

A05-0947: Solid-state battery designed for electric aviation

Donald A. Dornbusch*, Rocco P. Viggiano*, Frederick W. Dynys*, Benjamin A. Kowalski*, Yi Lin[§], John W. Connell [†], James J. Wu^{*}

*NASA Glenn Research Center; §National Institute of Aerospace;

†NASA Langley Research Center

PRiME 2020 October

Presenter: Dr. Donald A. Dornbusch NASA GRC Chemical Research Engineer

Introduction – Electrified Aviation

- Electric and hybrid electric aircraft systems can lead to higher efficiencies, safer designs, and quieter operation
- Current battery technology is insufficient to achieve the requirements for electric aviation:
 - Energy, Power, and Safety
- Higher energy density batteries and current flammable liquid electrolytes lead to safety concerns

Solid-State Electrolytes

Advantages:

- Solid-state electrolytes = low volatility/low flammability
- Wide temperature tolerance

Disadvantages:

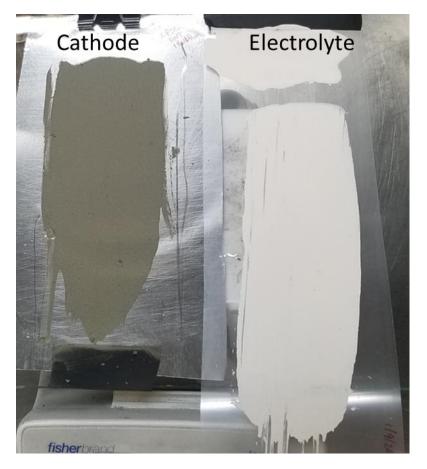
- Difficult to manufacture
- Interface issues
 - Solid-Solid contact vs Liquid-solid
- High density vs liquid (g/cm3)

Material Selection

- Lithium-Sulfur
 - Lithium metal is an ideal anode material
 - Lightweight (3860mAh/g), low potential, metallic
 - Sulfur has high capacity (1675mAh/g)
 - Reasonable potential above lithium (~2V)
 - Dissolution prevented in a solid-electrolyte
- Solid-Electrolyte
 - Polymer ~1.2g/mL \rightarrow
 - Sulfide ~1.7 g/mL \rightarrow
 - Oxide ~5.6 g/mL 14 mg/cm2 \rightarrow

25 micron separator:

- 3 mg/cm2
- 4.25 mg/cm2


Oxides, such as LLZO, must be x3.3 times thinner than corresponding sulfide to achieve same weight penalty

Manufacturing Thin Electrolytes

Sulfide-Polymer Composites

- Tape-casting produces thin electrolytes
- Traditional lithium-ion
 manufacturing technique
- Utilizing inert binder (3-5wt%) to achieve well adhered films
- Capable of producing multiphase cathodes
 - (Active-Carbon-Electrolyte-Binder)

Improved mechanical properties

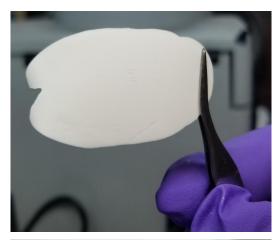
Mylar Supported

Free-standing

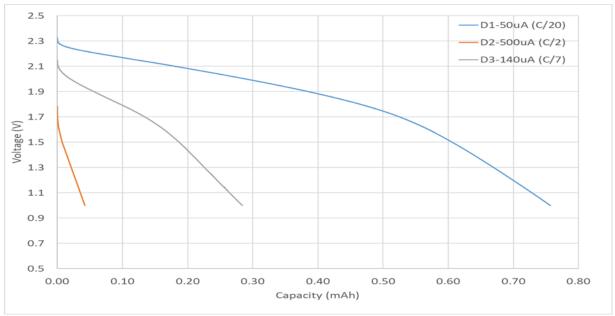
Flexibility test: ~2"x2" tape-cast electrolytes

Folded SSE film - Top View


Bent or


Folded SSE film - Side View

Unfolded SSE film - No visible damage



Shape rebounds undamaged

Full Cell Demonstration TiS₂/Sulfide SSE/Lithium

- TiS2 test candidate cathode (1mAh)
 - Similar potential window to sulfur
 - Lower volume change
 - High electrical conductivity
- ~25 micron thick solid-state electrolyte achievable
- Ionic Conductivity Retention of Sulfide-Polymer Composite: ~40% (3E-4 S/cm)
- Rate capability/mixing requires further improvements

www.nasa.gov 7

A05-0947: Solid-state battery designed for electric aviation

Donald A. Dornbusch*, Rocco P. Viggiano*, Frederick W. Dynys*, Benjamin A. Kowalski*, Yi Lin[§], John W. Connell [†], James W. Wu^{*}

*NASA Glenn Research Center; §National Institute of Aerospace;

†NASA Langley Research Center

PRiME 2020 October

Presenter: Dr. Donald A. Dornbusch NASA GRC Chemical Research Engineer