynomials and applications to global optimization. Journal of
Automated Reasoning 51, 2 (2013), 151–196.

[23] Anthony Narkawicz, César Muñoz, and Aaron Dutle. 2015. Formally-
verified decision procedures for univariate polynomial computation
based on Sturm’s and Tarski’s theorems. Journal of Automated Rea-
soning 54, 4 (2015), 285–326.

[24] Sam Owre, John M Rushby, and Natarajan Shankar. 1992. PVS: A pro-
totype verification system. In International Conference on Automated
Deduction. Springer, 748–752.

[25] Sam Owre and Natarajan Shankar. 2008. A brief overview of PVS. In
International Conference on Theorem Proving in Higher Order Logics.
Springer, 22–27.

[26] André Platzer. 2008. Differential dynamic logic for hybrid systems.
Journal of Automated Reasoning 41, 2 (2008), 143–189.

[27] André Platzer. 2018. Logical foundations of cyber-physical systems.
Vol. 662. Springer.

[28] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid theo-
rem prover for hybrid systems (system description). In International
Joint Conference on Automated Reasoning. Springer, 171–178.

[29] André Platzer and Yong Kiam Tan. 2018. Differential equation axiom-
atization: The impressive power of differential ghosts. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
819–828.

[30] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and
André Platzer. 2016. How to model and prove hybrid systems with
KeYmaera: a tutorial on safety. International Journal on Software Tools
for Technology Transfer 18, 1 (2016), 67–91.

[31] Andrew Sogokon, Khalil Ghorbal, Paul B Jackson, and André Platzer.
2016. A method for invariant generation for polynomial continuous
systems. In International Conference on Verification, Model Checking,
and Abstract Interpretation. Springer, 268–288.

[32] Andrew Sogokon and Paul B Jackson. 2015. Direct formal verification
of liveness properties in continuous and hybrid dynamical systems. In
International Symposium on Formal Methods. Springer, 514–531.

[33] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell,
and André Platzer. 2019. Pegasus: A framework for sound continuous
invariant generation. In International Symposium on Formal Methods.
Springer, 138–157.

[34] Brian L Stevens, Frank L Lewis, and Eric N Johnson. 2015. Aircraft con-
trol and simulation: dynamics, controls design, and autonomous systems.
John Wiley & Sons.

[35] Morris. Tenenbaum andHarry Pollard. 1963. Ordinary differential equa-
tions: an elementary textbook for students of mathematics, engineering,
and the sciences. Dover Publications.

[36] Richard Zippel. 1993. Effective Polynomial Computation. Springer US.

12

	Abstract
	1 Introduction
	2 Polynomials & Semi-Algebraic Sets
	2.1 Multivariate polynomials over the reals
	2.2 Semi-algebraic sets

	3 Real-analytic Functions
	3.1 Analytic vs. Smooth
	3.2 Semi-algebraic Sets and Analytic Functions

	4 Related Work
	5 Conclusions and Future Work
	References

