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The Space Radiation Environment

SUN – Solar Particle Events (SPE) 
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• Sun – Solar Particle Events (SPE) 

Protons (depends on the solar cycle)

• Galactic Cosmic Radiation (GCR)

Ions (from protons to iron)

• Trapped Radiation Belts (Van Allen Belts)

Low energy protons and electrons (for ISS orbit)

• Beyond Low Earth Orbit (LEO): 

GCR and SPE 

−no protection from the Earth magnetic 

field 

−much harsher environment for exploration

Credit: NASA
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Can we use high altitude, long duration scientific balloon experiments as “surrogate” for Mars radiation?

Data: DOSIS 3D team (Berger et al. J. Space Weather Space Clim. 2020) https://doi.org/10.1051/swsc/2020028

© NASA

Data: LND Team (Zhang et al. Sci.Adv. 2020) https://doi.org/10.1126/sciadv.aaz1334
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Data: MSL-Rad team (Berger et al. J. Space Weather. Space Clim. 2020) https://doi.org/10.1051/swsc/2020028
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The DLR M-42 Radiation Detector 

M-42 Aim: The M-42 systems were developed based on the following internal DLR requirements: they

should be small, lightweight, have very low power consumption, have various built-in environmental

sensors, such as temperature, pressure, and acceleration, and should be able to be adjustable for the

energy deposition range within the radiation detector. At the end, the system shall be easily adaptable for

relevant research purposes and should be and will be used as “plug and play” instruments for

radiation protection dosimetry.
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The DLR M-42 Radiation Detector: To be Flown on NASA Artemis I Mission 

M-42 upcoming mission: Within the NASA Artemis I mission 16 M-42 detectors will be

mounted within the two female phantoms HELGA and ZOHAR to record the radiation dose

these phantoms receive on the way to and back from the Moon.

See also: Matroshka AstroRad Radiation Experiment (MARE) https://www.dlr.de/me/mare/

Credit: LM/NASA/DLR

https://www.dlr.de/me/mare/
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Two long duration balloon experiments carried out in collaboration between NASA Ames and DLR

MARSBOx E-MIST

Experiment Location Date RC

MARSBOx New Mexico 23 Sept. 2019 4.5

E-MIST Antarctica 15 Dec. 2019 – 12 Jan. 2020 0 to 1.29

Credit: NASA Credit: NASA

https://www.nasa.gov/ames/aerobiology/
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Antarctica: SuperTiger2.3 and E-MIST

Credit: WUSTL (B. Rauch)

Credit: WUSTL (B. Rauch)

Credit: WUSTL (B. Rauch)
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MARSBOx → M-42 E-MIST → M-42

The M-42 dosimetry instruments were connected (power) over USB and switched on after launch of the balloon.

Data were stored in the non-volatile memory of the system. Read out of the data was performed at DLR upon

return of the instruments.

Credit: NASA Credit: NASA

Two long duration balloon experiments carried between NASA Ames and DLR: M-42 Dosimeters
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MARSBOx → M-42 E-MIST → M-42

Experiment M-42 P/N Integration interval [min] Measurement time Data files [#] Duration [hours]

MARSBOx 001 5 23.09.2019 14:08 – 21:13 766 7.08

E-MIST 003 30 15.12.2019 13:55 – 12.01.2020 14:55 1345 672.5

Credit: NASA Credit: NASA

Two long duration balloon experiments carried between NASA Ames and DLR: M-42 Dosimeters
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New Mexico and Antarctica: Difference due to the geomagnetic cut off (RC) which gives the shielding 

effect of the Earth magnetic field against incoming galactic cosmic radiation (GCR)

MARSBOx → RC = 4.5 E-MIST → RC = 0

The calculated absorbed dose in Si versus altitude for the New Mexico (left) and the Antarctica (right) balloon flights. 

All calculations performed by DLR (T. Berger et al.) 

Note: Flight altitudes are given with red rectangles.
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Data: New Mexico

MARSBOx → M-42

The measured temperature (red), count rate (blue) and

absorbed dose rate (green) for the MARSBOx flight on

23 September 23 2019.

Credit: NASA
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Data: New Mexico

MARSBOx → M-42

Comparison of measured absorbed dose rate (green)

and calculated absorbed dose rate (by DLR) (orange)

for the MARSBOx flight on 23 September 2019.

Credit: NASA



13

Data: Antarctica

E-MIST → M-42

The measured temperature (red), count rate (blue) and

absorbed dose rate (green) for the E-MIST flight from

12 December 2019 to 13 January 2020.
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Data: Antarctica

E-MIST → M-42

The measured count rate (blue) and absorbed dose

rate (green) in comparison to the cut-off rigidity (Rc) for

the E-MIST mission.

Note: higher RC → higher geomagnetic shielding for galactic cosmic radiation → decreased dose and count rate

Credit: NASA
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DLR calculated 

dose rate (µGy/day) 

for E-MIST flight. Variation in dose due 

to changes of RC.
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Comparison: MARSBOx vs. E-MIST (three hours)

Count rate and dose rates for E-MIST (red with RC= 0)

and for MARSBOx (blue with RC = 4.5)Antarctica

New Mexico

Credit: NASA

Credit: NASA
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Data: DOSIS 3D team (Berger et al. J. Space Weather Space Clim. 2020) https://doi.org/10.1051/swsc/2020028

© NASA

Data: LND Team (Zhang et al. Sci.Adv. 2020) https://doi.org/10.1126/sciadv.aaz1334

© DLR
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Data: MSL-Rad team (Berger et al. J. Space Weather. Space Clim. 2020) https://doi.org/10.1051/swsc/2020028
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Data: DOSIS 3D team (Berger et al. J. Space Weather Space Clim. 2020) https://doi.org/10.1051/swsc/2020028

© NASA

Data: LND Team (Zhang et al. Sci.Adv. 2020) https://doi.org/10.1126/sciadv.aaz1334

© DLR
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Data: MSL-Rad team (Berger et al. J. Space Weather. Space Clim. 2020) https://doi.org/10.1051/swsc/2020028
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Data: NASA Ames and DLR Team (to be submitted to J. Space Weather Space Clim.)
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Can we use high altitude, long duration scientific balloon experiments as “surrogate” for Mars radiation? → YES

E-MIST
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https://doi.org/10.1126/sciadv.aaz1334
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NOTE: All data provided within this presentation are preliminary and in review.

Thomas Berger, Karel Marsalek, Bartos Przybyla, Daniel Matthiä, Joachim 

Aeckerlein, Markus Rohde, Michael Wirtz, Ralf Möller, Leandro James, 

Michael Lane, Prital Johnson, Marianne Sowa and David J. Smith “On the 

radiation environment during consecutive balloon flights over New Mexico and 

Antarctica”  will be submitted to the Journal of Space Weather and Space 

Climate (https://www.swsc-journal.org) in late October 2020.

https://www.swsc-journal.org/
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