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Abstract 
The purpose of this document is to demonstrate the use of the Extended Kalman Filter as a 

tool for battery state estimation and the estimation of battery state of charge. The mathematical 
details based on the equivalent circuit model are presented followed by an electrochemical 
engineering model. A simplified first-order model is used to demonstrate the procedure followed 
by second and third-order models. Next a simplified electrochemistry model is presented along 
with observer development. State observability is calculated for the simpler equivalent circuit 
models and the simplified electrochemistry model. An outline of the battery model parameter 
identification method is presented, and model performance based on experimental and flight 
data is demonstrated. 

Introduction 
Kalman filtering is an established technology used since the Apollo program for the 

estimation of states within a dynamic system. For linear systems, this method of state 
estimation is optimal. The Kalman filter consists of a set of recursive equations that are 
evaluated repeatedly and updated using input/output measurements as the system operates. 
This recursion allows for real-time tracking of the state as new data become available. For linear 
observable systems with known process and measurement noise variances, the Kalman filter 
has been widely employed as the optimal state estimator. However, many systems are 
nonlinear. In our case, the battery discharge voltage profile is a nonlinear function of the input 
current demand. In order to approximate an application of the Kalman filter to nonlinear 
systems, the extended Kalman filter (EKF) has been developed. The EKF is derived from the 
nonlinear system equations by representing the nonlinear system using the first term of the 
nonlinear equation’s Taylor series expansion. This makes development of the Kalman filter 
possible for nonlinear systems but sacrifices system representation by employing an 
approximate (linear) model. For battery modeling, the EKF has been used for state observation 
of nonlinear battery models [1]. However, the development of the EKF involves taking 
derivatives that may be complex and prone to mathematical computational errors.  

State observers are used to update battery state estimates based on observations of current 
and voltage at the battery output terminals. An equivalent circuit battery model in [2] [3] is used 
to represent battery terminal voltage dynamics as a function of battery current. The model is 
based on Thevenin’s theorem to model the current and voltage profile of the battery as a black 
box input-output device. A first-approximation assumption is made such that the battery state 
can match a linear electrical network with voltage and current sources and only resistances. 
Thevenin states that the black box can be replaced at the input output terminals by an 
equivalent voltage source in series connection with an equivalent resistance. To better match 
standard battery phenomena, such as internal resistance voltage drops and hysteresis effects, 
additional pairs of series connected RC parallel circuits are added to the model. The Rs, Cs pair 
are added for the internal resistance drop and the Rsp, Csp pair are added for the concentration 
polarization effect. These additional terms help to model battery nonlinearities. The 
correspondence of these RC circuits to actual battery chemical phenomena is only notional. In 
the equivalent circuit model, some of the components were made to vary according to the bulk 
charge stored in Cb. The State of Charge (SOC) is an estimate of the battery bulk charge. The 
battery input-output voltage dynamics will change as a function of this bulk charge estimate. 
Battery SOC is defined here as: 

𝑆𝑂𝐶 1
𝑞 𝑞
𝐶
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where qb represents the charge stored in capacitor Cb, qmax is the maximum charge that the 
battery can hold, and Cmax is the maximum charge that can be drawn from the battery in 
practice. 

Model-based battery SOC estimation has been developed here using an equivalent circuit 
representation [2]. Various methods of analyses for performance and conditions under which 
the model state is observable have been proposed and demonstrated using simulated and 
experimental battery data [4]. The Extended Kalman Filter, EKF, has been analyzed and 
demonstrated in tutorials including detail development and discussion [1]. The purpose of this 
paper is to examine the equivalent circuit model using the Extended Kalman Filter, EKF, as the 
state observer and apply the methods to the electrochemistry model, EchM. Some discussion 
will be presented regarding the condition where state observability may be expected. This paper 
first presents a mathematical development of the first, second, and third-order EKF models 
followed by a section on simulations. Performance of the model with simulated data is given. 
Application of the model with flight data is then presented to further illustrate the concepts 
developed.  

3. Battery Models and Observers 
This section contains the battery models and details the development of the EKF observers 

for each model. The equivalent circuit model, ECM, is presented first followed by a simplified 
electrochemical model. For the lower order models, the EKF is developed and comments are 
made concerning observability. For each of the models the meaning of the model variables and 
the physics represented, if any, will not be detailed here. The reader may find these in the cited 
publications. 

3.1 First-Order Equivalent Circuit Model 
Consider the first-order continuous time equivalent circuit model shown in Figure 1 [2]. The 

first-order continuous time approximation to this circuit is shown in equation set (1) where only 
circuit component Cb is considered. Here 𝑞 𝑡  is the rate of change of the charge on Cb, 𝑖 𝑡  is 

the current delivered by the battery, 𝑞  is the maximum possible charge, 𝐶  is the 
maximum possible battery capacity, and the coefficients C0, C1, C2, and C3 model the nonlinear 
relationship between SOC and battery output voltage 𝑉 𝑡 . The continuous time state equation 
is denoted as 𝑓  and output equation as ℎ . 

Figure 1. Equivalent Circuit Model. 



 

3 
 

 𝑞 𝑡 𝑖 𝑡 𝑓   

 
𝑆𝑂𝐶 𝑡 1

𝑞 𝑞 𝑡
𝐶

 
 

 𝐶 𝐶 𝑆𝑂𝐶 𝑡 𝐶 𝑆𝑂𝐶 𝑡 𝐶 𝑆𝑂𝐶 𝑡 𝐶   

 
𝑉 𝑡  

𝑞 𝑡
𝐶

ℎ  
(1) 

In discrete-time the model becomes as shown in (2) where k is the time step and 𝑇  the sample 
period. 
 𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑇 𝑓  

 
𝑆𝑂𝐶 𝑘 1

𝑞 𝑞 𝑘
𝐶

 
 

 𝐶 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶   

 
𝑉 𝑘  

𝑞 𝑘
𝐶

ℎ 
(2) 

In model (2) we have a first order state equation 𝑞 𝑘  and a single output equation 𝑉 𝑘 . 
Although the state equation is linear in terms of charge 𝑞 𝑘 , the voltage 𝑉 𝑘  output equation 
h is clearly nonlinear. The EKF requires that we take the Jacobian of the state and output 
equations [1]. In the equations below, 𝑥 𝑞  is the state and the discrete-time state equation f 
is 𝑞 𝑘 1 𝑖 𝑘 𝑇 . The discrete-time output equation is h. Here we have suppressed the time 
step index for ease of presentation. 
 

𝐹
𝜕𝑓
𝜕𝑥

1 
 

 
𝐻  

𝜕ℎ
𝜕𝑥

𝜕
𝜕𝑥

𝑥
𝐶

𝜕𝑥 𝜕𝑥𝐶 𝑥 𝜕𝐶 𝜕𝑥⁄⁄

𝐶
 

(3) 

In determining (3) the quotient rule was used. We next use the chain rule to complete the 
Jacobian. 
 𝜕𝐶 𝜕𝑥⁄ 3𝐶 𝑆𝑂𝐶 𝜕𝑆𝑂𝐶 𝜕𝑥⁄ 2𝐶 𝑆𝑂𝐶 𝜕𝑆𝑂𝐶 𝜕𝑥⁄ 𝐶 𝜕𝑆𝑂𝐶 𝜕𝑥⁄   

 𝜕𝑆𝑂𝐶 𝜕𝑥 𝜕 𝜕𝑥 1 𝑞 𝐶 𝑥 𝐶⁄⁄⁄⁄ 1 𝐶⁄  (4) 

Combining (3) and (4) we arrive at the expression for H as shown in (5).  
 
 𝜕𝐶 𝜕𝑥 1 𝐶 3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶⁄⁄   

 
𝐻

𝐶 𝑥 𝜕𝐶 𝜕𝑥⁄

𝐶
 

(5) 

The EKF may be implemented using the equations for F and H.  
 
Prediction (Time Update) 𝑥 𝑘 1 𝑓 𝑥 𝑘 , 𝑖 𝑘   

 𝑃 𝐹𝑃𝐹 𝑄  

Update (Measurement) 𝑉 𝑘 ℎ 𝑥 𝑘   
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 𝑥 𝑘 1 𝑥 𝑘 1 𝑃𝐻 𝐻𝑃𝐻 𝑅 𝑉 𝑘 𝑉 𝑘   

 𝑃 𝑃  𝑃𝐻 𝐻𝑃𝐻 𝑅 𝐻𝑃 (6) 

Equation set (6) may be used to estimate the state x for the given first order battery model. Here 
we have voltage measurements 𝑉 𝑘 , estimated voltages 𝑉 𝑘 , system process noise 
covariance Q, measurement noise R, and state covariance P. It is of interest to determine the 
conditions under which the state is observable. To do so we perform an observability analysis 
[4]. 

The observability matrix for a nonlinear system may be found by taking the Jacobian of the 
observable coordinates. This is performed using the continuous time model of equation set (1). 
For this simple case the observability coordinate is the output equation and the Jacobian is the 
derivative with respect to the state. For the first order continuous time system of equation (1) we 
have equation (7).  
 

𝑂𝑏𝑣
𝜕
𝜕𝑞

𝑞
𝐶

1
𝐶

𝑞
𝐶

3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶
1

𝐶
 

(7) 

 
Since (7) is a scalar, the points where the state becomes unobservable occur are when 𝑂𝑏𝑣 
approaches zero. A small 𝑂𝑏𝑣 indicates the state is weakly observable.  

3.2 Second-Order Model 
The first-order equivalent circuit model is expanded by the addition of several more 

components of [2] as shown in (8) for continuous time. Here the components Rsp and Csp 
capture the battery electrode surface overpotential and the equation for Rsp captures this 
nonlinear relationship in an empirical form [2]. The Rsp and Csp pair time constant models the 
slow relaxation voltage recovery once a load is removed. 

 
 𝑞 𝑡 𝑖 𝑘 𝑓   

 𝑞 𝑡 𝑖 𝑡 𝑞 𝑡 𝐶 𝑅 𝑡⁄ 𝑓   

 
𝑆𝑂𝐶 𝑡 1

𝑞 𝑞 𝑡
𝐶

 
 

 𝑅 𝑡 𝑅 𝑅 exp 𝑅 1 𝑆𝑂𝐶 𝑡   

 𝐶 𝑡 𝐶 𝑆𝑂𝐶 𝑡 𝐶 𝑆𝑂𝐶 𝑡 𝐶 𝑆𝑂𝐶 𝑡 𝐶   

 
𝑉 𝑡  

𝑞 𝑡
𝐶

𝑞 𝑡
𝐶

 
(8) 

 
The discrete-time model is shown in (9) below. 
 
 𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑇 𝑓   

 
𝑞 𝑘 exp 

𝑇
𝐶 𝑅 𝑘

𝑞 𝑘 1 𝐶 𝑅 𝑡 1 exp 
𝑇

𝐶 𝑅 𝑘
𝑓  

 

 
𝑆𝑂𝐶 𝑘 1

𝑞 𝑞 𝑘
𝐶
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 𝑅 𝑘 𝑅 𝑅 exp 𝑅 1 𝑆𝑂𝐶 𝑘   

 𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶   

 
𝑉 𝑘  

𝑞 𝑘
𝐶

𝑞 𝑘
𝐶

 
(9) 

Here we have the states 𝑥 𝑞  and 𝑥 𝑞  forming the state vector 𝑓 𝑥 𝑥 . As 
with the first-order system, we can now compute the Jacobians needed for the EKF as shown in 
(10) and (11). This is done using the approximate discrete-time model where the continuous-
time derivative is simply replaced by Euler integration. This can be done because the sampling 
rate is much faster than the battery dynamics. We have the approximation  

 

𝑞 𝑡 𝑞 𝑘 𝑞 𝑘 1 /𝑇  and 𝑞 𝑡 𝑞 𝑘 𝑞 𝑘 1 /𝑇 . 

 
 

𝐹
𝜕𝑓
𝜕𝑥

⎣
⎢
⎢
⎡
𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥 ⎦

⎥
⎥
⎤ 1 0

𝜕𝑓
𝜕𝑥

1
𝑇

𝐶 𝑅
 

 

 𝜕𝑓
𝜕𝑥

𝑥 𝑇
𝐶 𝑅

𝜕𝑅
𝜕𝑥

 
 

 𝜕𝑅
𝜕𝑥

𝑅 𝑅 𝑒𝑥𝑝 𝑅 1 𝑆𝑂𝐶
𝜕𝑆𝑂𝐶
𝜕𝑥

 
 

 𝜕𝑆𝑂𝐶
𝜕𝑥

1
𝐶

 
 

 𝜕𝑓
𝜕𝑥

𝑥 𝑇
𝐶 𝑅

𝑅 𝑅 𝑒𝑥𝑝 𝑅 1 𝑆𝑂𝐶
1

𝐶
 

(10) 

Likewise, from the output equation we compute H as shown in (11). 
 
 

𝐻
𝜕ℎ
𝜕𝑥

𝜕𝑉
𝜕𝑥

𝜕
𝜕𝑥

𝑥
𝐶

𝑥
𝐶

𝜕
𝜕𝑥

𝑥
𝐶

    
1
𝐶

 
 

 
𝜕
𝜕𝑥

𝑥
𝐶

𝐶 𝑥
𝜕𝐶
𝜕𝑥

𝐶
 

 

 𝜕𝐶
𝜕𝑥

3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶
1

𝐶
 

(11) 

Equations (9), (10) and (11) may be used to form the EKF as shown in algorithm (6). 
The observability matrix for the second order system may be computed as for the first-order 

system. Consider the continuous-time system of equation (8) where the output is 𝑦 𝑉 and the 
Lie derivative [4] of ℎ 𝜁  along 𝑓 𝜁  is 𝐿 ℎ 𝜁 𝜕ℎ 𝜁 𝜕𝜁⁄ 𝑓 𝜁 . In our case 𝜁 is the state x, h is 
the output equation and f is the state equation. We first form the observable coordinates as 
shown in equation (12). 
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  𝑦  
𝑥
𝐶

𝑥
𝐶

  

 
𝐿 𝑦

𝜕ℎ
𝜕𝑥

𝑓
𝜕
𝜕𝑥

𝑥
𝐶

𝑥
𝐶

𝑓
𝑓

𝜕
𝜕𝑥

𝑥
𝐶

  
1
𝐶

𝑖
𝑥

𝐶 𝑅
𝑖  

 

 
𝐿 𝑦

𝑥
𝐶 𝐶

3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶
1
𝐶

𝑖
𝑥

𝐶 𝑅
𝑖
𝐶

 
(12) 

We next take the Jacobian of the observable coordinates y and 𝐿 𝑦 to form the observability 
matrix as given in equation (13). 
 

𝑂𝑏𝑣  ∇
𝑦
𝐿 𝑦

⎣
⎢
⎢
⎢
⎡
𝜕𝑦
𝜕𝑥

𝜕𝑦
𝜕𝑥

𝜕𝐿 𝑦
𝜕𝑥

𝜕𝐿 𝑦
𝜕𝑥 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝜕
𝜕𝑥

𝑥
𝐶

1
𝐶

𝜕
𝜕𝑥

𝐿 𝑦
1

𝐶 𝑅 ⎦
⎥
⎥
⎥
⎤

 

 

 

 𝜕
𝜕𝑥

𝑥
𝐶

1
𝐶

𝑥
𝐶 𝐶

3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶  
 

 𝐿𝑒𝑡  𝛼 3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶   

 𝜕
𝜕𝑥

𝑥 𝛼
𝐶 𝐶

𝑥 𝛼 𝐶 𝑥 𝛼 2𝐶 𝐶
𝐶 𝐶

       𝑤ℎ𝑒𝑟𝑒  ∙   𝑖𝑠 
𝜕
𝜕𝑥

 
 

 𝜕
𝜕𝑥

1
𝐶

𝛼
𝐶 𝐶

 
 

 𝑥
𝐶

𝜕
𝜕𝑥

1
𝑅

𝑅 𝑅
𝐶 𝑅

𝑒𝑥𝑝 𝑅 1 𝑆𝑂𝐶  
 

 𝜕
𝜕𝑥

𝐿 𝑦
𝜕
𝜕𝑥

𝑥 𝛼
𝐶 𝐶

𝜕
𝜕𝑥

1
𝐶

𝑖
𝑥
𝐶

𝜕
𝜕𝑥

1
𝑅

 
(13) 

 
The observability matrix Obv shown in equation (13) may be used to determine the conditions 
under which the state x is observable as well as in the computation of the observability condition 
number. The condition number is the ratio between the maximum and minimum singular values 
of Obv and may be used as a metric for observer performance.  

3.3 Third-Order Model 
Consider the third-order equivalent circuit model of [2] and shown in equation (14). Here the 

approximate discrete-time model is presentedi. The added pair Cs and Rs capture the battery 
ohmic drop [2]. 

 𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑇 𝑓   
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 𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑞 𝑘 1 𝐶 𝑅⁄ 𝑇 𝑓   

 𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑞 𝑘 1 𝐶 𝑅⁄ 𝑇 𝑓   

 
𝑆𝑂𝐶 𝑘 1

𝑞 𝑞 𝑘
𝐶

 
 

 𝑅 𝑘 𝑅 𝑅 exp 𝑅 1 𝑆𝑂𝐶 𝑘   

 𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶 𝑆𝑂𝐶 𝑘 𝐶   

 
𝑉 𝑘  

𝑞 𝑘
𝐶

𝑞 𝑘
𝐶

𝑞 𝑘
𝐶

 
(14) 

As with the first and second-order systems, we compute F and H to form the EKF as shown in 
(15).  
 

 

𝐹
𝜕𝑓
𝜕𝑥

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥

𝜕𝑓
𝜕𝑥 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡

1 0 0
𝜕𝑓
𝜕𝑥

1
𝑇

𝐶 𝑅
0

0 0 1
𝑇
𝐶 𝑅 ⎦

⎥
⎥
⎥
⎤

 

 

 

 𝜕𝑓
𝜕𝑥

𝑥 𝑇 𝑅 𝑅

𝐶 𝑅 𝐶
𝑒𝑥𝑝 𝑅 1 𝑆𝑂𝐶  

 

 
𝐻

𝜕ℎ
𝜕𝑥

𝜕ℎ
𝜕𝑥

𝜕ℎ
𝜕𝑥

𝜕ℎ
𝜕𝑥

𝜕
𝜕𝑥

𝑥
𝐶

1
𝐶

1
𝐶

 
 

 𝜕
𝜕𝑥

𝑥
𝐶

1
𝐶

𝑥
𝐶

𝜕𝐶
𝜕𝑥

 
 

 𝜕𝐶
𝜕𝑥

3𝐶 𝑆𝑂𝐶 2𝐶 𝑆𝑂𝐶 𝐶
1

𝐶
 

(15) 

As with the first and second-order models, the observability matrix may be computed using the 
observable coordinates. This is rather lengthy and is not presented here. In practice the authors 
have observed that increasing the system order from second to third results in little gain in 
model accuracy. It is also noted that the computation of the observability indices is prone to 
error due to mathematical complexity.  

3.4 Simplified Electrochemistry Model 
The purpose of this section is to present a simplified electrochemistry model and to develop 

the EKF for state estimation and derive the observability matrix. The complete model is found in 
[5] and described in Appendix A. 
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The simple electrochemistry model considered here is the Nernst equation coupled with the 
Redlich-Kister expansion as shown in (16)ii. The physical meaning of each parameter is the 
same as given in the publication [5] [3] and reviewed in Appendix A. 

  𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑇    

  𝑞 𝑘 𝑞 𝑘 1 𝑖 𝑘 𝑇    

  𝑥 𝑞 𝑞⁄           𝑥 𝑞 𝑞⁄    

 

𝑉
1
𝑛𝐹

𝐴 , 2𝑥 1
2𝑥 𝑗 1 𝑥

2𝑥 1
 

 

 

𝑉
1
𝑛𝐹

𝐴 , 2𝑥 1
2𝑥 𝑗 1 𝑥

2𝑥 1
 

 

 
𝑉 𝑈

𝑅𝑇
𝑛𝐹

ln
1 𝑥
𝑥

𝑉  
 

 
𝑉 𝑈

𝑅𝑇
𝑛𝐹

ln
1 𝑥
𝑥

𝑉  
 

  𝑉 𝑉 𝑉   (16) 

     
Like the Equivalent Circuit Models, we compute the matrixes F and H for the extended Kalman 
filter development as show in equation (17). Here the states are 𝑧 𝑞  and 𝑧 𝑞  and the 
EKF implementation is as shown in algorithm (6). 

 

𝐹
𝜕𝑓
𝜕𝑥

⎣
⎢
⎢
⎡
𝜕𝑓
𝜕𝑧

𝜕𝑓
𝜕𝑧

𝜕𝑓
𝜕𝑧

𝜕𝑓
𝜕𝑧 ⎦

⎥
⎥
⎤

1 0
0 1

 

 

 
𝐻

𝜕𝑉
𝜕𝑧

𝜕𝑉
𝜕𝑧

     
𝜕𝑉
𝜕𝑧

 
 

 
𝜕𝑉
𝜕𝑧

𝑅𝑇
𝑛𝐹

1

𝑞 𝑥 𝑥 1

1
𝑛𝐹

𝐴 , 𝑗 1 2𝑥 1
2

𝑞
 

1
𝑛𝐹

𝐴 ,
2𝑗 2𝑥 1

𝑞
2𝑥 2𝑗𝑥 2𝑥 2𝑗𝑥 1  

 

  𝜕𝑉
𝜕𝑧

𝑅𝑇
𝑛𝐹

1
𝑞 𝑥 𝑥 1

1
𝑛𝐹

𝐴 , 𝑗 1 2𝑥 1
2

𝑞
 

 

 

 

(17) 
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1
𝑛𝐹

𝐴 ,
2𝑗 2𝑥 1

𝑞
2𝑥 2𝑗𝑥 2𝑥 2𝑗𝑥 1  

 
We next compute the observable coordinates h and 𝐿 ℎ used to construct the observability 
matrix Obv. The observable coordinates are shown in equation set (18). Here we have taken 
advantage of the fact that the state equation is decoupled so we only show the development for 
the positive electrode in the computation of the derivatives; the negative electrode is the same. 
 
  𝑓 𝑞 𝑡 𝑖 𝑡    

  𝑓 𝑞 𝑡 𝑖 𝑡    

  ℎ 𝑉 𝑉 𝑉    

 
𝐿 ℎ

𝜕𝑉
𝜕𝑧

𝑓
𝜕𝑉
𝜕𝑧

𝑓  
(18) 

 

The observability matrix is found by taking the Jacobian of the observable coordinates as shown 
in equation set (19). Here the continuous time model is used with states 𝑞 𝑡 𝑖 𝑡  ,  𝑞 𝑡
𝑖 𝑡  and output equation ℎ 𝑡 𝑉 𝑡 𝑉 𝑡 𝑉 𝑡 . 

 

𝑂𝑏𝑣 ∇
ℎ
𝐿 ℎ

⎣
⎢
⎢
⎢
⎡
𝜕ℎ
𝜕𝑧

𝜕ℎ
𝜕𝑧

𝜕𝐿 ℎ
𝜕𝑧

𝜕𝐿 ℎ
𝜕𝑧 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝜕𝑉
𝜕𝑧

𝜕𝑉
𝜕𝑧

𝜕 𝑉

𝜕𝑧
𝑖      

𝜕 𝑉
𝜕𝑧

𝑖
⎦
⎥
⎥
⎥
⎤

 

 

 
𝜕 𝑉

𝜕𝑧
𝑅𝑇

𝑛𝐹𝑞
𝑥 𝑥 2𝑥 1

4
𝑛𝐹𝑞

𝐴 , 𝑗 1 𝑗 2𝑥 1  

4
𝑛𝐹𝑞

𝐴 , 𝑗 𝑗 2 2𝑥 1 2𝑥 2𝑗𝑥 2𝑥 2𝑗𝑥 1  

4
𝑛𝐹𝑞

𝐴 , 𝑗 2𝑥 1 2𝑥 2𝑗𝑥 1 𝑗  

 

  𝜕 𝑉
𝜕𝑧

𝑅𝑇
𝑛𝐹𝑞

𝑥 𝑥 2𝑥 1  
 

(19) 

 
In developing equation (19), it is assumed that 𝐴 , 0 for all 𝑗 0. The matrix Obv of equation 
(19) may be used to determine observability by considering the condition number. 

4. Battery Model Parameter Identification 
The purpose of this section is to outline the methods used in identifying model parameters. 

Three sets of data will be used to identify the battery model variables. A description of the data 
is presented in Appendix B. The first set was obtained by slowly discharging a fully charged 
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battery and measuring the current and voltage. The second set was obtained based on a one C 
discharge (one C meaning that a fully charged battery rated at 1Ah should provide 1 ampere for 
one hour). The third set was obtained using a variable current discharge. The battery voltage 
and current profiles are presented in Appendix B. In all cases the battery voltage and current 
were recorded at a sampling rate of one hertz. Identification was performed in MATLAB using 
the Nelder-Mead nonlinear programming solver fminsearch. This section provides some 
information about the ordering of identification steps and plots demonstrating the quality of 
model fit for the training data. 

4.1 Identification of Equivalent Circuit Model Parameters 
The equivalent circuit battery model contains electrical components and empirical equations 

that are tuned to recreate the observed current-voltage dynamics of the battery. These battery 
parameters were identified by fitting a pulsed discharge laboratory experiment voltage profile 
with a Nelder-Mead downhill simplex method solution search that minimizes the error between 
the modeled and actual voltage profile. These identified parameters are associated with a 
selected battery from a batch of batteries of a given chemical formulation. These parameters 
are assumed to be unvaried across all similar battery packs of a given batch. Any differences in 
individual batteries due to manufacturing variation are accounted for by adaptation of the battery 
charge capacity term Cmax of the Cb capacitor in the equivalent circuit model. A second fitting 
laboratory experiment to identify Cmax is run by performing a 1/50 C slow discharge cycle for 
each battery. During this low current discharge cycle, the voltage across the Cb capacitor plays 
a dominant role. Thus, this experiment allows the Cmax parameter in the equivalent circuit model 
to be fitted in isolation, also through use of the Nelder-Mead simplex method. According to the 
SOC definition Cmax will always be less than qmax, due to electrochemical side-reactions that 
make some portion of a battery’s charge carriers unavailable. The second low current 
experiment is necessary to satisfy issues raised by a Structural Identifiability analysis performed 
on a model with two RC network pairs that are locally, not globally, identifiable and may cause 
the estimation to oscillate between two distinct solutions [6].  

Model parameters are found for the first-order model of equation set (1) using the slow 
discharge data set and a sample rate 𝑇  of one hertz. To initialize these variables, information 
about the battery pack is obtained from the manufacturer and used to initialize the Nelder-Mead 
function fminsearch. Initialization is performed as shown below and the first set of model 
parameters is listed in Table 1. Here 𝑉  is found by averaging the first ten voltage readings at 
the beginning of the discharge, 𝐶  is the integral of the entire current history needed to 
discharge the battery, and 𝑞  is set slightly larger than 𝐶  in order to ensure SOC does not 
exceed one. 

𝑉 𝑚𝑒𝑎𝑛 𝑉 1: 10       𝐶 𝑖𝑑𝑡      𝑞 1.02𝐶      𝐶
𝑞
𝑉

     𝐶 𝐶 𝐶 𝐶 𝐶  

Parameter Initial Guess fminsearch Result 
𝐶  -2.2293e+02 -5.4926e+02 
𝐶  -3.2437e+02 2.7672e+02 
𝐶  3.71484e+03 3.1311e+03 

Table 1. First-order battery parameters for Equivalent Circuit Model. 
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The data is run back through the resulting model to ensure a reasonable fit. The resulting 
output voltage and SOC estimations and are shown in Figure 2 and Figure 3. As can be seen in 
the figures, the resulting model closely approximates battery behavior for the slow discharge 
case. We see that the measured and estimated voltages are similar and that the SOC goes 
from fully charged (1) to fully discharged (0). 

When the equivalent circuit model is extended to include an additional state, the original 
parameters from the first-order model are held constant and the additional parameters are 
identified using the one C discharge data. Here the second-order model is that of equation (9). 
The parameters to be identified are shown in Table 2 with the initial guess and results.  

Parameter Initial Guess fminsearch Result 

𝐶  316.69 1.0991e+02 
𝑅  0.0272 2.0130e-02 
𝑅  1.087e-3 3.1661e-20 
𝑅  34.64 4.3245e+01 

Table 2. Second-Order Model. 

As with the first-order model, the second-order model is checked with the data used for model 
identification to see if the fit is reasonable. The plots are shown in Figure 4 and Figure 5.    

Figure 3. State of Charge. Figure 2. Battery Voltage. 

Figure 4. Battery Voltage. Figure 5 State of Charge. 
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These figures demonstrate a reasonable fit. However, the recovery battery voltage does not 
reach that of the actual battery, and it is suspected that this is because the model is unable to 
capture battery dynamics when the battery current is zero.  

The third-order battery model is investigated next. The additional parameters are shown in 
Table 3 and the model is equation (14). In determining the parameter values, a variable 
discharge was used.  
 

Table 3. Battery Parameters for the Third-Order Model. 

As with the first and second-order system, the fit is reasonable; see Figures 6 and 7. 

4.2 Identification of Electrochemistry Model Parameters 
In this section we consider the identification of the electrochemistry model parameters as 

shown in equation (16). The electrochemistry model [5] is described in Appendix A. Parameter 
identification is a three-step process using a slow discharge data set, a one C data set, and a 
variable data set. The simplest electrochemistry model is the Nernst equation show in equation 
(20). This equation set is not used for battery modeling since it captures too few battery 
dynamics; but it is presented here for context and completeness.  

 
  𝑞 𝑘 𝑞 𝑘 1 𝑖𝑇                    𝑞 𝑘 𝑞 𝑘 1 𝑖𝑇    

 
𝑉 𝑈

𝑅𝑇
𝑛𝐹

ln
𝑞 𝑞

𝑞
              𝑉 𝑈

𝑅𝑇
𝑛𝐹

ln
𝑞 𝑞

𝑞
  

 

  𝑉 𝑉 𝑉    

  𝑆𝑂𝐶
𝑞

0.6𝑞
  (20) 

A more accurate battery model may be developed by adding the Redlich-Kister expansion to 
(20) as shown in equation (16). A summary of the constants and the variables to be identified by 
Nelder-Mead is presented in Table 4. More details about the electrochemistry model and 

Parameter Initial Guess fminsearch Result 
𝑅  0.32 2.4140e-15 
𝐶  39.06 2.0680e+14 

Figure 6. Battery Voltage. Figure 7. State of Charge. 
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parameter meaning may be found in the literature [5]. In (16) R is the universal gas constant, n 
is one, T is the electrode temperature, and F is Faraday’s constant. The model is initialized by 
setting 𝑞 𝑞 , 𝑞 0.4𝑞 , and 𝑞 0.6𝑞 . 

 
Parameter Initial Guess fminsearch Result 

𝑞  1.3313e+05 1.5644e+05 
𝑈  24.4559 2.3958e+01 
𝑈  0.0522 5.3950e-02 
𝐴  422.3000 8.3795e+02 
𝐴  -269531 -3.5945e+05 

 
𝐴  

0.4040, 168533, -563091, 63508, 
2561180, 200182, -7825330, 

1.2296e+04, 6861830, 2028170,     
-990957, -2602390; 

6.0598e-01, 1.2516e+05,  
-5.1572e+05, -1.0277e+05, 
2.5112e+06, 2.7440e+05,     
-9.6805e+06, 2.7031e+04, 
1.0294e+07, 1.7921e+06,  
-1.2636e+05, -1.5294e+06 

Table 4. Electrochemistry Battery Parameters. 

Figure 8 and Figure 9 show the ability of the electrochemistry model to track the measured 
battery voltage and estimate the SOC. Performance is like the equivalent circuit model as 
shown in Figure 2. Although not shown in this paper, it is instructive to mention the variables 

and parameter identification method used for the full electrochemistry model found in reference 
[5]. After the values of Table 4 are determined using the Nelder-Mead search based on (16) and 
the slow discharge data set, the remaining variables of the full electrochemical model of 
reference [5] may be used to find the remaining values by using the one C discharge data. 
These values are shown in Table 5.  
  

Figure 8. Battery Voltage. Figure 9. State of Charge. 
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Parameter  Initial Guess  fminsearch Result 

𝑡   9.2139e+04  1.2793e+06 

𝑅   0.0232  1.7270e‐02 

𝑡   9.0276  1.4711e+01 

𝑡   2.0911  2.7921e+01 

𝑘   260520  1.7408e+01 

𝑡   3.1184e+04  6.0357e+05 

𝑘   1.7715e‐29  5.5396e+06 
Table 5. Electrochemistry Battery Parameters. 

Although more complex, the electrochemistry model can be tuned to closely match battery 
dynamics. However, this complexity and exactness sacrifices robustness. The simpler models 
offer a less accurate model but are more forgiving of model tuning errors. The variable current 
data set is used to demonstrate the full electrochemistry model as shown in Figure 10 and 
Figure 11.  

5. State Observers and Observability 
This section presents the application of the EKF observers and observability equations 

presented in Section 3. Three models are examined: the first and second-order equivalent 
circuit models, and the simplified electrochemistry model. For all three cases, plots showing 
estimator performance are presented followed by observability analysis.  

5.1 Observer Performance for the Electrochemistry Model 
As developed in Section 3, the EKF is used as the state observer. Figure 12 shows the plot 

of the estimated voltage using the EKF for the first-order equivalent circuit model. The data set 
used in this plot is the variable current set as described in Appendix B. Figure 13 is for the 
second-order equivalent circuit model. As can be seen in these figures, both observers track the 
measured voltage reasonably well, with the second-order model demonstrating superior 
estimation. The third order equivalent circuit model was also tried, but no noticeable gain in 
tracking ability was seen, so the plot is not presented here. The EKF model and measurement 
covariances were set to 0.1 and 0.001 for the first-order model respectively. The diagonal of the 
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Figure 10. Battery Voltage. Figure 11. State of Charge. 
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Q matrix for the second-order model was set to [0.1, 0.01] and the measurement covariance R 
was set to 0.001. Estimated and measured voltages are shown in Figures 12 and 13. The 
measured voltage is the actual battery voltage, the model voltage is the voltage produced by the 
model with no EKF, and the estimated voltage is that produced by the EKF. 

The voltage plot for the electrochemistry model is show in Figure 14 for the variable 
discharge case. Also shown in Figure 15 are the two state estimations of the electrochemistry 
model. As we can see from these figures, the EKF does a reasonable job of tracking the internal 
battery states.  

5.2 Observability  
The observability of a nonlinear system may be determined by taking the Jacobian of the 

observable coordinates [4], as was done in Section 3. In this section we plot information about 
observability for both the first and second-order equivalent circuit models. For the first-order 
model, observability becomes weak when the scalar for the observability approaches zero. For 
our systems, this is a function of input as well as model characteristics. Three data sets are 
used to look at observability; slow discharge, one C discharge, and variable discharge. The 

Figure 12. Voltage, First-Order Equivalent Circuit 
Model. 

Figure 13 Voltage, Second-Order Equivalent Circuit 
Model 

Figure 14. Electrochemistry EKF Voltage. Figure 15. State Estimates of Electrochemistry 
Model. 
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value for observability, Obv, is plotted with the discharge current for reference. These plots are 
shown in Figure 16, Figure 17, and Figure 18.  

From examining the plots, we see that Obv follows changes in the applied current. We are 
interested in the point where Obv goes to zero. The minimum values for Obv for each data set is 
2.9132e-05, 3.0690e-05, and 3.1061e-05 respectively. Although somewhat weak, the first-order 
equivalent circuit model remains observable under the current values tested. A similar 
procedure may be applied to the second-order equivalent circuit model. Here we have a two by 
two observability matrix Obv. As a metric for observability, we take the condition number of Obv. 
The plots of the condition number and the current are shown in Figure 19, Figure 20, and Figure 
21. The maximums of the condition number are at 723.8154, 723.2119, and 722.9001. There 
are no problems with observability for the currents tested; since the condition number is a ratio 
of the maximum singular value to the minimum, a large ratio would indicate weak observability.  

C
u

rr
e

n
t i

n
 A

m
p

s

O
bv

Figure 18. Observability, First-Order, Variable 
Discharge. 

Figure 16. Observability, First-Order, Slow 
Discharge. 

Figure 17. Observability, First-Order, One-C 
Discharge. 
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For observability of the electrochemistry model, consider the observability matrix in equation 
set (19). Here we see that both elements of the bottom row of Obv are zero when the current i 
draw is zero, making the matrix singular and the state unobservable when no current is drawn.  

6 Experimental Flight Data 
This section investigates the use of the EKF for state estimation using experimental data. 

The data was taken from a Polymer Li-ion battery during flight of an octocopter. The battery is 
rated at 22.2 V, 22000 mAh, 488.4 Wh and is manufactured by the Shenzhen Grepow Battery 
Co., LTD [7]. The battery parameters used here are those derived in Section 4.1 for the second-
order equivalent circuit model. Figure 22 shows the octocopter and Figure 23 the battery.  
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Figure 20 Condition, Second-Order, One-C 
Discharge. 
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Figure 19. Condition, Second-Order, Slow 
Discharge. 

Figure 21 Condition, Second-Order, 
Variable Discharge 
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From the figures below, we see that the battery model with EKF performed reasonably well 
and the condition number remained well bounded. 

Figure 22. Octocopter Used for Experimental Flight. Figure 23. Battery Used for Flight. 

Figure 24. Battery Voltage. Figure 25 State of Charge. 

Figure 26. Plot of Current and Condition Number. 

V
ol

ta
ge

S
ta

te
 o

f C
ha

rg
e,

 S
O

C

C
ur

re
nt

 in
 A

m
ps

C
on

di
tio

n 
N

um
be

r



 

19 
 

Conclusions 
The extended Kalman filter was developed for the equivalent circuit battery model. It was 

found that observability could be maintained at some level during battery usage. A simplified 
electrochemistry model was introduced, and observability explored. State observability was 
explored with both laboratory test data and data gathered during the flight of an octocopter. For 
the battery models examined, the extended Kalman filter offers a way to produce approximate 
state observations in real-time. However, the computation of the derivatives needed to 
implement the filter is tedious and prone to human error. Likewise, the computation of the 
derivatives needed to track observability is laborious.  
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Appendix A 
The basic kinetics for the electrochemistry model is derived from the chemical reactions that 

take place at the electrodes and are shown in equations A.1 through A.4 [5]. Equations A.1 and 
A.2 are the reactions at the electrodes during a discharge. During discharge, an oxidation 
reaction takes place at the negative electrode resulting in lithium-ions and electrons. The 
electrons travel from the surface of the negative electrode to the surface of the positive 
electrode leaving the surface potential of the negative electrode increased and the surface 
potential of the positive electrode decreased causing them to converge towards the same 
potential. This means that the voltage will decrease as the voltage across the battery is the 
difference between the negative electrode surface potential and the positive electrode surface 
potential. The lithium-ions travel from the bulk of the negative electrode to the bulk of the 
positive electrode through the electrolyte. A reduction reaction occurs at the positive electrode 
when lithium-ions diffuse into the surface and the electrons diffuse into the bulk. The result is 
the increase in the surface potential at the positive electrode which counters the decrease from 
the initial introduction of the electrons.  

 𝐿𝑖 𝐶 → 𝐶 𝑥𝐿𝑖 𝑥𝑒  A.1 

 𝐿𝑖 𝐶𝑜𝑂 𝑥𝐿𝑖 𝑥𝑒 → 𝐿𝑖𝐶𝑜𝑂  A.3 

Equations A.3 and A.4 are the reactions that take place at the electrodes during charge. 
During charge, oxidation occurs at the positive electrode and results in lithium-ions and 
electrons as products. The electrons travel from the surface of the positive electrode to the 
surface of the negative electrode resulting in an increase in the surface potential at the positive 
electrode and a decrease in the surface potential at the negative electrode. The surface 
potentials diverge during charge which increases the voltage. The lithium-ions travel from the 
bulk of the positive electrode to the bulk of the negative electrode through the electrolyte. A 
reduction reaction takes place at the negative electrode when lithium-ions diffuse into the 
surface and electrons diffuse into the bulk. This results in an increase in the surface potential at 
the negative electrode which counters the decrease in potential from the introduction of the 
electrons that traversed from the positive electrode surface.  

 𝐶 𝑥𝐿𝑖 𝑥𝑒 → 𝐿𝑖 𝐶 A.3 

 𝐿𝑖𝐶𝑜𝑂 → 𝐿𝑖 𝐶𝑜𝑂 𝑥𝐿𝑖 𝑥𝑒  A.4 

To define the electrochemistry-based model, the relevant voltages and how they impact the 
voltage of the battery must be detailed. First, the battery voltage that the model is capturing and 
our system is measuring is seen in Figure A.1 [5] to be the difference in potential between the 
surfaces of the negative and positive electrodes.  

The voltages that factor into the determination of the battery voltage can be stated in relation 
to how they detract from the ideal voltage. This voltage is defined as the difference between 𝑉 ,  
and 𝑉 , . The first set of voltages that detract from the equilibrium voltage are known as ohmic 
voltage drops. The ohmic voltages are comprised of the electrolyte ohmic voltage denoted 𝑉 , 
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the solid phase ohmic voltage of the positive electrode denoted 𝑉 , , and the solid phase ohmic 
voltage of the negative electrode denoted 𝑉 , . The second set of voltages that detract from the 
equilibrium voltage are known as surface overpotentials and are a result of charge transfer 
resistance and solid electrolyte interface kinetics [5]. The surface overpotentials are comprised 
of a negative electrode surface overpotential denoted 𝑉 ,  and a positive electrode surface 
overpotential denoted 𝑉 , .  

The state definition, the input, the output, and the relevant model variables are defined in 
equations A.5 through A.7. The state vector is defined in equation A.5 and consists of the 
positive electrode surface charge 𝑞 , , the positive electrode bulk charge 𝑞 , , the negative 
electrode bulk charge 𝑞 , , the negative electrode surface charge 𝑞 , , the sum of the ohmic 
voltage contributions 𝑉 , the positive electrode overpotential 𝑉 , , and the negative electrode 
overpotential 𝑉 , . The input vector is defined in equation C.6 and consists of the discharge 
current 𝑖 . The output vector is defined in equation A.7 and consists of the battery voltage 𝑉.  

 𝑥 𝑡  𝑞 ,  𝑞 ,  𝑞 ,  𝑞 ,  𝑉  𝑉 ,  𝑉 ,    A.5 

 𝑢 𝑡  𝑖   A.6 

 𝑦 𝑡  𝑉  A.7 

The state transition equations for the electrode charges incorporate the discharge current and 
diffusion, as shown in equations A.8 through A.12 [5]. Inter-electrode electron flow occurs 
primarily at the surface of the electrodes. Hence, the current does not have a direct impact on 
charge at the bulk of the electrodes. Indirectly, the current changes the concentration gradient of 
lithium-ions between the surface and the bulk of the electrodes which impacts diffusion and in 
turn the charge at the bulk of the electrodes. The cumulative charge equations are shown in 
equations A.13 through A.15 [5].  

 𝑞 , 𝑖 𝑞 ,  A.8 

Figure A.1. Battery Diagram. 
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 𝑞 , 𝑞 ,  A.9 

 𝑞 , 𝑞 ,  A.10 

 𝑞 , 𝑖 𝑞 ,  A.11 

 
𝑞 ,

1
𝐷

𝑐 , 𝑐 ,       𝑖 𝑝,𝑛 
A.12 

 𝑞 𝑞 , 𝑞 ,  A.13 

 𝑞 𝑞 , 𝑞 ,  A.14 

 𝑞 𝑞 𝑞  A.15 

These charge equations are coupled directly with the concentration and lithium mole fraction 
equations shown in equations A.16 through A.20 [5]. Here 𝑣 refers to volume and the subscript 𝑖 
refers to either electrode. The lithium-ion mole fraction for the positive electrode must be at least 
0.4 and the lithium-ion mole fraction at the negative electrode must be no more than 0.6. If the 
positive electrode has a mole fraction of lithium less than 0.4, lithium cannot be reversibly 
removed [8]. The mole fractions at the positive electrode and negative electrode are 
complimentary so together they must add to 1. Hence, the mole fraction at the negative 
electrode must be no greater than 0.6.  

 𝑐 .
𝑞 .

𝑣 .
 A.16 

 𝑐 ,
𝑞 ,

𝑣 ,
 A.17 

 𝑥
𝑞

𝑞
 A.18 

 𝑥 ,
𝑞 ,

𝑞 , ,
 A.19 

 𝑥 ,
𝑞 ,

𝑞 , ,
 A.20 

The equations to solve for the cumulative ohmic voltage, the surface overpotentials, and the 
intermediate variables are shown in equations A.21 through A.29 [5] [9]. In equation A.21, 𝑈  is 
the reference potential. In equations A.21 through A.29, 𝑅 is the universal gas constant, 𝑇 is the 
electrode temperature, 𝑛 is the number of electrons transferred in from the chemical reaction in 
equation A.1, and 𝐹 is Faraday’s constant. 𝑅  is the cumulative resistance from the ohmic 
voltages drop, 𝛼 is the symmetry factor, and 𝑆  is the area of the electrode. The terms 𝜏 , , and 
𝜏 ,  denote time constants. Lastly, 𝐴 ,  are parameters for the Redlich-Kister expansion. The 
Redlich-Kister expansion is used to capture the activity coefficient terms related to excess Gibbs 
free energy [8]. For a more detailed outline of the intermediate variables see [5].  

 
𝑉 , 𝑈 ,

𝑅𝑇
𝑛𝐹

ln
1 𝑥 ,

𝑥 ,
𝑉 ,  

A.21 

 
𝑉 ,

1
𝑛𝐹

𝐴 , 2𝑥 , 1
2𝑥 , 𝑘 1 𝑥 ,

2𝑥 , 1
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 𝑉 𝑖 𝑅  A.23 

 
𝑉 ,

𝑅𝑇
𝐹𝛼

arcsinh 
𝐽

2𝐽
 

A.24 

 
𝐽

𝑖
𝑆

 
A.25 

 𝐽 𝑘 1 𝑥 , 𝑥 ,  A.26 

 
𝑉

𝑉 𝑉
𝜏

 
A.27 

 
𝑉 ,

𝑉 , 𝑉 ,

𝜏 ,
 

A.28 

 
𝑉 ,

𝑉 , 𝑉 ,

𝜏 ,
 

A.29 

The equation for the battery voltage is shown in equation A.30 and the state of charge 
equations are shown in equations A.31 and A.32 [5]. The nominal state of charge refers to the 
percent of charge left at the negative electrode while the apparent state of charge refers to the 
percent of charge left at the surface of the negative electrode. If the charge at the surface of the 
negative electrode becomes entirely depleted, discharge cannot continue until charge diffuses 
from the bulk of the negative electrode so long as the nominal state of charge has not been 
entirely depleted in that instance.  

 𝑉 𝑉 , 𝑉 , 𝑉 𝑉 , 𝑉 ,  A.30 

 𝑆𝑂𝐶
𝑞

0.6𝑞
 A.31 

 𝑆𝑂𝐶
𝑞 ,

0.6𝑞 , ,
 A.32 

Appendix B 
This appendix describes the battery data used for parameter identification and modeling 

analysis. Four data sets were created using a Maccor 4000 battery cycler. The first data set was 
found to have corrupted data and data set two is presented in Figure B.1, Figure B.2, and 
Figure B.3. In these figures blue is the battery voltage and red the current. Data set two is 
presented here because it is the one used in the battery model simulations. For the flight data, 
battery four was used.  

The red lines in the figures are the current values labeled on the right axis. For the slow 
discharge, the current was held at around 0.44 amperes; for the 1 C discharge the current was 
held around 22 amperes, and for the variable discharge case the current went through 
quantized steps as can be seen in the red line shown in Figure B.3.  
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i The exact form is 𝐴

⎣
⎢
⎢
⎢
⎡
1 0 0

0 exp 0

0 0 exp ⎦
⎥
⎥
⎥
⎤
  and 𝐵

⎣
⎢
⎢
⎢
⎢
⎡

𝑇

𝐶 𝑅 𝑡 1 exp 

𝐶 𝑅 𝑡 1 exp 
⎦
⎥
⎥
⎥
⎥
⎤

 

 

ii Here the discrete-time approximation is exact, with 𝐴 1 0
0 1

  and 𝐵 1
1

  and state defined as 
𝑞 𝑘
𝑞 𝑘

 

 

B
at

te
ry

 V
ol

ta
ge

B
at

te
ry

 C
ur

re
nt

, A
m

ps

Figure B.3. Variable Discharge. 
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Figure B.1. Slow Discharge. Figure B.1. One-C Discharge. 
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