
 

 

1 

 

Generation-based Evolutionary Tool for the Optimization 

of Constellations (GenETOC) 

 
Joshua Carden, Analytical Mechanics Associates Inc., 21 Enterprise Pkwy Suite 300, Hampton, VA 23666, (757)-864-

7778, joshua.f.carden@nasa.gov 

Shaun Deacon, 1 N Dryden St, Hampton, VA 23681, (757)-864-2467, shaun.a.deacon@nasa.gov 

Paul Kessler, 1 N Dryden St, Hampton, VA 23681, (757)-864-3019, paul.d.kessler@nasa.gov 

Paul Speth, 1 N Dryden St, Hampton, VA 23681, (757)-968-9952, paul.w.speth@nasa.gov 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:joshua.f.carden@nasa.gov


 

 

2 

 

Abstract 
 

With the rapid growth in the capabilities of smaller satellites, 

satellite architectures that replace a single, extremely capable 

spacecraft with multiple, cheaper ones are gaining in 

popularity. Unfortunately, the orbit design process for 

constellations can be significantly more involved, especially 

when the relative placement of the individual spacecraft within 

the constellation is not constrained by mission and/or science 

objectives. Optimizing a satellite constellation in the presence 

of multiple, competing objectives is a highly complex problem 

to which many traditional mathematical optimization methods 

cannot be applied and few tools exist to help mission designers 

search for promising candidate mission designs. The 

Generation-based Evolutionary Tool for the Optimization of 

Constellations (GenETOC) has been created to search for 

near-optimal constellation design options. GenETOC combines 

a modified version of the Non-dominated Sorting Genetic 

Algorithm II (NSGA II) with STK Components libraries (a 3rd 

party .NET package created by Analytical Graphics Inc.) to 

create a framework that enables a mission designer to generate 

a simulation that models the design problem and obtain a 

family of potential, near-optimal solutions that can be 

investigated more in detail.  

 

GenETOC was developed in C# using the .NET framework 

with Windows Presentation Foundation (WPF) serving as the 

framework from which to create the graphical user interface 

(GUI).  GenETOC user inputs can be categorized into three 

major data components: definition of the problem (areas of 

interest, satellite decision parameters, and sensor 

configurations), definition of performance objectives,  

and specification of the genetic algorithm (GA) parameters. In 

the problem definition component, the user is prompted to 

define the areas of interest against which the performance 

metrics will be computed, define the sensor parameters and 

attach them to specific spacecraft, select which satellite orbital 

parameters will be added to the decision space of the GA, and 

specify the range of desired values for each optimization 

parameter. For performance objectives, the user is presented 

with a list of available coverage and revisit performance based 

calculation options from which two metrics are chosen to serve 

as the objective functions that the GA will use to evaluate 

solutions during the optimization process. Finally, the 

definition of the GA parameters provides user control over the 

number of generations (number of optimization iterations), the 

population size (number of candidate constellations created in 

each generation), and the adaptive mutation and crossover 

threshold values (control parameters for how frequently each 

process occurs during the optimization). 

 

GenETOC has been extensively tested to verify the individual 

components of the optimization process. The GA has been 

tested against a suite of GA test problems to confirm 

convergence to the known two and three-dimensional Pareto 

fronts. The coverage and revisit performance metrics obtained 

in GenETOC are compared with STK desktop scenarios, 

confirming the constellations are being appropriately modeled 

within GenETOC simulations. A walkthrough of a simple, 

example problem is provided to illustrate the workings of 

GenETOC and to demonstrate the output available to the 

mission designer.  

Keywords – orbit constellations, coverage optimization, 

revisit optimization, genetic algorithm 
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Introduction 
 

Satellite Market Conditions 

 

In the past several years the satellite market has seen a 

significant uptick as the cost of access to space has come 

down considerably due to the implementation of rideshare 

options and the ability of commercial launch service 

providers to offer satellite launches at a fraction of the 

historical cost. While this market evolution has generated a 

greater degree of corporate interests in space, it has also 

created a shift towards larger constellations of smaller, less 

capable systems.  SpaceX’s Starlink constellation is an 

example of this trend, where the mission design is no longer 

focused on optimizing a single orbit but rather on 

determining the optimal configuration that will minimize the 

number of satellites to achieve the same objective. This 

change in the philosophy has led to a similar shift for the 

mission designer, and typical methods such as parametric 

assessments are no longer able to adequately address the 

new optimization problem.   

 

Satellite Constellation Design 

 

Modern design problems with multiple satellites functioning 

as a constellation are frequently judged using metrics of 

success that are often conflicting in nature and thus cannot 

be directly optimized without introducing a weighting 

scheme to combine the various metrics of interest into a 

single optimizable function. Unfortunately, the tools 

available to mission designers have not kept pace with this 

growing complexity in the design space and few options 

exist to assist mission designers with the task of finding 

initially feasible design points from which higher fidelity 

analysis can be constructed. 

 

To address this lack of available design tools and provide a 

flexible capability to aid mission designers in early concept 

formulation, the Space Mission Analysis Branch at NASA 

Langley has developed the Generation-based Evolutionary 
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Tool for the Optimization of Constellations (GenETOC). 

GenETOC combines a mission simulation engine with a 

Genetic Algorithm (GA) optimizer to create a framework 

that enables a mission designer to obtain a family of 

potential, near-optimal design solutions that can be 

investigated individually in more detail. Within GenETOC, 

designers are able to create the structure of mission 

simulation (simulation duration, areas of interest, and 

coverage definitions), specify which orbital parameters are 

allowed to vary within the optimization (and the permissible 

ranges of the variation), and select the optimization metrics 

against which the population of solutions will be evaluated.  

  

Genetic Algorithms   

 

Genetic Algorithms (GAs) are an attempt to mathematically 

represent aspects of Darwinian Evolution and have been 

utilized for a wide variety of applications since their original 

inception by Holland in 1975 [3]. GAs represent a 

population based search of an objective space, and as such 

do not suffer from many of the limitations of deterministic 

optimization schemes. When designed correctly, Genetic 

Algorithms do not require apriori knowledge of the 

problem, and this trait allows GAs to be used favorably in 

optimization problems with conflicting objectives. 

 

In generational GAs, the algorithm establishes a base 

population and evolves that population generation by 

generation. During each generation, models that mimic 

natural selection, survival of the fittest, and mutation are 

employed to create offspring and establish the base 

population for the next successive generation. Natural 

selection and survival of the fittest push the population 

towards better and better solutions, while mutation ensures 

population diversity and allows for exploration of other 

areas of the trade space. 

 

System Components 
 

Overview 

 

The GenETOC application can be broken down into three 

main subcomponents: the simulation engine, the optimizer, 

and the user interface. The simulation engine builds the 

constellation scenario within the program. GenETOC 

utilizes a third party library (STK Components) to model 

the constellation scenarios and obtain coverage data. 

Objective metrics are then calculated using the data 

produced by the constellation scenario. 

 

GenETOC utilizes a slightly modified version of the 

Nondominated Sorting Genetic Algorithm II (NSGA II) 

algorithm [2] as the optimizer of the program. The optimizer 

loops through the process of creating satellite constellation 

scenarios, evaluating them based on user-defined criteria, 

and producing new constellations that drive the solution set 

towards improvement in the objective metrics. The 

GenETOC user interface is designed to give users an 

environment to build the mission scenario, set controls on 

the optimization and runtime processing, specify the output, 

and monitor the progress of the optimization.  

 A more detailed description of the major components of 

GenETOC is provided in the following sections. 

 

Simulation Engine  

 

The core function of the simulation engine is to calculate the 

coverage metrics of a constellation. To accomplish this, the 

simulation engine creates a full simulation of the mission 

scenario, which includes the physical components of the 

mission (satellite, sensor, and target definitions), the mission 

timeline, and the coverage objectives for the mission. With 

the full simulation of the mission scenario completed, the 

simulation engine can then perform the calculations for the 

objective metrics that GenETOC is optimizing towards. The 

simulation engine is divided into three key processes: 

simulation set up and scenario building, scenario 

propagation, and objective metric computation.  

 

To build the constellation scenario, GenETOC leverages the 

libraries contained in STK Components software package. 

Using STK Components as a foundation, programmatic 

constructs to represent all potential components of a mission 

scenario were built. These constructs include satellites that 

are positioned using Keplerian orbital elements, sensors 

with defined fields of view, and ground target areas. The 

scenario is then given a time period for which the satellites 

should be propagated. 

 

The propagation options within GenETOC are limited to the 

semi-analytic J2 and J4 propagators. While the simulation 

engine is capable of leveraging numerical propagation and 

full gravity and force models, GenETOC is intended to be a 

trade space exploration tool and the refinement of solutions 

using higher fidelity modeling is left to follow up analysis 

by the mission designer. This simplification reduces the 

required propagation time and assists with the goal of 

keeping the overall GenETOC execution time manageable.    

 

After satellite propagation is complete, the specified areas of 

interest are discretized into grid points so that they can be 

approximated using a reference grid. The simulation engine 

steps through each grid point, storing a list of sensor access 

intervals during which the grid point is within the defined 

field of view. These access intervals each contain the start 

and stop times for each instance of the grid point coming 

into view of a satellite’s sensor. These time windows are 

then combined with any defined constraints (such as 

lighting conditions) to obtain a list of satisfaction intervals 

for which all viewing constraints are met.  
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The catalogue of satisfaction intervals for a target area is the 

set of data necessary to evaluate the coverage objectives 

used in GenETOC. The selectable objective metrics for 

GenETOC are the median time between revisits of a target 

area, the median number of revisits to a target area, the 

percent coverage of a target area, and the time until full 

coverage of a target area. The satisfaction interval data is 

parsed to compute the selected evaluation metrics for the 

analysis. 

 

Optimizer 

 

The optimizer is the driving force behind converging the 

solution space towards better performing constellation 

solutions. Since many of the coverage metrics (described in 

the upcoming section discussing the Simulation Engine) are 

competing objectives (higher performance in one objective 

sacrifices performance in other objectives) there is no 

singular optimal solution. A Multi-Objective GA, like the 

NSGA II, attempts to optimize for competing objectives and 

illustrate the tradeoffs between the conflicting optimization 

metrics. The desired result of the optimization is to achieve 

a Pareto Optimal Front [2]. The concept of Pareto optimality 

defines the goal of a Multi-Objective GA by establishing a 

front or series of discrete fronts, which represent the set of 

optimal solutions that exist. In any multi-objective problem, 

there is often a family of equally optimal solutions rather 

than a single optimal point. Figure 1 is an example of a 

Pareto optimal front, where every point on the curve is 

equally optimal. 

 

 

 
Figure 1. Pareto Optimal Front 

 

Pareto optimality depends upon an idea called domination. 

A solution is said to dominate another if it is better in at 

least one objective, and no worse in any of the remaining 

objectives. To establish a Pareto front, this comparison is 

repeated over the entire population, and the subset of 

solutions which are non-dominated (no solution was found 

to dominate them) define the current Pareto front. Multi-

Objective GAs create a series of Pareto fronts for each 

generation, and subsequent generations push the current 

fronts towards the true Pareto optimal front. The success of 

any Multi-Objective GA is based on how close the final 

solutions are to the true Pareto front. 

 

The GA used for the GenETOC optimizer is a slightly 

modified version of the NSGA II algorithm [2]. The 

modifications made to NSGA II change the population 

creation routines to promote faster convergence (at the risk 

of losing some solution diversity) and increase the chances 

of finding high value solutions even during shortened 

executions of GenETOC. The optimizer constitutes the 

majority of main process flow for GenETOC (Figure 2). 

The optimizer receives inputs from the user interface and 

uses them as controls during the program’s execution.  

 

 
Figure 2. GenETOC Iteration Process 

 

The algorithm starts with an initial population of 

constellations (generation 0). The initial generation of 

constellations have randomized orbital parameters that are 

constrained within bounds set by the user. The objective 

metrics for each constellation are calculated using the 

simulation engine. After the objective metrics are 

calculated, the optimizer evaluates and sorts members of the 

population based on their performance. The sorting method 

used for the population of constellations is the non-

dominated sorting algorithm (Figure 3). A constellation is 

considered ‘dominated’ by another when it is outperformed 

in every possible objective metric.  

 

The constellation is also given a secondary ranking called 

crowding distance. Crowding distance is a measure of 

difference from a constellation’s objective metrics to other 

constellations of the same rank. Higher crowding distance is 

more valuable as it promotes diversity of the solution space. 

Diversity is important to the end product of GenETOC 

because it ensures the mission designer has more options to 

explore within the near optimal solution set. 
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Figure 3. Non-Domination Sorting Process 

 

The mating process (Figure 4) is the process of combining 

the traits of more successful constellations from the 

population to see if the new solution produces a more 

successful constellation. Two randomly selected 

constellations from the mating pool become parents and 

pass on their traits to offspring constellations. Orbital 

parameters are passed to offspring through two methods: 1) 

by directly copying the parameters from a single parent to 

offspring, or 2) through a combination process called 

simulated binary crossover [2]. Offspring constellations are 

created until the number of offspring constellations is equal 

to the number of constellations in generation 0. After the 

offspring constellations are created, each orbital parameter 

of a constellation has a small chance of undergoing mutation 

[2].  

 

 
Figure 4. Mating Process 

 

Mutation is an important step of the optimization process; it 

provides mechanism to create more diversity in the solution 

space when the algorithm begins to converge towards a 

local optima. Adding in this chance of mutation enables the 

solution set to begin to drift out of the effective gravity well 

created by the localized optima. 

 

Once mutation is complete, the objective metrics are 

evaluated for the offspring population using the simulation 

engine. The combined set of constellations from generation 

0 and the offspring are sorted using the non-dominated 

sorting algorithm. The lowest performing member of the 

population of this combined set is removed until the number 

of constellations in the set matches the initial population 

size (Figure 5). If constellations are of the same tier in terms 

of domination, crowding distance becomes the determining 

factor for removal. 

 

 
Figure 5. Chromosome Replacement Process 

 

The new sorted set becomes generation 1. As there are no 

true tests for whether or not the optimal Pareto front has 

been found, the process flow that was outlined in this 

section is repeated until the user specified number of 

generations has been created and evaluated.  

 

User Interface 

 

The User Interface provides a mechanism for the user to 

control program setup, program execution, input settings, 

and data visualization. In the interface, there are four major 

input constructs provided to the user: optimizer settings, 

area of interest definition, sensor definition, and satellite 

definition. 

 

 Users can modify parameters of the genetic algorithm 

through the optimization control tab (Figure 6). The 

optimization tab contains settings for both the simulation 

engine and the optimizer. These settings control objective 

metric selection, population and generation counts for the 

optimizer, and time data for the scenario (epoch, start and 

stop times). GenETOC currently is capable of optimizing 

towards any combination of the four objectives. 

 

 
Figure 6. Optimization Screen 
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The area of interest input control (Figure 7) enables the user 

to create and modify the ground targets for use by the 

simulation engine. GenETOC supports five types of targets: 

point, circular, latitude bounds, longitude bounds, and 

global. The user can control the grid resolution of a target to 

ensure that the simulation fidelity is sufficient for the 

analysis problem. Users are able to display the created 

targets on an interactive globe to enable a visual 

confirmation that the target has been properly defined. 

 

 
Figure 7. Target Control Screen 

 

The sensor input control tab (Figure 8) enables the user to 

create sensor configurations that can be attached to any 

satellite within the simulation. GenETOC supports both 

simple conic and rectangular prism sensor definitions. In the 

case of a conic sensor, the half angle of the cone is the 

user’s point of control and for rectangular prism sensors, the 

cross-track and along-track half angles are user definable. 

Users can also select a fixed swath width, which will 

remove the option to adjust angles, and the user control 

becomes the cross-track width of the swath on the ground. 

Algorithms inside of the simulation setup process will 

determine the appropriate angle values to maintain the fixed 

swath whenever the starting altitude of a constellation is 

adjusted. 

 

 
Figure 8. Sensor Builder Screen 

 

 

The satellite input control tab (Figure 9) is where the user 

can set the orbital parameters for each satellite. The user has 

the ability to fix or vary five orbital elements. The first two 

parameters contain the option for the user to specify any 

appropriate combination of semi major axis, eccentricity, 

apogee and perigee. The remaining three parameters are 

argument of periapsis, the right ascension of ascending 

node, and inclination. True anomaly is omitted from the user 

input controls due to some of the initial limitations in the 

optimizer setup. Within the simulation framework, merely 

swapping the true anomaly values of two satellites within 

the constellation would be viewed a unique solution. To 

avoid this situation, all satellites within a single orbit plane 

are assumed to be equally spaced in true anomaly. For each 

of the controllable parameter, the allowable variation can be 

constrained within one or more user-defined, discrete 

ranges.  

 

 
Figure 9. Satellite Builder Screen 

 

The execution control options can be seen in the bottom of 

Figures 6, 7, 8, and 9 as these options are accessible from 

any tab in the user interface. These options give users 

control over file management of data that is generated 
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during an execution of GenETOC. Users can specify the 

name of the scenario and where data output will be stored. 

Users are also given the option to save the current set of 

user inputs, which gives users a mechanism to save progress 

if interrupted and enables a mechanism for archiving the 

input set with the optimization results so that the traceability 

of the scenario input sets can be maintained. This section of 

the UI allows users to kick-off an optimization run or to 

continue processing from the end point of a previous run. At 

any point during execution, the user can decide to cancel the 

run and GenETOC will finish the current generation and 

safely termination execution. 

 

Data Visualization and Results 

 

GenETOC regularly reports constellation data each time a 

population is finished processing. The regular reports give 

users the option to save progress and monitor the current 

progression of the data. After each generation is complete, 

the data for that generation is stored within GenETOC’s file 

management system. GenETOC also supports 2D data 

plotting for user analysis. 

 

Population data from each generation is stored in GenETOC 

result and solution files. Result files (Figure 10) contain the 

objective performance of each constellation of the 

population. Solution files (Figure 11) contain an elaboration 

of each member of the population such as the orbital 

parameters of each satellite for further analysis if desired. 

The solution and result files can be cross-referenced using 

the unique ID system GenETOC has in place. The goal of 

this system is to enable a mission designer to first examine a 

particular constellation of interest in the report file; if the 

designer requires further elaboration on the particular 

constellation, the unique ID is traced to the solution file for 

further analysis.  

 

 
Figure 10. Result File 

 

 
Figure 12 Solution File 

 

GenETOC also creates data visualizations after each 

generation (Figure 12). Interim data reports are displayed at 

intervals for the user to monitor. In the case of erroneous 

inputs or a non-converging scenario, the interim data output 

helps the user identify any complications with the current 

scenario and visualize the state of convergence.  For each 

generation, GenETOC plots each solution on a 2D scatter 

plot on the completion of each generation (note: this is only 

for a scenario with two objective functions. GenETOC 

currently does not support 3D+ graphing capabilities). The 

user can use this plot to visualize the trend of the data after 

each generation, to acquire more in-depth data on particular 

solutions, or to export an image of the plot to use. The user 

can also click on a data point in the scatter plot to open a 

summary window of that data point. The summary window 

contains the same data as the solution files for the selected 

point.  

 

 
Figure 12. GenETOC Data Visualization  

 

Example Design Application 
 

To illustrate the application of GenETOC, we will examine 

a notional, simple mission design problem. In this example, 

a mission designer is tasked with designing a constellation 

to observe the air quality over eleven major cities across the 
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world (Table 1). The constellation will have three CubeSats, 

constrained to a 500 km circular orbit. Each satellite will be 

equipped with a sensor with a 5 degree half angle swath. 

Given these constraints to the mission, the designer creates 

an optimization scenario for GenETOC to start exploring 

potential designs. The scenario is set over the period of one 

month. The constellation has two conflicting objectives: the 

first is to minimize the amount of time it takes for the 

constellation to visit each target at least once, the second is 

to minimize the median time between revisits of a target.  

Since the altitude is fixed with a circular orbit, the only 

variable parameters are the right ascension of ascending 

node and the inclination of the orbits; each parameter is set 

to vary between 0 and 90 degrees (Table 2).  

 

To keep the program runtime manageable, the population 

size will be set to 500 and the generation size will be set to 

15, which is enough genetic diversity to obtain a variety of 

solutions while keeping the runtime within 24 hours. 

The mission designer runs GenETOC to begin the 

optimization process. 

 

Table 1. Sample Problem Targets 

City Latitude 

(degrees) 

Longitude 

(degrees) 

New York 40.7128 -74.006 

Los Angeles 34.0522 -115.2437 

Chicago 41.8781 -87.6298 

London 51.5074 -0.1278 

Florence 43.7696 11.2558 

Cairo 30.0444 31.2357 

Johannesburg -26.2041 28.0473 

Mumbai 19.076 72.8777 

Seoul 37.5665 126.978 

Sydney -33.8688 151.2093 

Rio De Janeiro -22.9068 -43.1729 

 

 

Table 2. Sample Problem Decision Variables 

Satellite / 

Parameter 

Right Ascension of 

Ascending Node Ω 

(degrees) 

Inclination i 

(degrees) 

 Min Max Min Max 

Satellite 1 0 90 0 90 

Satellite 2 0 90 0 90 

Satellite 3 0 90 0 90 

 

The first set of data generated by GenETOC (Figure 13) 

contains the variety of potential solutions from the first 

generation.  

 

 

 
Figure 13. Initial population for the sample problem 

 

The first generation contains the largest spread of solutions. 

Note the solutions with a value of 32 days for the ‘Time to 

Full Coverage’ objective have failed that objective. In other 

words, these solutions did not reach each target within the 

one-month scenario time.  

 

GenETOC iterates each subsequent generation towards the 

optimal (Figure 14). By the fifth generation, most failed 

solutions have been phased out and replaced by solutions 

along a higher performance curve. The later generations no 

longer have the wide spread of the first generation. They are 

converged closer towards the optima and tightly packed 

together. 

 

 
Figure 14. All populations for the sample problem 

 

The final iteration of the program (generation 15) yields a 

more optimal front with no failed solutions.  

 

GenETOC produces reports for each generation, giving the 

mission designer access to the performance metrics and 

orbital parameters of each solution. The mission designer 

will have access to a variety of optimized solutions allowing 

the mission designer to compare solutions based on other 

metrics, such as cost, feasibility, and scheduling. As an 

example, the mission designer could determine that the 

solutions with the fewest number of launches are of higher 

priority and select viable solutions with that constraint. 

Tables 3 and 4 contain data from four prominent solutions 

from the analysis. 

 

Table 3. Sample Solution Performance 
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Solution Median Time 

Between Revisits 

(days) 

Time to Full 

Coverage 

(days) 

15_04 0.053 5.962 

15_06 0.243 1.865 

15_08 0.122 2.232 

15_19 0.122 2.385 

15_22 0.070 3.439 

 

Table 4. Sample Solution Parameters 

Solution Satellite 1 Satellite 2 Satellite 3 

 Ω i Ω i Ω i 

15_04 24.2 42.0 8.2 42.0 74.5 51.5 

15_06 85.4 33.1 53.6 68.0 67.3 81.4 

15_08 35.9 89.0 66.9 47.0 70.0 41.7 

15_19 35.8 89.4 67.5 47.2 70.9 42.1 

15_22 27.0 43.8 16.1 43.8 77.0 51.5 

 

A successful GenETOC analysis will yield a variety of 

potential constellation configurations. Solution 4 is the best 

performing constellation for the median time between 

revisits objective, and solution 6 is the best performing 

constellation for the time to full coverage objective. 

Solutions 8 and 22 strike a better balance between both 

objectives. Each solution belongs to the same front, where 

no solution is strictly better in both solutions than any other. 

This provides the mission designer multiple avenues to 

approach the constellation design. 

 

From this example case, GenETOC produced 500 potential 

solutions for further examination. The only constraints 

applied to the satellites are the original orbital parameters; it 

is up to the mission designer to apply additional constraints 

(launch vehicle requirements, costs requirements, etc.). For 

solution 4, satellites 1 and 2 are separated by less than a 

degree in inclination and less than 30 degrees right 

ascension. For solution 19, both the right ascension and 

inclination differ less than 5 degrees each. These are 

potential cases in which, given slight modifications, two 

satellites can be launched together. This is potentially 

beneficial for the mission as launching two satellites in one 

vehicle can cut costs and provide the mission more 

flexibility.  

 

In this scenario, GenETOC presents a group of solution of 

similar quality for mission designer.  The analysis done 

using GenETOC gives a starting point for the mission, 

where further exploration into solutions give the designer a 

first order view of potential mission configurations. 

 

Conclusion 
 

With the advent of small satellite constellations, the problem 

of coverage optimization increases in complexity as the 

number of satellites per constellation increases. This 

increase in complexity renders traditional analytical 

optimizations inefficient in comparison to automated 

solutions. Few orbit design tools are available to the mission 

designer that can provide a broad spectrum of near optimal 

solutions. GenETOC was designed to meet the growing 

complexity of the problem. It is able to efficiently give the 

mission designer a first look into a diverse set of near 

optimal solutions in the trade space. 

 

To obtain the set of near optimal solutions, GenETOC relies 

on a GA for solution discovery. Generational GAs have the 

ability to start with a broad description of the design 

problem and narrowing down the potential avenues of 

solution exploration to a family of solutions along the 

optimal curve. The initial set of bounded randomly 

generated constellations guarantees a wide view of potential 

configurations, and the iteration process converges the 

family of solutions towards the optima. It is essential for a 

mission designer to have this breadth of constellation 

configurations to explore in the orbit design process. 

 

GenETOC has the unique capability of applying useful 

features of a GA to a satellite constellation scenario. The 

Space Mission Analysis Branch at NASA Langley intends 

on using GenETOC as a tool to produce mission design 

options for exploration. In the absence of analytical or 

intuitive approaches to a constellation optimization problem, 

GenETOC will prove to be a useful tool in creating a first 

order look into the orbit design trade space. 
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