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 Current state-of-the-art batteries are not designed to 
meet the unique performance and safety
requirements of electric aircraft.

The Problem

 Current batteries under development will always have fire 
safety challenges due to flammable electrolytes used

 Safety is required for aerospace applications
 SOA lithium ion batteries have caused a number of safety 

incidents on aircraft
 Parasitic weight from excess packaging and cooling is 

undesirable

Tesla Li-Ion Battery Fire

Boeing 787 Li-Ion Battery2006 UPS Cargo Flight Grounded

Battery Safety RequirementsBattery Performance Requirements

Vehicle Performance & Efficiency
McDonald, Uber Elevate, 2017

 NASA Battery Workshop 2017 and industry representatives 
state “The primary barrier to electric aviation is battery 
performance”

 SOA lithium ion batteries do not meet energy density 
requirements needed to enable electric aircraft designs

 Unique flight critical metrics (e.g. high power) required
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 Current performance targets for the automotive sector are a battery pack with 
250 – 300 Wh/kg
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Aeronautics Challenges
 Can a battery be designed for electric aircraft, following system level analyses, 

that provides the combination of required properties?
 Safety
 Energy density
 Discharge rate
 Packaging design for minimal weight
 Scalability

SABERS Concept:  Design a battery using system level analyses to guide target properties, 
combine existing materials technologies, and a bi-polar stack design.
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The Big Question
How do we meet ALL demanding battery needs of electric aircraft?
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Electric Aircraft
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SABERS Transformative Technology

Combination of unique materials technologies to achieve performance goals
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Bi-Polar Stack Solid-State Battery
SSE-enabled bi-polar stack design minimizes safety containment in packaging

Bi-Polar Stack Packaging Enabled by SSE
 Contains no flammable liquids
 Enables a shared current collector (bi-polar)
 Reduces safety containment weight
 Minimal/passive cooling system possible
 Potential for higher power density and C-rates
 90% of cell specific energy can be retained in pack

Lithium-Ion Battery (SOA) Packaging
 Contains flammable electrolytes
 Requires heavy housing and cooling system
 The added pack weight reduces energy density

Safety

Packaging

Automotive Sector

Electric Aircraft

- Minimal cooling
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Thermal/Weight Systems Level Analysis
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• SABERS operating temperature (150°C) versus for Li-
Ion chemistries (50-60°C)

• Thermal heat load well within SABERS temperature 
limits (simple passive system)

• Advanced Li-Ion batteries require:
 Active system: adds 20-30% weight, 30-50% 

volume, 1-3% of power used
 Semi-passive: system with phase change 

material: 10-20% weight and volume penalty

SABERS Bi-Polar Stack
 Effectively 10-30% less battery pack “overhead”
 Improved specific energy and power
 Critical enabling technology for all-electric, battery vehicles/missions
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Holey Graphene Conductive Scaffold
Encapsulate S/Se with holey graphene hosts to maximize energy and power utilization

 Unique NASA-developed technology
 High conductivity, ultralightweight electrode scaffold
 Through-thickness ion transport enabling fast kinetics
 Enables universal dry electrode processing
 Scalable

Power

Scalability

Energy

Scale-Up to Production
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Holey Graphene Fabrication and Performance

 Extremely facile: single-step, no mixing needed
 Widely applicable: S, Se, SexSy, Li2S

 Ultrahigh mass loading (>10 mg/cm2) cathodes from hG-enabled dry-press technique are advantageous 
toward cell- and pack-level performance.

 Addition of holey graphene significantly improves the initial discharge capacity of the cell

 High active material content (up to 90 wt%)
 High mass loading: high areal capacity
 Excellent current collector– cathode contact
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A 0.4C Discharge Rate Exceeds 1100 Wh/kg for thicker electrode (2.8mAhcm-2)

 50 wt% Sulfur:Carbon with a liquid electrolyte able to achieve 1100 Wh/kg at 0.4C discharge rate
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Traditional SSB Manufacturing Approach vs. SABERS Approach

SABERS ApproachTraditional SSB Manufacturing Approach

Cathode

Anode

Electrolyte



Cathode Composition and Microstructure
Solid State Cathode constituents:
 Cathode active material (CAM) - S, Se, SexSy, Li2S
 Solid electrolyte (SE) with high LI+ ionic conductivity -

Li10GeP2S12 (LGPS) (7-12 mS/cm); Li6PS5Cl (Argyrodite) (2-4 mS/cm)
 Electronic conductive agent (ECA) with high electron 

conductivity – CB, hG

X. Yao et al., Adv. Energy Mater. 2017, 7, 1602923. 

Optimal Cathode should have:
 High amount of CAM, or cathode loading - 50-90 vol%
 Sufficient, but minimal amount of SE, with good 

CAM/SE contact to ensure sufficient Li+ diffusion
 Sufficient, but minimal amount of ECA for e- transport

Critical parameters for optimal cathode performance:
 Grain size of the components – the smaller, the better
 Composition ratio between CAM : SE : ECA – depends 

on the grain size – network percolation problem
 Li+ and e- conductivities of SE and ECA
 Mass weight of the components – affects the overall 

battery weight 

S + 2Li+ + 2e- → Li2S
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Multiscale Modeling Approach
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Length Scale

∼ 10 − 100 𝜇𝜇m

∼ 1 − 2 nm

• Ab initio simulations
• Material and transport properties
• Doping strategies

• Physics based continuum scale modeling: 
electrochemical and thermal models

• Experimental benchmarking

• Particle dynamics methods: electro-mechanical model
• Grain structure properties
• SE/CAM ratios, cathode utilization

Cathode material

Battery

Crystal lattice
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Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 

 Represents the cathode composite as 
a system of tightly packed spheres of 
different types and sizes with assigned 
specific Li+ and e- conductivities. 

 Calculates the total conductivities for 
Li+ and e- of the mixed powder 
composite as dependent on the 
particle size, density and composition 
ratio. 

+|

S-SeSE CLi+ conductor e- conductor neutral, or e-

conductor

+|

Li+

e-

Cathode Representative Volume Element (RVE)
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Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 
Model construction:

 Generate particles of given type 
(SE, C, S) and given size distribution

 Fills the system box (or RVE) with 
particles of all types randomly

ElectrolyteElectrolyte

Sulphur

Electrolyte

Sulphur

Carbon Black

Cathode Representative Volume Element (RVE)
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Particle Dynamics Method
Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1) 
Model construction:

 Generate particles of given type
(SE, C, S) and given size distribution

 Fills the system box (or RVE) with
particles of all types randomly

 Compress the powder composite

Cathode Representative Volume Element (RVE)
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Multiscale Modeling Approach
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Length Scale

∼ 1 − 2 nm

• Ab initio simulations
• Material and transport properties
• Doping strategies

• Continuum Scale
• Physics based modeling
• Experimental benchmarking

• Particle dynamics level
• Electromechanical and 

grain interaction model
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Ion charge conservation

Electron charge conservation
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 SESAM takes input from experimental data and ab-initio QM simulations on material properties 
 SESAM predicts cathode ion and electron conductivities as input to mesoscale battery models 
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Conclusions
 Elevated temperature operation is a design parameter that can modified 

- If you increase operating temperature from 40 to 50 °C, energy is increased by 10%
 SABERS is a solid-state battery which enables high temperature operation (150 °C)

 Addition holey graphene improves cathode performance
- Holey graphene provides high electrical conductivity and binderless dry compressibility
 It increases cathode electrical conductivity and initial voltage discharge profile

 SABERS 1C-rate for lithium-sulfur (804 Wh/kg) is comparable to a 3C-rate for lithium-ion 
- The standards for electric aircraft are given in terms of lithium-ion batteries
 Different chemistries require defining unique standards

 Optimizing the composition ratio between SE, active material, and conductive agent can 
significantly improve battery performance
- Particle size has a significant effect on the ionic and electronic conductance
 The model suggests using large particles
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