National Aeronautics and Space Administration

Optimization of the Lunar IceCube Trajectory Using Stochastic Global Search and Multi-Point Shooting

5

<u></u>ත

5

(1)

O

0

C

Jacob Englander
Dave Folta
Sun Hur-Diaz

NAVIGATION & MISSION DESIGN BRANCH NASA GSFC

www.nasa.gov

Agenda

- Physical Model
- Optimization and Global Search
- ConOps and Problem Structure
- Examples

Physical Model

Low-Fidelity Analysis: Sims-Flanagan with Averaged *n*-Body Gravity

High-Fidelity Optimization via Direct Two-Point or Parallel Shooting

Lunar Gravity Assist

Optimization and Global Search

Inner-Loop Solver: Nonlinear Programming (NLP)

Minimize
$$f(x)$$

Subject to:
 $x_{lb} \le x \le x_{ub}$
 $c(x) \le 0$
 $Ax \le 0$

where:

 x_{lb} , x_{ub} are lower and upper bounds on the decision variables c(x) is a vector of nonlinear constraints

Ax is a vector of linear constraints

- We use the Sparse Nonlinear OPTimizer (SNOPT)
- Analytical expressions are provided for every element of the Jacobian
- But all NLP problem solvers require an initial guess...

Inner-Loop Solver: Monotonic Basin Hopping (MBH)

ConOps and Problem Structure

Deployment to LGA

Lunar IceCube as an Optimization Problem

Examples

Low-Fidelity vs High-Fidelity Point Solution

(GSE frame)

NAVIGATION & MISSION DESIGN BRANCH, CODE 595 NASA GSFC

High-Fidelity Arrival Date Trade Study

May 22nd Arrival Case, High-Fidelity

Control Magnitude Profile

Conclusions

- Multi-point direct shooting and monotonic basin hopping are promising candidates for the design of Lunar IceCube and similar missions.
- This was an experiment the techniques used here were developed for interplanetary missions and this is our first attempt at using them for a cislunar design.
- The methods presented here allow us to quickly and flexibly re-design Lunar IceCube in response to changes in mission requirements and deployment conditions.
- This capability will be very important during operations as we re-plan as we fly to take into account error from orbit determination and maneuver execution.

Thank You

EMTG is available open-source at

https://github.com/nasa/emtg/

