Solid-state Architecture Batteries for Enhanced Rechargeability and Safety for Electric Aircraft

Authors:
Dr. Rocco Viggiano (GRC)
Dr. Donald Dornbusch (GRC)
Dr. James Wu (GRC)
Dr. Brett Bednarcyk (GRC)
Dr. Benjamin Kowalski (GRC)
Dr. John Connell (LaRC)
Dr. Yi Lin (NIA)
Dr. Vesselin Yamakov (NIA)
The Problem

Battery Performance Requirements
- NASA Battery Workshop 2017 and industry representatives state “The primary barrier to electric aviation is battery performance”
- SOA lithium ion batteries do not meet energy density requirements needed to enable electric aircraft designs
- Unique flight critical metrics (e.g. high power) required

Battery Safety Requirements
- Current batteries under development will always have fire safety challenges due to flammable electrolytes used
- Safety is required for aerospace applications
- SOA lithium ion batteries have caused a number of safety incidents on aircraft
- Parasitic weight from excess packaging and cooling is undesirable

Vehicle Performance & Efficiency

SOA lithium ion batteries have caused safety incidents on aircraft, such as the Boeing 787 Li-Ion Battery and the UPS Cargo Flight Grounded. These incidents highlight the need for improved battery safety and performance in electric aviation.
Current performance targets for the automotive sector are a battery pack with 250 – 300 Wh/kg.
Can a battery be designed for electric aircraft, following system level analyses, that provides the combination of required properties?

- Safety
- Energy density
- Discharge rate
- Packaging design for minimal weight
- Scalability

SABERS Concept: Design a battery using system level analyses to guide target properties, combine existing materials technologies, and a bi-polar stack design.
The Big Question

How do we meet **ALL** demanding battery needs of electric aircraft?

- State-of-the-art lithium-ion batteries
- Lithium sulfur batteries
- Solid state batteries
SABERS Transformative Technology

Combination of unique materials technologies to achieve performance goals
SSE-enabled bi-polar stack design minimizes safety containment in packaging

Lithium-Ion Battery (SOA) Packaging
- Contains flammable electrolytes
- Requires heavy housing and cooling system
- The added pack weight reduces energy density

Bi-Polar Stack Packaging Enabled by SSE
- Contains no flammable liquids
- Enables a shared current collector (bi-polar)
- Reduces safety containment weight
- Minimal/passive cooling system possible
- Potential for higher power density and C-rates
- 90% of cell specific energy can be retained in pack
Thermal/Weight Systems Level Analysis

- **SABERS operating temperature (150°C) versus for Li-Ion chemistries (50-60°C)**
- **Thermal heat load well within SABERS temperature limits (simple passive system)**
- **Advanced Li-Ion batteries require:**
 - *Active system:* adds 20-30% weight, 30-50% volume, 1-3% of power used
 - *Semi-passive:* system with phase change material: 10-20% weight and volume penalty

SABERS Bi-Polar Stack
- Effectively 10-30% less battery pack “overhead”
- Improved specific energy and power
- Critical enabling technology for all-electric, battery vehicles/missions
Holey Graphene Conductive Scaffold

Encapsulate S/Se with holey graphene hosts to maximize energy and power utilization

- Unique NASA-developed technology
 - High conductivity, ultralightweight electrode scaffold
 - Through-thickness ion transport enabling fast kinetics
 - Enables universal dry electrode processing
 - Scalable

Battery with Holey Graphene Scaffolding

Scale-Up to Production
Holey Graphene Fabrication and Performance

- Extremely facile: single-step, no mixing needed
- Widely applicable: S, Se, SeₓSᵧ, Li₂S
- Ultrahigh mass loading (>10 mg/cm²) cathodes from hG-enabled dry-press technique are advantageous toward cell- and pack-level performance.
- Addition of holey graphene significantly improves the initial discharge capacity of the cell

- High active material content (up to 90 wt%)
- High mass loading: high areal capacity
- Excellent current collector– cathode contact
- Extremely facile: single-step, no mixing needed
- Widely applicable: S, Se, SeₓSᵧ, Li₂S

Diagram:
- Composite Mixture
- Dry-Press
- Composite
- Layered Composite
- Sandwich

Graph:
- Cathode w/ and w/o Addition of Holey Graphene
- Addition of holey graphene
- No holey graphene

- Voltage (V)
- Time (S)
50 wt% Sulfur:Carbon with a liquid electrolyte able to achieve 1100 Wh/kg at 0.4C discharge rate
Traditional SSB Manufacturing Approach vs. SABERS Approach

Traditional SSB Manufacturing Approach
- Glass Electrolyte
- Lithium flow through electrolyte-cathode
- Sulfur-Carbon-Electrolyte Composite
- Cathode
- Electrolyte
- Anode

SABERS Approach
- Polypropylene
- Li-metal
- Li-Ni fibers
- Cathode
- Electrolyte
- Anode
Cathode Composition and Microstructure

Solid State Cathode constituents:

- Cathode active material (CAM) - S, Se, Se_xS_y, Li_2S
- Solid electrolyte (SE) with high Li^+ ionic conductivity - $Li_{10}GeP_2S_{12}$ (LGPS) (7-12 mS/cm); Li_6PS_5Cl (Argyrodite) (2-4 mS/cm)
- Electronic conductive agent (ECA) with high electron conductivity – CB, hG

S + 2Li^+ + 2e^- → Li_2S

Optimal Cathode should have:

- High amount of CAM, or cathode loading - 50-90 vol%
- Sufficient, but minimal amount of SE, with good CAM/SE contact to ensure sufficient Li^+ diffusion
- Sufficient, but minimal amount of ECA for e^- transport

Critical parameters for optimal cathode performance:

- Grain size of the components – the smaller, the better
- Composition ratio between CAM : SE : ECA – depends on the grain size – network percolation problem
- Li^+ and e^- conductivities of SE and ECA
- Mass weight of the components – affects the overall battery weight
Multiscale Modeling Approach

- Ab initio simulations
- Material and transport properties
- Doping strategies

- Particle dynamics methods: electro-mechanical model
- Grain structure properties
- SE/CAM ratios, cathode utilization

- Physics based continuum scale modeling: electrochemical and thermal models
- Experimental benchmarking

Length Scale

Computational simplicity

Cathode material

Crystal lattice

Battery

∼ 10−100 μm

∼ 1−2 nm
Particle Dynamics Method

Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1)

- Represents the cathode composite as a system of tightly packed spheres of different types and sizes with assigned specific Li$^+$ and e$^-$ conductivities.

- Calculates the total conductivities for Li$^+$ and e$^-$ of the mixed powder composite as dependent on the particle size, density and composition ratio.

Solid Electrolyte Sphere Approximation Model (SESAM) is pending NASA Release
Particle Dynamics Method

Electro-mechanical model: Solid Electrolyte Sphere Approximation Model (SESAM)

(NTR: LAR-19842-1)

Model construction:

- Generate particles of given type (SE, C, S) and given size distribution
- Fills the system box (or RVE) with particles of all types randomly

![Cathode Representative Volume Element (RVE)](image)
Model construction:

- Generate particles of given type (SE, C, S) and given size distribution
- Fills the system box (or RVE) with particles of all types randomly
- Compress the powder composite
Multiscale Modeling Approach

- Continuum Scale
- Physics based modeling
- Experimental benchmarking

Mass conservation
\[
\phi \frac{dC_{Li}}{dt} - \frac{\partial}{\partial x} \left(\phi D_{Li} \frac{dC_{Li}}{dx} + uC_{Li} F \frac{d\varphi_2}{dx} \right) = -\alpha j_n
\]

Electron charge conservation
\[
\frac{\partial}{\partial x} (i_1) = \frac{\partial}{\partial x} (\sigma \frac{\partial \varphi_1}{\partial x}) = \alpha j_n F
\]

Ion charge conservation
\[
\frac{\partial}{\partial x} (i_2) = \frac{\partial}{\partial x} (\kappa \frac{\partial \varphi_2}{\partial x}) = -\alpha j_n F
\]

- Computational simplicity
 - Particle dynamics level
 - Electromechanical and grain interaction model

- Length Scale
 - ∼ 1−2 nm
 - Ab initio simulations
 - Material and transport properties
 - Doping strategies

- Continuum Scale
 - Physics based modeling
 - Experimental benchmarking

- SESAM takes input from experimental data and ab-initio QM simulations on material properties
- SESAM predicts cathode ion and electron conductivities as input to mesoscale battery models
Conclusions

- Elevated temperature operation is a design parameter that can be modified.
 - If you increase operating temperature from 40 to 50 °C, energy is increased by 10%.
 - SABERS is a solid-state battery which enables high temperature operation (150 °C).

- Addition of holey graphene improves cathode performance.
 - Holey graphene provides high electrical conductivity and binderless dry compressibility.
 - It increases cathode electrical conductivity and initial voltage discharge profile.

- SABERS 1C-rate for lithium-sulfur (804 Wh/kg) is comparable to a 3C-rate for lithium-ion.
 - The standards for electric aircraft are given in terms of lithium-ion batteries.
 - Different chemistries require defining unique standards.

- Optimizing the composition ratio between SE, active material, and conductive agent can significantly improve battery performance.
 - Particle size has a significant effect on the ionic and electronic conductance.
 - The model suggests using large particles.
The SABERS Team would like to gratefully acknowledge funding for this project from Convergent Aeronautics Solutions (CAS).