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ABSTRACT
We search for observational signatures of magnetic helicity in data from all-sky radio polar-
ization surveys of the Milky Way Galaxy. Such a detection would help confirm the dynamo
origin of the field andmay provide new observational constraints for its shape.We compare our
observational results to simulated observations for both a simple helical field, and for a more
complex field that comes from a solution to the dynamo equation. Our simulated observations
show that the large-scale helicity of a magnetic field is reflected in the large-scale structure of
the fractional polarization derived from the observed synchrotron radiation and Faraday depth
of the diffuse Galactic synchrotron emission. Comparing the models with the observations
provides evidence for the presence of a quadrupolar magnetic field with a vertical component
that is pointing away from the observer in both hemispheres of the Milky Way Galaxy. Since
there is no reason to believe that the Galactic magnetic field is unusual when compared to other
galaxies, this result provides further support for the dynamo origin of large-scale magnetic
fields in galaxies.
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1 INTRODUCTION

Magnetic fields are critical to the structure and the turbulent prop-
erties of the interstellar medium, to the star formation process, and
to the acceleration, propagation and confinement of cosmic rays in
galaxies (e.g., Haverkorn 2015). Observational features of galactic
magnetic fields include a strength on the order of a `� with mag-
netic field lines that generally follow the arms in face on spirals
(Beck 2001). Observations of nearby, edge-on galaxies reveal ap-
parent X-shaped field lines that extend into the halo (Beck 2009;
Beck & Wielebinski 2013; Krause 2015; Krause et al. 2020).

In recent years, we have learned a great deal about the mag-
netic field of the Milky Way Galaxy, both through modelling of
the Galactic synchrotron radiation and Faraday rotation (Page et al.
2007; Sun et al. 2008; Sun & Reich 2009, 2010; Jaffe et al. 2010;
Jansson & Farrar 2012a,b; Planck Collaboration et al. 2016b; Terral
& Ferrière 2017), and through observations of the Faraday rotation
of Galactic pulsars and background radio sources (e.g., Brown &
Taylor 2001; Brown et al. 2003; Pshirkov et al. 2011; Van Eck et al.
2011; Oppermann et al. 2015; Sobey et al. 2019; Hutschenreuter &
Enßlin 2020; Ng et al. 2020), yet we still do not have a clear picture
of the 3D geometry of this field, nor do we fully understand the ori-
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gin. The leading idea on how such ordered fields on galactic scales
arise is through amplification of a weak seed field through dynamo
action (Beck et al. 1996; Subramanian 2002), however, conclusive
evidence of this theory is yet to be achieved.

One consequence of dynamo theory (Blackman 2015; Subra-
manian 2002) is the presence of twisted, or helical, magnetic fields
resulting from the Coriolis force, which produces a systematic ro-
tation, always in the same sense (for expanding motions). Since
all dynamo models will predict a field with a twist, confirming
the presence of helicity in the magnetic field of a galaxy would
strongly support a dynamo origin of the field. Additionally, a better
understanding of the impact that helicity may have on the observed
emission may help us devise new constraints on the geometry of
galactic magnetic fields. In this paper, we set out to find observa-
tional evidence of helicity in the coherent, large-scale magnetic field
of the Milky Way Galaxy.

Faraday rotation describes the rotation of the plane of polar-
ization as an electromagnetic wave propagates through a magneto-
ionic medium. Faraday depth, FD, is defined as the integral of the
magneto-ionic medium along a line of sight, from a distance, A = 3,
to the observer at A = 0,

FD(3) = 0.812
3∫

0

=4� ‖3A [rad m−2], (1)
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where =4 [cm−3] is the thermal electron density and � ‖ [`G] is the
line-of-sight component of the magnetic field. Here � ‖ > 0 when
pointed towards the observer. In this paper, we use FD to mean the
entire Faraday depth of the Galaxy, FD(�), where � is the distance
to the edge of the Galaxy for a particular line of sight.

Observationally, FD is measured by looking at the dependence
of the position angle of the polarization vector, j, as a function
of the wavelength of observation squared, _2 [m2]. If we measure
the FD of a background source through a Faraday-rotating medium,
then we call this the Faraday rotation measure, RM, where

jobs = jsrc + RM_2. (2)

The amount of rotation (i.e., the difference between jobs and jsrc)
is greater at longer wavelengths since the rotation is ∝ _2.

While the degree of Faraday rotation depends on the line-of-
sight component of the magnetic field, the amount of synchrotron
radiation depends on the perpendicular component of the magnetic
field (i.e., in the plane of the sky), meaning these observations com-
bined could theoretically constrain the 3D magnetic field. However,
since the magnetic field is observed in projection, and since Faraday
rotation, as well as geometric effects (e.g., magnetic field reversals,
turbulence, beam depolarization, etc.) can lead to cancellation of
the polarization vectors (depolarization), the analysis is complex.

Magnetic helicity, �<, is a property of a magnetic field, B,
that describes the amount of coil or twist that is present in the field.
It is defined as �< = 〈A · B〉, where A is the vector potential
and B = ∇ × A. However, there are an infinity of possible vector
potentials that can satisfy this equation, which means that �< is not
a uniquely defined quantity. The integral over a volume is unique
only if the normal component of the magnetic field vanishes on the
surface. Observationally, it is a better choice to consider the current
helicity, � 9 , since it is uniquely defined for a given B. Current
helicity is defined by the volume average of j · B, i.e.,

� 9 = 〈j · B〉, (3)

where j = ∇ × B is the current density (e.g., Seehafer 1990). Both
magnetic helicity and current helicity are measures of the amount
of coil or twist in the magnetic field. Although there is no general
equation that relates magnetic helicity and current helicity, at the
relatively large scales considered in this paper, both helicities should
have the same sign.

The sense of this twist has a handedness that can be right-
handed (positive helicity) or left-handed (negative helicity). Jun-
klewitz & Enßlin (2011) develop a methodology and Oppermann
et al. (2011) use this method to attempt to detect helicity in the
turbulent component of the Galactic magnetic field, but its pres-
ence can not be confirmed by these observations. More recently,
Brandenburg & Brüggen (2020) use observations of B-mode polar-
ization inWilkinsonMicrowave Anisotropy Probe (WMAP) data to
demonstrate broad agreement with a model, which is suggestive of
opposite handedness in the North and South Galactic hemispheres.

Volegova & Stepanov (2010) present a study on detecting he-
licity in a purely turbulent field (i.e., not specific to the magnetic
field of a galaxy or using a dynamo field). In this study, they pre-
dict a relationship between polarized fraction1, %/�, where % is
the linearly polarized flux density and � is the total Stokes I flux
density, and the observed RM, which depends on the helicity of the
field. When there is no helicity, the rotation measure distribution

1 Polarized fraction is also referred to as the degree of polarization.

is symmetric and the cross-correlation coefficient, �, between po-
larized fraction and rotation measure is consistent with zero. When
�< > 0, the distribution is tilted towards negative RM for large po-
larized fractions, which leads to � > 0. In contrast, when �< < 0,
there are more negative RM for small polarized fractions and more
positive RM at large polarized fractions, and hence � < 0. Work by
Brandenburg & Stepanov (2014) further developed this idea.

The explanation for this correlation is in the way that Faraday
rotation interacts with a helical field. Faraday rotation rotates the
plane of polarization in a right-handed sense about the magnetic
field, i.e., if the magnetic field is pointing towards the observer
(FD > 0) then the polarization vectors are rotated counter-clockwise
as they propagate towards the observer (e.g., Robishaw & Heiles
2018). Therefore Faraday rotation either causes a “winding” of the
orientation of the polarized electric field vector, consistent with
the direction of Faraday rotation (causing greater depolarization),
or “unwinding”, which is rotation of the polarized electric field
vector opposite to the direction of Faraday rotation (causing lesser
depolarization), depending on the sign of the FD and the handedness
of the helicity (for further explanation see Ferrière et al. tted).

For example, if the magnetic field has left-handed helicity
(�< < 0) and points towards the observer (FD > 0), then Faraday
rotation causes an “unwinding”, resulting in decreased depolariza-
tion (larger polarized fraction). This causes a bias in the observed
polarized fraction for a particular sign of FD, leading to a correla-
tion between the two quantities. The theoretical maximum polarized
fraction is ≈ 75%. Helicity cannot increase this value, but it can act
to decrease it through increasing the depolarization effect.

Volegova & Stepanov (2010) find that for simulations with
_ < 6 cm, i.e., wavelengths for which the amount of Faraday rotation
is small,� is almost equal to zero. They find the strongest correlation
to be � ≈ 0.4 for _ = 15 cm (a = 2 GHz), where the degree of
Faraday rotation is & 6 times larger.

In the case of the simulations described above, the simulation
box contains pure turbulence with no coherent, large-scale pattern
in the magnetic field. However, we know that the magnetic field of
a galaxy does have a coherent pattern. And in addition to helicity
that may be present in the turbulent field, the mean-field dynamo
also has helicity present in the coherent, large-scale field.

The alpha effect of the mean-field dynamo is a process that
generates one component of the large-scale magnetic field from an-
other (e.g., �A from �q). This is illustrated by Parker (1970), who
shows how a rotating turbulent cell rising from an azimuthal mag-
netic field can produce a magnetic loop. Coalescence of many such
loops leads to a large-scale poloidal field. Thus, magnetic helic-
ity injected at turbulent scales is transferred to the largest Galactic
scales. This transfer occurs on the long time scale (on the order of
ten rotation periods according to Brandenburg 2018) of the mean-
field dynamo, and preserves the sign of the helicity. Comparison of
the observed helicity with the helicity predicted by galactic dynamo
models could provide constraints on the alpha effect, and hence on
the mean-field amplification rate.

If there is a coherent, large-scale Galactic field with helicity
(i.e., twist) then the linear polarization pseudovector may rotate
along the line of sight so as to give a small or zero net polarization,
evenwhen observed at frequencieswhere there is negligible Faraday
rotation. And since FD is a physical quantity, which depends only
on the column density of thermal electrons and the configuration of
the magnetic field along the line of sight (i.e., FD is not a function
of observation frequency), FD should be correlated to some degree
with the net linear polarized fraction for a helical field. This should
be true even in high-frequency data such as the WMAP 23 GHz
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Figure 1. Left column: Derived synchrotron total intensity (top row) and polarized intensity (second row) (in units of mK) for the 23 GHz WMAP data shown
with the polarized fraction map (third row). Right column: Derived synchrotron total intensity (top row) and polarized intensity (second row) (in units of `K)
for the 30 GHz Planck data shown with the polarized fraction map (third row). Bottom row: The Galactic FD map of Oppermann et al. (2015), in units of
rad m−2, is included for ease of comparison. In all cases, the region for |1 | < 15◦ has been masked out as it is not included in these analyses. The orientation of
all maps is the same, shown in Galactic coordinates in Mollweide projection, with the Galactic centre at the centre of the map and the Galactic plane oriented
horizontally through the centre of each map. Masked values (shown as grey) are not included in the computations.
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Figure 2. 2D-histogram of polarized fraction and FD for the Northern
(left) and Southern (right) Galactic hemispheres ( |1 | > 15◦) in the WMAP
23 GHz data (top) and Planck 30 GHz data (bottom).

(1.5 cm) and Planck 30 GHz (1 cm) data. For reference, there is
nearly 1000 times more Faraday rotation at 1 GHz than at 30 GHz.
Using a Galactic FD of 100 rad m−2, we would expect Δj ' 0.6◦ at
30GHz, butΔj ' 515◦ (more than 1 full rotation of the polarization
pseudovector) at 1 GHz. This amount of rotation applies through
the entire Galactic path length for a particular line-of-sight, which
is typically on the order of a few kpc, depending on the Galactic
latitude.

In this paper, we investigate whether such correlations are pos-
sible to detect in a coherent, Galactic-scale magnetic field, and
whether these correlations are consistent with signatures of helic-
ity. In Sec. 2 we present our search for such a correlation in the
Milky Way Galaxy by cross-correlating large-scale polarized emis-
sion from several large-scale surveys and comparing to measure-
ments of Galactic FD. In Sec. 3, we present our modelling, which
uses the Hammurabi code2 (Waelkens et al. 2009) (described in
Sec. 3.1) to generate synthetic polarized fraction and FD maps us-
ing a model magnetic field. We first use a simple, toy model of
a singly helical large-scale field to investigate whether the case
of short-wavelength (i.e., high-frequency) observations, with neg-
ligible Faraday rotation, can still cause a correlation between the
Faraday rotation measure and the polarized fraction (Sec. 3.2). We
investigate the trends in the correlation as we change the observa-
tion frequency or introduce turbulence. We then then use a more
physically motivated magnetic field model, which comes from a

2 http://sourceforge.net/projects/hammurabicode/

solution to the dynamo equation, to further investigate whether this
effect could be detectable in observations (Sec. 3.3). The discussion
and conclusions are presented in Sec. 4 and 5, respectively.

2 DATA

We look for signatures of helicity by a cross-correlation analysis to
compare FD to polarized fraction data, as described by Volegova &
Stepanov (2010).

A widely-used Galactic FD map (see Fig. 1) is that derived by
Oppermann et al. (2015)3. This map is produced by observations
of Faraday rotation of extragalactic sources that probe the entirety
of the path through the Galaxy to the observer. The authors use a
careful reconstruction technique to separate the Galactic foreground
contribution from the extragalactic component.

We use their HEALPixmap for this analysis, which is provided
at a resolution of #side = 128 (pixel size is 0.45◦). The HEALPix
pixelization scheme (Gorski et al. 2005) is designed such that each
pixel represents an equal angular area on the sky. It is ideal for this
study since other sky projections may introduce biases or correla-
tions resulting from projection effects.

Polarized fraction is computed using % =
√
&2 +*2, where&

and*, are the linear polarization Stokes parameters. It is a difficult
quantity to determine well due to many inherent uncertainties:

(i) In regions of low signal to noise in Stokes I, the fractional
polarization values will be very uncertain.

(ii) The absolute zero point of many surveys is difficult to cali-
brate and often has some reasonably large uncertainty.

(iii) Depolarization becomes significant at lower frequencies (<2
GHz), which means that the polarized fraction will be suppressed
over much of the sky.

(iv) At higher frequencies, such as from the WMAP (23 GHz)
and Planck (30 GHz) satellites, data suffer from uncertainty due to
increasing contributions from thermal dust and free-free emission,
making it necessary to estimate the contribution from the non-
thermal synchrotron component in these maps. These derived syn-
chrotron maps are especially uncertain for the region in and around
the Galactic plane (Planck Collaboration et al. 2016b). These sys-
tematic errors are much harder to quantify, and are likely to be more
important that statistical uncertainties in these data.

(v) Since % has a Rician, rather thanGaussian, noise distribution,
with a non-zero mean noise value, there is a noise bias present.

In order to mitigate these uncertainties, we perform this analysis
using two independent data-sets (details are provided in Sec. 2.1
and Sec. 2.2). Any signal common to both is likely real.

We also exclude the Galactic plane (|1 | 6 15◦), and addition-
ally mask unphysical polarized fraction values (i.e., %/� < 0 and
%/� > 0.7) for all measurements. See Sec. 2.3 for a discussion on
how we test the impact of the noise bias.

In each case we calculate the Pearson correlation coefficient4,
�, for the Northern and Southern Galactic hemisphere separately.
Each HEALPix map with #side = 128 has 196,608 resolution ele-
ments, which is reduced to 72,960 elements when selecting only the
high-latitude elements for a single hemisphere. We use bootstrap-
ping and draw 1000 elements from this sample to compute a value

3 https://wwwmpa.mpa-garching.mpg.de/ift/faraday/2014/
index.html
4 calculated in this work using Python 2.7 and numpy.corrcoef (Virtanen
et al. 2020)

MNRAS 000, 1–17 (2020)

http://sourceforge.net/projects/hammurabicode/
https://wwwmpa.mpa-garching.mpg.de/ift/faraday/2014/index.html
https://wwwmpa.mpa-garching.mpg.de/ift/faraday/2014/index.html


Helicity in the Large-Scale Galactic Magnetic Field 5

Northern hemisphere Southern hemisphere

WMAP 23 GHz 0.10 ± 0.03 0.13 ± 0.03
Planck 30 GHz 0.02 ± 0.03 0.14 ± 0.03

Table 1. Cross-correlation coefficient, �, between FD and polarized frac-
tion.

Northern hemisphere Southern hemisphere

WMAP 23 GHz −4.1 × 10−5 ± 0.006 −5.5 × 10−5 ± 0.006
Planck 30 GHz −5.5 × 10−5 ± 0.004 1.0 × 10−4 ± 0.004

Table 2. Cross-correlation coefficient, �, between FD and randomized po-
larized fractions.

of �. We then find the mean and standard deviation over 1000 iter-
ations (each iteration using 1000 samples) to determine the average
measurement of � with a 1f uncertainty.

2.1 WMAP 23 GHz data

For the Stokes � map, we use the foreground K-band (23 GHz) syn-
chrotron component derived using the maximum entropy method
(Bennett et al. 2013). We use the full nine years of data for Stokes
& and * (Bennett et al. 2013). The WMAP 23 GHz maps have a
native resolution of 53′. We resample with #side = 128 to match
the FD map.

TheseWMAPdata, alongwith theOppermann et al. (2015) FD
map and derived polarized fraction maps, are shown in Fig. 1. The
2D-histogram showing the cross-correlation coefficient of polarized
fraction vs FD is shown in Fig. 2.

It can be clearly seen in this plot that the distribution of polar-
ized fraction vs FD is skewed. It is particularly clear in the South
that for low polarized fractions (< 0.3), there are more points with
FD < 0 than FD > 0. This is also true in the North, but to a lesser
degree. In addition, in the North one can also see a slight excess of
higher polarized fractions (> 0.3) where FD > 0.

2.2 Planck 30 GHz data

For the Planck data, the foreground (30 GHz) synchrotron compo-
nent is derived using the 408 MHz map, originally from Haslam
et al. (1982), which has been scaled to 30 GHz using a constant syn-
chrotron spectrum corresponding to a cosmic-ray electron (CRE)
power law index, ? = −3.1 (Planck Collaboration et al. 2016a). We
also use the Planck Stokes & and * maps at 30 GHz to derive a
polarized fraction map. The Planck 30 GHz data has a resolution of
33′. We smooth this to 60′ and resample with #side = 128 to match
the FD map.

These Planck data along with the the Oppermann et al. (2015)
FDmap and derived polarized fractionmaps are shown in Fig. 1. The
2D-histogram showing the cross-correlation coefficient of polarized
fraction vs FD is shown in Fig. 2.

Similar to the WMAP data, it is clear that in the South for
low polarized fractions (< 0.4), there are more points with FD < 0
than FD > 0. The distribution in the North in this case is quite
symmetric, and thus � is consistent with zero in this case.

2.3 Results from the observations

All values of � are summarized in Table 1. For both WMAP and
Planck data we measure a small but significant positive correlation
in the Southern Galactic hemisphere. The results for the Northern
Galactic hemisphere are less clear. Planck does not measure any
significant correlation for the North while WMAP does, although
with less significance than the detection in the South.

In order to check the robustness of the detection and test
whether the correlations are just a function of FD, independent
of the polarized fraction, we randomly shuffle the polarized fraction
values in the array and recalculate �. We find that � is consistent
with zero for all cases. The mean and standard deviation of 1000
iterations of 1000 random samples are summarized in Table 2.

The FDmap fromOppermann et al. (2015) also includes amap
of the uncertainty, dFD. We quantify the impact of this uncertainty
on � by taking the maximum value of dFD and randomly adding
or subtracting this to the FD map and recomputing �. With this test
we determine that the uncertainty introduced here is smaller than
that derived from the bootstrapping (∼ ±0.02 from the dFD map
compared with ±0.03 from bootstrapping). We note that the dFD
map is derived in a complicatedway that includes some contribution
from Galactic variance that we are also sampling in the bootstrap-
ping. Thus, these uncertainty measurements are not independent.
We therefore quote the uncertainty from the bootstrap method since
this is the larger of the two.

We also note that the reconstruction used to make the FD map
suffers from sparsely sampled measurements for Southern decli-
nations. This results in higher uncertainties for this region, which
in Galactic coordinates is located at high longitudes in the South-
ern Galactic hemisphere, i.e., to the right of the Galactic centre
(240◦ < ; < 360◦) and on the lower side (1 < 0), where the FD is
mostly positive (bottom panel of in Fig. 1). However, this is unlikely
to impact our conclusion since the asymmetry that can be seen in
the 2D-histograms shown in Fig. 2 are skewed predominantly by
values of FD < 0 rather than FD > 0.

We test the impact of the noise bias by exploiting the fact that
both the Planck and WMAP data were observed over a number of
years, and independent maps of Stokes& and* with different noise
were produced. One method to correct for this bias is to multiply
these maps together when making the % map. I.e., if &1 [*1] is the
Stokes& [*] map made for the first half of the mission and&2 [*2]
is the Stokes & [*] map made for the second half of the mission,
then we can use % =

√
&1&2 +*1*2 to make a bias corrected %

map. We make these bias corrected % maps and use this to make
a new polarized fraction map and recalculate �. We find the result
remains consistent with the values shown in Table 1.

3 MODELS

In the previous section, we presented a detection of a correlation
between FD and polarized fraction in observations. In this section
we use toy models of coherent Galactic-scale magnetic fields to test
the idea that these correlations are due to helicity in the large-scale
field of the Milky Way Galaxy.

Themodels we use are all quite simple and none are intended to
truly represent the Galactic magnetic field in detail. Rather the goal
is to use these models to investigate trends in how such a correlation
may vary as a function of frequency for magnetic field models that
have helicity of known handedness. We also investigate how these
trends are impacted when we include a random component, which
is added to the coherent component of the field.

MNRAS 000, 1–17 (2020)
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We use a coordinate system that defines the plane of the model
galaxy to be parallel to the GH-plane, with the origin at its galactic
centre. The I-axis is perpendicular to the plane, with I > 0 towards
the Northern hemisphere. Despite being simplified models, we still
use Galactic-like properties in several respects:

(i) The models use a grid with a bounding box physical size
of 40 kpc × 40 kpc × 10 kpc (in the G-, H-, and I-coordinates,
respectively) in order to use a scale similar to that of the Galaxy.
(ii) We place an observer inside of this field, at a position

analogous to the Sun’s position in the Galaxy, i.e., (G, H, I) =
(−8.5, 0, 0) kpc. In Sec. 3.3 we use the electron density model
of Yao et al. (2017), which assumes a slightly different Solar posi-
tion (G = −8.3 kpc from Brunthaler et al. 2011). However this has
no impact on our results as we remove all nearby structures (see
discussion in Sec. 3.3) and there is no structure on the scale of this
small, 200 pc difference in Solar position.
(iii) The strength of the coherent magnetic field is on the order

of ∼ 1 `G, which is similar to the Galactic field. The strength of the
coherent magnetic field in the plane of the Milky Way is thought to
be about 5 `G (Haverkorn 2015). The strength of the halo field is
less well known, but thought to be ≈ 1-2.5 `G (Haverkorn 2015).
Our analysis excludes the Galactic plane, and thus focuses more on
the Galactic halo where the field is weaker.
(iv) We add a random component of varying strength, up to

6 `G, which is of the order expected from turbulence in the Galaxy
(Haverkorn 2015). A relevant related quantity is the ratio of the
strength of the random magnetic field component to the regular
component. This quantity has several estimated values from dif-
ferent works with estimates of this ratio ranging from < 1 to ∼ 2
(Haverkorn 2015, and references therein), depending on the partic-
ular measurement and the location in the Galaxy (i.e., disc vs halo).
These factors motivate our decision to test several different values
of the random component strength and thus different values for the
random to regular field strength ratio.

We integrate the coherent field alone using a low-resolution
Healpix #side = 64, corresponding to roughly 1◦ pixels. This angu-
lar resolution corresponds to a physical distance that varies along
the LOS and is roughly 200 pc at a distance of 10 kpc. These models
have no small-scale structure.

In the cases where we introduce a random magnetic field com-
ponent, a higher resolution model and integration are necessary to
resolve some smaller-scale structure and its averaging effects. We
use a Cartesian grid of dimension 512 pixels× 512 pixels× 128 pix-
els (physical width ' 8 pc per cell) to define the fields (see below)
and integrate with a Healpix grid that varies from #side = 32 to
#side = 512 as a function of distance to maintain a width of roughly
50 pc on average (50 pc pixels correspond to ∼ 3◦ at a distance of
1 kpc and to ∼ 0.3◦ at 10 kpc). (See Waelkens et al. 2009, for how
the Hammurabi code handles this.)

3.1 Method

The Hammurabi code was created to model the large-scale structure
of the Galactic magnetic field. It models the synchrotron emission
and Faraday rotation given an input 3D magnetic field, thermal
electron distribution, and CRE distribution, for an observer that is
embedded in the observed volume. There is no absorption included
in these models, so the assumption is that the medium is optically
thin.

Hammurabi calculates the simulated Stokes �, and the Stokes

& and * parameters relevant to the linear polarization, which are
expressed as:

�8 = �� �
(1−?)/2
8,⊥ a (1+?)/2ΔA

%8 = �%�
(1−?)/2
8,⊥ a (1+?)/2ΔA

ΔFD8 = 0.812=4�8, ‖ΔA

FD8 =
9=8∑
9=1
ΔFD 9

j8 = j8,0 + FD8 _2

&8 = %8 cos (2j8)
*8 = %8 sin (2j8) .

(4)

Here, 8 corresponds to the 8-th volume element along some line of
sight, ? is the CRE power law spectral index (where 3#/3� ∼ � ?),
�� and �% are factors that are dependent on ? (see Waelkens et al.
2009; Rybicki & Lightman 1985). FD8 is the FD of the i-th element
and ΔFD8 is its Faraday thickness. The intrinsic polarization angle
of the 8-th element, j8,0, is defined as the inclination angle of the
plane-of-sky component of the magnetic field, �8,⊥, with respect
to north (in the frame of Galactic coordinates), rotated by 90◦. The
polarization angle that would be observed from emission at the 8-th
element, j8 , is given by j8,0 plus the Faraday rotation angle of the i-
th element (see Eq. 2).The line-of-sight component of the magnetic
field at the 8-th element is �8, ‖ , %8 is the polarized intensity, =4 is
the thermal electron density, and a is the frequency of observation.
The total Stokes �, Stokes &, Stokes *, and FD are then found
by summing the volume elements, 8, along the line of sight. The
resulting output are Healpix images (Gorski et al. 2005) for each
Stokes �,&, and* parameter. These synthetic observables can then
be used to create a synthetic polarized fraction map.

For eachmodel we use the total FD for the model and polarized
fraction, %/�, to calculate �. In Sec. 3.2 we use a simple helical
field model and compute � for the hemisphere of the model where
I > 0 (i.e., the Northern hemisphere in the convention of the data).
We do this for clarity in dealing with the cases individually, but
we explain how these results apply to the Southern hemisphere. In
Sec. 3.3, we compute � for both hemispheres using a somewhat
more realistic, physically motivated model. In both models, we
exclude the plane (|1 | 6 15◦) for the computation of �, which is
the same as how we treat the data (see Sec. 2). We also use the same
bootstrapping method as described in Sec. 2 to calculate the mean
and 1f uncertainties for �.

3.2 Simple Helical Field

We first investigate whether a simple, toy model of a large-scale
helical field can reproduce an analagous correlation between FD
and polarized fraction as seen in the result of Volegova & Stepanov
(2010). We construct a helical field with

B = �q êq + �I êI , (5)

where q is the azimuthal angle around the GH-plane , �q is the
azimuthal magnetic field component, �I is the magnetic field com-
ponent perpendicular to the plane of the Galaxy, and êq and êI are
the corresponding unit vectors.

For simplicity, we use a constant thermal electron density,
=4 = 0.01 cm−3, which is consistent with the average value in the
Galactic disk (Yao et al. 2017). The CRE model defines the spectral
index and the CRE spatial density distribution at all points in the
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In fixed frame For an observer looking North For an observer looking South

Model �q �I � 9 Model �⊥,q �‖,I �0 Model �⊥,q �‖,I �0

0 -1.4 0 0 0N CCW 0 0 0S CW 0 0

1 -1.4 -0.5 >0 1N CCW >0 <0 1S CW <0 >0

2 1.4 0.5 >0 2N CW <0 >0 2S CCW >0 <0

3 -1.4 0.5 <0 3N CCW <0 >0 3S CW >0 <0

4 1.4 -0.5 <0 4N CW >0 <0 4S CCW <0 >0

Table 3. Parameters for the five cases of the simple helix model. Models 1 and 2 have right-handed helicity (� 9 > 0) while Models 3 and 4 have left-handed
helicity (� 9 < 0). We use �‖,I to specify the line-of-sight component of �I alone (i.e., excluding any contribution from �q). We use the usual convention
that �‖,I > 0 if the magnetic field is directed towards the observer. This is distinct from the sign of �I since that is defined for a fixed I-axis, which does
not depend on the observer’s location. We use �⊥,q to mean the observer’s plane-of-sky projection of �q . The direction of �⊥,q depends of the observer’s
location, where the sign of �q does not. Here CW refers to a clockwise direction, and CCW as counter-clockwise. The sign of �0 applies at high frequencies,
where Faraday rotation is negligible and for situations where the value of �rms is moderate.

volume. We use ? = −3 (in Eq. 4) as this is the typical value used in
other Galactic models (Planck Collaboration et al. 2016b). For the
spatial distribution of CREs, we use a simple exponential disk with
a scale height, ℎ3 = 1 kpc and a radial scale length, ℎA = 5 kpc, as
was used for the WMAP model (Page et al. 2007). We find that the
value of� is very sensitive to the CRE density at high-latitudes, but
not very sensitive to the thermal electron density. This is why we
apply a scale height to the CRE model, but use a constant value for
the thermal electron density.

The magnitude of the coherent magnetic field is chosen to be
|B|= 1.5 `G, with |�q | = 1.4 `G and |�I | = 0.5 `G. The current
helicity for this model is found using Eq. 3, and is given by

� 9 = (�q�I)/A. (6)

Thus, when �q and �I have the same sign, � 9 > 0 (right-handed
helicity) and when �q and �I have opposite sign, � 9 < 0 (left-
handed helicity).

We model five cases described in Table 3 for a range of fre-
quencies, 0.1 < a < 30 GHz, from the low-frequency case where
the Faraday rotation is large (Δj ' 515◦, see Sec. 1), to the high-
frequency case where Faraday rotation is negligible (Δj < 1◦).

Since the observer in this model is positioned at I = 0 (i.e.,
in the Galactic plane), and since we only consider the Northern
hemisphere in this section, the sign of �I tells us whether the I-
component of the field is pointed towards or away from the observer.

This can be understood by considering that in the instances of
this simple helical field, we define the same field throughout the
entire box, with the observer located at the centre plane of the box
(i.e., at I = 0). Models 1 and 2 are both right handed fields. The
difference between them is simply the viewing angle. For Model 1
you can imagine looking at your right handwith your thumbpointing
down (defining �I) where your fingers appear to curl clockwise
(CW, defining �q). In Model 2 you can imagine viewing your right
hand with your thumb pointing up where your fingers appear to curl
counter-clockwise (CCW). The difference for the two hemispheres
is analogous: in the Northern hemisphere we view the field from
below, which we describe as Model 2N in Table 3 (i.e., like holding
your right hand above your head while keeping your thumb pointing
down), while in the Southern hemisphere, Model 2S, we view the
same field but from above.

For Model 1 we have �I < 0 and �q < 0, which for the North,
Model 1N, has �sky,q = CCW and �los,I > 0 (i.e., pointed towards
the observer). For this same field in the Southern hemisphere,Model

1S the observer sees the opposite, �sky,q =CWand �los,I < 0 (i.e.,
pointed away from the observer), which is like Model 2N. The total
field has � 9 > 0 and this remains constant in the two hemispheres.

The first of these cases, Model 0, has �I = 0, and thus repre-
sents a purely toroidal field. In this case, there is no helicity (� 9 = 0)
and we find that the Eastern (left) side of the model observation has
a negative FD (field is directed away from the observer) and the
Western (right) side of the model observations has a positive FD
(field is directed towards the observer), as shown in the top row of
Fig 3. In this case, we find � = 0 for all frequencies.

The next four cases, Models 1-4, have �I ≠ 0, so that the field
becomes a helical corkscrew. In these cases we find the FD dis-
tribution becomes asymmetric due to the additional I-component
and the Sun’s off-centre position in the Galaxy. Moreover, the po-
larized fraction is also asymmetric, even in cases of high-frequency
observations where the Faraday rotation is very small, as shown in
Fig. 3. This asymmetry is due only to geometric cancellations of the
magnetic field along the line of sight due to the twist introduced by
the helicity, and for most frequencies, � ≠ 0, as shown in Fig. 4. In
Table 3, we give the sign of � at high frequencies, where Faraday
rotation is negligible (i.e., for _ = 0), which we call�0. Other values
of |�I | were explored and the trend remains the same in all cases,
however the values of� differ. We choose to focus on a single value
here, but this could be further explored in future work.

This correlation can be understood by noting that e.g., inModel
1 (2nd row in Fig. 3), high polarized fraction (yellow) regions tend
to have small positive FD (light red), while large positive FD (dark
red) regions tend to have low polarized fraction (dark blue), and
hence a negative contribution to the correlation.

If we flip the handedness of the helicity by flipping the sign
of �q while keeping the sign of �I unchanged (i.e., switching
between Models 1 and 4 or between Models 2 and 3), then the
east-west pattern of the FD distribution flips (i.e., reflected about
longitude ; = 0◦), but so does the pattern of the polarized fraction
distribution. In this case, the sign of �0 does not change.

However, if we flip the handedness of the helicity by flipping
the sign of �I while keeping the sign of �q unchanged (i.e., switch-
ing between Models 1 and 3 or between Models 2 and 4), then the
east-west patterns of the |FD| and polarized fraction distributions
flip (as in the previous case), but in contrast to the previous case,
the general sign of FD itself (e.g., negative east and positive west)
doesn’t flip.

We also investigate how these cases change when we introduce
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Figure 3. FD [rad m−2] (left) and polarized fraction (right) for the 5 cases of a simple helical field described in Table 3. These are simulated observations of
the Northern hemisphere (Galactic latitude, 1 > 0) of a model galaxy, with an observer located at the Sun’s position. They are shown in Galactic coordinates
in Mollweide projection, with Galactic longitude ; = 0 at the centre. In all cases, the region for |1 | < 15◦ has been masked out as it is not included in these
analyses. Polarized fraction is shown for the high-frequency limit (a = 30 GHz) where Faraday rotation is negligible. The FD colour scale is saturated at
|FD | = 80 rad m−2. More than 90% of FD < 80 rad m−2. The maximum FD = 158 rad m−2. Note that the colour scale for the polarized fraction appears very
skewed towards the theoretical limit (' 0.75) since it has been histogram equalized. This is because the models shown have �rms = 0 `G, and most of the
polarized fraction values are very close to this limit. However there are still some values very near 0, which can only be easily seen with this extreme colour
map.

a normalized Gaussian random component, �rms. We test this using
values of �rms = 1, 3, and 6 `G. A value of �rms = 6 `G is approxi-
mately what we expect for the magnitude of the random component
in the Milky Way Galaxy (Haverkorn et al. 2006). Nominally, this
randomcomponent should have aKolmogorov power spectrumwith
maximum scales ∼ 100 pc. However, due to the pixel-scale of our
model, the maximum scale is set at 200 pc (so that it is sampled
by ∼ 3 pixels). It is not feasible to include other turbulent scales at
this model resolution, so this is effectively single-scale turbulence.
The magnitude of the random component is modulated by a sim-

ple exponential disk with a scale height, ℎ3 = 1 kpc and a radial
scale length, ℎA = 10 kpc, as was implemented for other Galactic
magnetic field models in Planck Collaboration et al. (2016b).

The results, summarized in Fig. 4, apply to an observer look-
ing towards the Northern hemisphere. These can also apply to the
Southern hemisphere, as discussed previously in Sec. 3.

We note the following:

(i) Models 1 and 3 have the same �q but opposite �I , and there-
fore opposite � 9 . This is why, in the case �rms = 0 `G (green, solid
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Figure 4. Frequency dependence of the cross-correlation coefficient, �, in the four cases of a simple helical field as described in Table 3, and as observed
for the Northern hemisphere, plus the data points from high-frequency observations calculated in Sec 2. Models 1 and 2 (top row) both have right-handed
helicity (� 9 > 0), while Models 3 and 4 (bottom row) have left-handed helicity (� 9 < 0). The models are shown with and without the random magnetic field
components as described in Sec. 3.2. The 1f uncertainty, shown by the shaded region, is derived from the bootstrap method used for the data and described in
Sec. 2.

curve), they have opposite �0 (because of opposite �I). More gen-
erally, for each value of �rms, they have opposite |� (a) |. Likewise
for Models 2 and 4.
(ii) When �rms = 0 `G (green, solid curve), � in each model

has a single sign for all frequencies, except for very low frequencies
where there is a great deal of Faraday rotation. This sign is consistent
with the sign of �0 indicated in Fig. 3.

(iii) When �rms = 0 `G or 1 `G, Models 1 and 3 have a distinct
peak in |� | at a ≈ 1.5 GHz, which is close to the peak frequency of
a = 2 GHz found by Volegova & Stepanov (2010).
(iv) When �rms = 1 `G, the value of |�0 | is larger than for

�rms = 0 `G. In this case, the coherent component of the magnetic
field, which has a magnitude of 1.5 `G, is larger than the random
component. Therefore, the total magnetic field does not change
sign. The larger value of |�0 | can be explained by considering that
the amount of depolarization increases as the random component
increases. Since the total magnetic field does not change sign, the
FD also does not change sign. Thus, there is a stronger correlation
between FD and polarized fraction when compared to the �rms =
0 `G case.
(v) When �rms is larger than the coherent component (i.e.,

�rms = 3 `G and �rms = 6 `G), the value of |� | tends to be
smaller than for �rms = 0 `G or 1 `G (at most frequencies). Here
the random component dominates the coherent component. Since
the total magnetic field can randomly change directions, the FD ran-

domly changes sign as a function of position, so there is a weaker
correlation.

We have shown that a simple, toy model of a large-scale helical
field does produce correlations between FD and polarized fraction
as seen in the result of Volegova & Stepanov (2010). However, they
found that when �< > 0, � > 0 and we find the relationship here
is more complex. In our simple, large-scale models, the sign of �
does not appear to be explicitly linked to the sign of � 9 . Rather
in these cases, � has the opposite sign to �los,I . This is discussed
further in Sec. 3.4.

3.3 Dynamo model

In order to test whether these correlations exist in a more physically
motivated, and more complex magnetic field model, we use a spi-
rally symmetric dynamo model that was developed by Henriksen
(2017); Henriksen et al. (2018) and applied to modelling NGC 4631
by Woodfinden et al. (2019). We test both dipolar and quadrupolar
symmetries.

This model is a particular solution that was motivated by the
desire to find cases in classical dynamo theory where there is agree-
ment between the model and observed properties including mag-
netic disc spirals and X-shape poloidal fields. The model contains
the alpha effect, a shearing outflow and diffusion in a ‘pattern’
frame. The pattern frame is defined with respect to the spiral arms,
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Figure 5. Plot of the dipolar case of the magnetic field from the dynamo model (< = 0 mode) described in Sec. 3.3. Top left: G − H plane (top-down view)
cut through I = 1.02 kpc (Northern hemisphere). Top right: G − H plane (top-down view) cut through I = −1.09 kpc (Southern hemisphere). Bottom left:
G − I plane (side view) cut through H = 0 (i.e., through the galactic centre). Bottom right: H − I plane (side view) cut through G = −8.52 kpc (i.e., through the
position of the observer). The colourbar and the length of the arrows in the plot are scaled according to the total magnitude of the magnetic field.

which may have a different rotation rate than the mean disc rotation.
This is really the magnetic spiral arm pattern speed, which may be
different from the stellar arm speed. It is all in the context of scale
invariance which has the merit of reproducing most of the known
numerical effects with computational ease.

A particular model is parameterized using the variables <, 0,
D, E, F, ) , @, n ,�1, and�2. The spiral mode is defined by<, where
we use the axisymmetric < = 0 mode, which has a diverging X-
shaped morphology, which is similar to the halo magnetic field that
is observed in external galaxies as discussed in Sec. 1. The variable
0 is a scaling parameter, and D, E, and F are velocity components in
the G,H, and I directions, respectively. We use a case where 0 = 1,
which conserves a global velocity. The < = 0 mode that we explore
here has no radial velocity nor circular velocity in the pattern frame
(D = E = 0), but an outflow (F > 0). An outflowing vertical velocity
component (sometimes called a fountain flow) is often included
in galactic dynamo models (e.g., Shukurov et al. 2006; Chamandy
et al. 2014). Here we use F = 1. The pitch angle of the spiral is
set by the variable @. We use @ = 4.9, which corresponds to a pitch
angle of −11.5◦, the value used in most Milky Way magnetic field
models (Planck Collaboration et al. 2016b). ) is a time variable and
n sets the rotation rate. We use a case that is observed at an arbitrary
time taken to be the current epoch () = 1 and n = −1). Finally, �1,
and �2 are boundary conditions (�1 = 0 and �2 = 1). The model

is briefly defined further in Appendix A, and a full description may
be found in other work (Henriksen 2017; Henriksen et al. 2018;
Woodfinden et al. 2019).

We find the solution for this equation for points where I > 0,
and then assume a dipolar symmetry across the disk of the galaxy
(i.e., I = 0) to calculate points where I < 0. Under this condition,
�I is continuous across I = 0, but �A and �q change sign. This
necessarily means that � 9 also changes sign across I = 0. We show
this case plotted in Fig. 5.

We also model the case with quadrupolar symmetry, plotted
in Fig. 6. Here � 9 also changes sign across the midplane, as in the
dipolar case. However, unlike the dipolar case, here �I changes sign
while �A and �q keep the same sign across the midplane.

For convenience, we set to zero all values of the field imme-
diately in the centre for A < 1 kpc and within a vertical cone with
opening angle, \ = 10◦. We do this because the field model diverges
at the origin. Although not strictly physical, this only impacts a very
small fraction of pixels (< 0.04% of pixels) and this practice is
consistent with what other field models have done where the field
is very uncertain at the Galactic centre (e.g., Jansson & Farrar
2012a). We emphasize that we present this particular solution, for
the dipolar and quadrupolar cases, as proof of concept and do not
imply that these parameters represent the best fit for a model of the
Milky Way’s magnetic field.
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Figure 6. Plot of the quadrupolar case of the magnetic field from the dynamo model (< = 0 mode) described in Sec. 3.3. Top left: G − H plane (top-down
view) cut through I = 1.02 kpc (Northern hemisphere). Top right: G − H plane (top-down view) cut through I = −1.09 kpc (Southern hemisphere). Bottom
left: G − I plane (side view) cut through H = 0 (i.e., through the galactic centre). Bottom right: H − I plane (side view) cut through G = −8.52 kpc (i.e., through
the position of the observer). The colourbar and the length of the arrows in the plot are scaled according to the total magnitude of the magnetic field.

To be consistent with our more physically motivated model,
the simulated observations use the most recent Galactic thermal
electron density model defined by Yao et al. (2017). We remove
the variations in the electron density contribution that are added
for local ionized features near to the Sun (A < 1 kpc). We do this
because at the resolution of our model, ∼ 75 pc per pixel, the local
features are only a few pixels wide with sharp edges. As such, they
produce significant artifacts in our simulated images. And since
here we investigate the large-scale field, the local electron density
is not relevant. However, the local electron density (and magnetic
field) may be an important difference between these models and the
observations and we discuss this further in Sec. 4. We use the same
CRE distribution as described in the previous section.

As in the previous case,we compute the simulated observations
for a range of frequencies, 0.1 < a < 30 GHz, i.e., between large
and negligible Faraday rotation regimes. Fig. 7 shows the simulated
observations for the high-frequency limit (a = 30 GHz, _ ∼ 0.01m)
of the field model with dipolar symmetry (Fig. 5), and Fig. 8 shows
the frequency dependence of � for both the Northern and Southern
hemispheres, still for the dipolar case. Similarly, Fig. 9 shows the
simulated observations for the high-frequency limit of the field
model with quadrupolar symmetry (Fig. 6), and Fig. 10 shows� (a)
for the quadrupolar case.

At first sight, the FD maps shown in Fig. 3 on the one hand,

and Figs. 7 and Fig. 9 on the other hand may appear quite different.
This can be explained by considering that in the simple helix model,
the field has no radial component (�A = 0), so the FDmaps in Fig. 3
are roughly symmetric with respect to longitude ; = 0 (centre of the
maps), especially at low latitudes, where �I contributes little to FD.
In contrast, in the dynamo model, the field has a significant radial
component, so the FD maps in Figs. 7 and 9 are roughly symmetric
with respect to a non-zero longitude, whose value depends on the
pitch angle.

For the dipolar model, the Northern hemisphere has �q < 0
and �I < 0, which suggests � 9 > 0, and which has the same
signs as Model 1. This is why the Northern hemisphere (left) plot
in Fig. 8, is similar to the Model 1N plot in Fig. 4. An important
difference is that, as can be seen in Figs. 5 and 6 (see the scale
shown in the colourbar), the coherent part of the magnetic field in
the dynamo model is larger than in the simple helical model, which
has a constant value of 1.5 `G. Thus in Fig. 8 we see the case where
�rms = 3 `G is more similar to the case where �rms = 1 `G as
compared to Fig. 4 where the �rms = 3 `G and �rms = 1 `G cases
are quite different.

On the other hand, the Northern hemisphere of the quadrupolar
field model has �q > 0 and �I > 0, which is also a case where
� 9 > 0. Here the sign of �0 is reversed. This field has the same
signs as Model 2 in Fig. 3.
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Figure 7. Top row: Simulated FD [rad m−2] (left) and polarized fraction (right) at a = 30 GHz for the dipolar case of the dynamo model shown in Fig. 5 and a
magnetic field with �rms = 0 `G. The orientation of all maps is the same as the observations in Fig. 1, with the Galactic centre at the centre of the map and the
Galactic plane oriented horizontally through the centre of each map. In all cases, the region for |1 | < 15◦ has been masked out as it is not included in these
analyses. Bottom row: Same as for the top row, but for �rms = 6 `G.
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Figure 8. Frequency dependence of the cross-correlation coefficient, �, for the dipolar case of the dynamo model, shown in Fig. 5. This figure is presented in
a similar way as for the simple helix model cases shown Fig. 4. In this case, �I is pointing towards the observer in the Northern hemisphere (left), and �I is
pointing away from the observer in the Southern hemisphere (right).

In the Southern hemisphere, the dipolar and quadrupolar mod-
els are the same, with �q > 0 and �I < 0. The signs here are the
same as Model 4, but since Model 4S is the same as Model 3N,
we should compare Model 3N in Fig. 4 to the right plot in Fig. 8,
we also find many similarities between the two plots, with the same
differences for �rms as noted in the Northern hemisphere.

An important point to notice is that, for the dipolar dynamo
field, the cross-correlation coefficient has opposite signs in the two
hemispheres. In the quadrupolar dynamo field, the cross-correlation
coefficient has same signs in the two hemispheres.

3.4 Summary of the models

From the tests that we performed with the simple helical field
(Fig. 4), we are able to make the following statements:

(i) Intrinsically, a helical field looks like a Faraday rotated one,
and there are parts of the observed emission pattern that are depo-
larized due to the geometry of the field. Thus, large-scale helicity
does introduce an intrinsic correlation between FD and polarized
fraction, even in instanceswhere there is negligible Faraday rotation.

(ii) The sign of the cross-correlation coefficient does not, in gen-
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Figure 9. Top row: Simulated FD [rad m−2] (left) and polarized fraction (right) at a = 30 GHz for the quadrupolar case of the dynamo model shown in Fig. 6
and a magnetic field with �rms = 0 `G. The orientation of all maps is the same as the observations in Fig. 1, with the Galactic centre at the centre of the map
and the Galactic plane oriented horizontally through the centre of each map. In all cases, the region for |1 | < 15◦ has been masked out as it is not included in
these analyses. Bottom row: Same as for the top row, but for �rms = 6 `G.
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Figure 10. Frequency dependence of the cross-correlation coefficient, �, for the quadrupolar case of the dynamo model, shown in Fig. 6. �I is pointing away
from the observer in both hemispheres.

eral, correspond to the sign of the helicity. However, measurements
of � as a function of a show trends that can help distinguish the
cases presented in Table 3. In addition, in the case of a simple he-
lical field, if we know the sign of �q from other measurements,
combined with the sign of �0, we can infer the sign of the helicity.

(iii) Introducing a smaller-scale randommagnetic field, expected
in a turbulent medium, has a significant impact on this picture. A
significant result is that the ratio between the coherent and random
components is an important indicator as to whether |� | can be
useful in the detection of the helicity in the large-scale coherent
component. If the random component has a magnitude that is of

the same order as the helical coherent component, then we expect
|� | ≠ 0. However, if the random component is much larger than the
coherent component, then we find � close to zero.

We expect that the more complex and physically motivated
case using the dynamo model should show properties of a field with
helicity, since this is a predicted consequence of dynamo theory.
Indeed the frequency dependence of� in the dynamomodel, shown
in Figs. 8 and 10, has similar trends as the simpler case in Fig. 4. By
comparing the two cases, we can convincingly say that the Northern
hemisphere of the dynamo model is consistent with right-handed
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helicity and the Southern hemisphere is consistent with left-handed
helicity in both the dipolar and quadrupolar cases. The trends in the
plots showing � as a function of a for this more complex model are
largely consistent with those in the simple case. This gives us further
confidence that these trends can indicate helicity in the large-scale
magnetic field.

In addition to the sign of �0, which is where Faraday rotation
is negligible, we also note that we may be informed by the slope
of � (_), which describes how � changes as the amount of Faraday
rotation (i.e., as wavelength) increases from _ = 0 m (a = ∞) to _ ≈
0.2 m (a ≈ 1.4 GHz). In the case of right-handed helicity (� 9 > 0),
� gets smaller as the amount of Faraday rotation increases. This is
seen for both Models 1N and 2N in Fig. 4. In the case of left-handed
helicity, � gets larger as the amount of Faraday rotation increases,
which is seen for both Models 3N and 4N in Fig. 4. This trend is
also true in the dynamo models (see Figs. 8 and 10) in the cases
where �rms = 0 `G and �rms = 1 `G. However, for �rms = 3 `G
and �rms = 6 `G in the dynamomodel, we see the opposite trend. It
is not clear if the trend seen in all cases for the �rms = 0 `G case is
true in general, for all instances of a helical field, and for observers
in any location. This requires further study.

The trend we observe can be directly compared to the result
of Volegova & Stepanov (2010) (see their Fig. 5) and Brandenburg
& Stepanov (2014). They find that for � 9 > 0, � gets larger as the
amount of Faraday rotation increases, which is opposite to what we
find in the �rms = 0 `Gcase. The likely reason for this is thatwe have
taken Faraday rotation to be right-handed about the magnetic field
(e.g., Robishaw & Heiles 2018), whereas their assumptions imply
that it is left-handed (Brandenburg & Stepanov, private communi-
cation). When we repeat our experiment with left-handed Faraday
rotation, we find that our results do agree with theirs. In addition,
although we both use helical fields, the geometry of the two sce-
narios are quite different. We use a large-scale, coiled field (like a
slinky), whereas Volegova & Stepanov (2010) and Brandenburg &
Stepanov (2014) use a “staircase” type helical field (see Fig. 8 in
Brandenburg & Stepanov 2014). It is not clear whether we should
expect that these two cases should give the same result for the trend
of � (_). Of the two, the slinky-type geometry used in this work
is more consistent with that which is typically used in large-scale
models of the Galactic magnetic field (e.g., Planck Collaboration
et al. 2016b; Jansson & Farrar 2012a).

4 DISCUSSION

Although the precise value is not known,we expect themagnitude of
the random magnetic field component in the Milky Way Galaxy to
be �rms ∼ 6`G, which is around two times larger than the coherent
component (Haverkorn 2015) (see discussion in Sec. 3). Thus we
focus on comparing our observations to the case where �rms = 3 `G
in Fig. 4 and �rms = 6 `G in Figs. 8 and 10, which are the cases
where the random component is around two times larger than the
coherent component.

The rotation of the stellar component of theMilkyWay Galaxy
is known to be clockwise, as observed from above theNorthGalactic
Pole (e.g., Oort 1927). Thus, according to the model presented by
Parker (1970), wewould expect� 9 < 0 for theNorthern hemisphere
and � 9 > 0 for the Southern hemisphere, i.e., left-handed about the
z-axis. Given that the measurements for real data show that �0 > 0
in both hemispheres, this would be consistent with a quadrupolar
case where �I and � 9 both change sign, and �0 > 0 in both
hemispheres. Thus we find this is consistent with Model 3N in the

Northern hemisphere, where � 9 < 0 and �0 > 0, and Model 1S in
the Southern hemisphere, where � 9 > 0 and �0 > 0 (recalling that
Model 1S = Model 2N).

In Fig. 4 we can see that for the �rms = 3 `G case, Model 2N
(i.e., Model 1S) has a value of �0 that is consistent with both of
our Southern hemisphere measurements. In the �rms = 3 `G case
of Model 3N, the value of �0 is somewhat less than our North-
ern hemisphere WMAP measurement, though it agrees with the
Northern hemisphere Planck measurement. This agrees with the
Parker model predictions from the stellar rotation direction. This
scenario, i.e., left-handed helicity in the Northern hemisphere and
right-handed helicity in the Southern hemisphere, with a �I point-
ing away from the observer in both cases, is most consistent with
what we detect in the observations when compared to the simple
helix model.

However, in the quadrupolar case of the dynamomodel, shown
in Fig. 10, we find the opposite. We find that the WMAP and
Planck measurements in the Northern hemisphere agree best with
the Northern hemisphere of this dynamo model (i.e., which is sim-
ilar to Model 2N of the simple helix) and that the WMAP and
Planck measurements in the Southern hemisphere agree best with
the Southern hemisphere of this dynamomodel (i.e., which is similar
to Model 3N of the simple helix). This scenario, i.e., right-handed
helicity in the Northern hemisphere and left-handed helicity in the
Southern hemisphere, with a �I pointing away from the observer
in both cases, is most consistent with what we detect in the obser-
vations when compared to the dynamo model.

The models to which we are comparing are very simple and
surely do not capture a complete picture of the MilkyWay field. We
note that observations of the Milky Way Galaxy reveal the presence
of magnetic reversals in its disk field (e.g., Brown et al. 2007).
Further, recent observations also reveal the presence of magnetic
reversals in the halo fields of some external galaxies (e.g., Mora-
Partiarroyo et al. 2019; Krause et al. 2020). These reversalsmay help
explain the ambiguity that we find in the direction of the toroidal
component of the field (i.e., when comparing the simple helical field
with the dynamo fields).

In both cases we find that �I should point away from the
observer in both hemispheres. This disagrees with the result of
Mao et al. (2010), which found no evidence for a �I-component
in the Northern hemisphere. They found a positive average rotation
measure in the Southern hemisphere, which is evidence that the �I-
component points towards the observer, and not away. As pointed
out in the case of the toroidal component, the models to which
we compare are very simple, which means a more complete, and
complex, model is likely needed to explain these discrepancies.

We can make the following observations:

(i) The correlation we find in the Planck andWMAP data cannot
be due to helicity in the random component of the magnetic field,
since that requires Faraday rotation, and the frequency of these
observations is too high for Faraday rotation to be a significant
factor.

(ii) Any explanation for the observed correlation requires a co-
herent pattern in the magnetic field over large angular scales.

(iii) An analysis of how the cross-correlation coefficient in ob-
servations changes as a function of frequency would provide an
additional diagnostic.

Helicity in the large-scale field is one possible - and plausible
- explanation for the correlations that we find, however, it is not
the only explanation. The local magnetic field, and possibly helicity
within the local field itself, can not be ruled out as a possible cause of
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these correlations. It is reasonable to expect the local magnetic field
to have non-zero helicity, because under the model of Parker (1970),
the expansion of the Local Bubble was presumably accompanied by
counterrotation with respect to Galactic rotation, under the effect of
the Coriolis force.

The North Polar Spur (NPS) is the most dominant feature in
the Northern Galactic hemisphere and has the highest polarized
fraction. The origin of the NPS, and related spur-like features, are
unknown but are most likely local features (Sun et al. 2015; West
et al. 2020). Regardless of their origin, the presence of the NPS
and related Northern hemisphere loops will impact the results in
the Northern Galactic hemisphere and may contribute to the dis-
crepancy and lack of correlation observed in the Planck data. Other,
fainter, loops may impact the result in the Southern hemisphere, but
to a lesser degree. We consider masking out these features, however
the full extent of their emission is not well understood, so it is un-
clear how to do this precisely. Experimenting with different masks
is beyond the scope of this paper. In addition, a very few extra-
galactic sources that could potentially impact the results are visible
in the maps (e.g., Centaurus A, the Large and Small Magellanic
clouds). Due to their relatively small angular extent, the bootstrap-
ping method we use to calculate the correlation (see Sec. 2) should
mitigate any possible impact these might have on the value of �.

In our models, we removed the contribution of local features
from the thermal electron density model of Yao et al. (2017). Being
nearby, these features will have a large angular extent on the sky and
will have a significant impact on the measured FD across the sky.
The significance that these features might have on these correlations
should be investigated in future work.

We also expect helicity in the large-scale field of opposite sign
to the very small-scale field (e.g., Brandenburg & Subramanian
2005, Fig. 9.6), which we have not included here. However, given
point (i) earlier in this section, and given that these very small-scale
effects (i.e., much smaller than the injection scale of turbulence)
would be difficult to detect with the low resolution of our data and
models, we believe it is reasonable to neglect the very small-scale
component.

5 CONCLUSIONS

We find that a cross-correlation between FD and polarized fraction
of the synchrotron radio emission from theMilkyWay Galaxy has a
positive and measurable value in the Southern Galactic hemisphere,
as shown in Table 1. For the Northern hemisphere, we find a smaller,
but still measurably positive value of the cross-correlation coeffi-
cient, �, in WMAP data, but the value in Planck data is consistent
with zero. We conclude that our measurements of � are consis-
tent with the presence of helicity in the mean magnetic field of the
Galaxy.

We demonstrate that a model of large-scale magnetic field
can exhibit a correlation that is similar to the result for helical
turbulence shown byVolegova&Stepanov (2010) and Brandenburg
& Stepanov (2014). From modelling we find that �, or at least the
limit of � for high frequencies, which we call �0, has the same
parity as the large-scale magnetic field: if the field is dipolar, �0
changes sign across the midplane; if the field is quadrupolar, �0
keeps the same sign.

We have shown that the simulated synchrotron emission and
Faraday rotation of a large-scale helical magnetic field have a com-
plex relationship with � that varies as a function of frequency
(Figs. 4, 8, and 10). A follow-up study of multi-frequency obser-

vations would help to confirm these results. We plan to present
an analysis of lower frequency (∼ 1 GHz) data from the Global
Magneto-Ionic Medium Survey (GMIMS, Wolleben et al. 2009) in
a forthcoming study.

Comparing our simple helical magnetic field models with the
observations, we find the observationalmeasurements are consistent
with the presence of a quadrupolar magnetic field with left-handed
helicity in the Northern hemisphere and right-handed helicity in the
Southern hemisphere, with a vertical component of the magnetic
field that is pointing away from the observer in both hemispheres
(similar to Model 3 in the North and Model 2 in the South, see
Fig. 4). The comparison of our dynamomodel with the observations
is also consistent with a quadrupolar magnetic field with a vertical
component of the magnetic field that is pointing away from the
observer in both hemispheres, however in this case we find it is
more consistent with right-handed helicity in the North and left-
handed helicity in the South.

Further work is needed to resolve this discrepancy, and demon-
strate that this is a global feature of the large-scale field rather than
a local one. The study presented in this work is limited by angular
resolution and may benefit from careful masking of local features.
Broadband FD observations offered by upcoming surveys such as
the Polarization Sky Survey of the Universe’s Magnetism (POS-
SUM) (Gaensler et al. 2010), which uses the Australian Square
Kilometer Array Pathfinder (ASKAP) telescope and the Very Large
Array Sky Survey (VLASS) (Lacy et al. 2020) are expected to pro-
vide ten times the source density of current observations. These
observations will provide a much improved Galactic FD map and
will help verify the results of this work. However, even upcoming
surveys, with greatly improved resolution, will not be able to access
the very small scales at which helicity of opposite sign is expected.

Improved Galactic magnetic field modelling is also necessary
to verify these results. The IMAGINE consortium and the Bayseian
inference code they are developing (Haverkorn et al. 2019) aims to
developmore sophisticated Galactic magnetic field modelling using
dynamo models such as those in GALMAG (Shukurov et al. 2019),
which include higher-order dynamo modes and combinations of
modes. The cross-correlation analysis presented in this work should
be applied to an improved model for the Galactic magnetic field
when such a model becomes available.

However, even if the phenomenon is local, and even if the
sign of the helicity in each hemisphere is only suggestive rather
than conclusive, these results strongly indicate a detection of non-
zero helicity. This strengthens the argument that ordered fields on
galactic scales arise through dynamo action.
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The data used in this study are all publicly available. The Planck
foreground maps can be downloaded from: https://pla.esac.
esa.int/. Similarly, the WMAP data is available at https://
lambda.gsfc.nasa.gov/product/map/current/. The Galac-
tic Faraday depth map from Oppermann et al. (2015),
is available at https://wwwmpa.mpa-garching.mpg.de/ift/
faraday/2014/index.html.
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APPENDIX A: DYNAMO MODELS

The dynamo models that we use start from the classical mean-field
dynamo equations (Moffatt 1978)

mCA = v × ∇ × A − [∇ × ∇ × A + U3∇ × A, (A1)

where A is the large-scale (mean) vector potential of the mean
magnetic field B (and B = ∇×A). Here, v is the mean velocity with
components (D, E, F), [ is the resistive diffusivity, and U3 is an
effective “twisting” velocity that describes the alpha effect, which
leads to the macroscopic, large-scale magnetic helicity, �< (see
Sec. 1).

The model is parameterized using the variables ', Φ, / , 0, D,
E, F, ) , <, @, n , �1, and �2.

The cylindrical coordinates {A, q, I} are transformed into scale
invariant coordinates {',Φ, /} according to:

A = '4X) ,Φ = q + (n + @)X), I = /4X) (A2)

(e.g. Henriksen 2015), where X is an arbitrary scale that appears
in the spatial scaling, n is a number that fixes the rate of rotation
of the magnetic field in time, and ) is a time variable that follows
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Figure A1. 3D view of a selection of magnetic field lines for the dynamo
case described as seen from the top down (left) and from the side for I > 0
(right).

4U) = 1 + Ũ3UC (Ũ3 is a numerical constant that appears in the
scale invariant form for the helicity, U is an arbitrary scale used in
the temporal scaling). The variable 0 ≡ U/X is a parameter of the
model defined as the self-similar ‘class’ (Carter &Henriksen 1991),
which reflects the dimensions of a global constant.

The time dependence of the models does not affect the field
geometry because the dependence is mainly a multiplicative power
law or exponential in time, depending on the parameter 0. The
one exception is the rotation, which can change the position of the
observer relative to the structure of the field. This can be dealt with
by varying the parameter n .

Further assumptions allow the model solutions to be simplified
further into two cases: one where outflow and accretion are allowed
to vary but the rotation is held constant and another where rotation
in the “pattern frame” is allowed (i.e., the rest frame of the dynamo
magnetic field, see Henriksen 2017). In the rotation-only case, D =
F = 0, but E and 0 are allowed to vary. Whereas in the outflow case,
0 = 1, D = E = 0 and F is allowed to vary (where F > 0 is outflow
and F < 0 is inflow).

The pitch angle, k, of the spiral is set by the variable @, where
1/@ (@ positive) is the tangent of the angle that a trailing (assuming
the q direction is in the direction of galactic rotation) spiral arm
makes with the circular direction (Henriksen et al. 2018, see equa-
tion 9) and k = arctan(1/@). We use @ = 4.9, which corresponds
to k = −11.5◦, the value used in most Milky Way magnetic field
models (Planck Collaboration et al. 2016b).

The ‘spiral mode’, <, arises in the spirally symmetric case
when solving for the magnetic field potential �. Solutions are
searched for in the complex form

�(',Φ, /) = �(Z)48<^

Z = //'
^ ≡ Φ + @ ln ' ≡ q + @ ln(A) + n) .

(A3)

In these models, the < = 0 mode has the diverging X-shaped
morphology that is similar to what is observed in external galaxies.
All modes have a spiral morphology of varying degree.Woodfinden
et al. (2019) use a mixture of these modes to attempt to model the
observed magnetic field of NGC 4631.

Finally,�1 and�2 are the boundary conditions. The boundary
condition at the disc must be treated carefully so that the solutions
are continuous across the disk along the real axis (Henriksen et al.
2018, see Sec. 4.1).

For this work, we use a case with < = 0, 0 = 1, (D, E, F) =
(0, 0, 1), ) = 1, @ = 4.9, n = −1, and (�1, �2) = (0, 1). In Fig. A1
we show a 3D plot of this case for I > 0.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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