The Influence of Yttria Content on the Thermal Stability of Yttria-Stabilized Zirconia Aerogels

Nathaniel Olson¹, Dr. Frances Hurwitz², Dr. Haiquan Guo³, Dr. Jamesa Stokes², Dr. Jessica Krogstad¹

¹University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, Urbana, IL ²NASA Glenn Research Center, Cleveland, OH ³Universities Space Research Association, Cleveland, OH

MS&T 2020: Synthesis, Characterization, Modeling, and Applications of Functional Porous Materials

November 3rd, 2020

This work is supported by a NASA Space Technology Research Fellowship

Development of lightweight, high performance insulation for aerospace applications

NASA's estimated cost to launch into low Earth orbit (LEO) is approximately **\$5000 per kilogram**.

For the Space Shuttle program

10% reduction in mass of thermal = protection system

\$4,300,000 reduction in cost per launch

Aims for future:

1) Lower thermal conductivity \rightarrow improve performance

2) Reduce mass and/or volume \rightarrow reduce cost

Orion capsule: provide insulation for use in seals for doors & panels

Deep space probes: thermoelectric generators insulated to prevent heat loss & sublimation

Missions to the Moon & Mars: lightweight insulation to reduce cost and increase payload capability

Aerogels are highly insulating and lightweight materials

- Low thermal conductivity
 - Low as 0.009 W/(m•K) in atmosphere and 0.003 W/(m•K) under vacuum
- High specific surface area (SSA), high porosity, and low density

SSA: 200 – 1000 m²/g

Porosity: 90 – 99.9%

Density: As low as 0.00016 g/cm³

 Versatile synthesis adaptable to a wide array of metal oxide compositions

Metal salts & epoxide gelation agent

 Incorporate ceramic fibers/felts/papers with aerogel to reinforce for insulation

Cohen, E., and Glicksman, L. *Journal of Heat Transfer*, **2015**, 137(8), 81601. Sun, H., et al. *Advanced Materials*, **2013**, 25(18), 2554-2560. Gash, A.E., et al. *Journal of Non-Crystalline Solids*, **2001**, 285(1-3): 22-28.

Silica aerogel block (NASA JPL)

Highly porous network of interconnected nanoparticles

Various aerogel composite materials using alumina or aluminosilicate reinforcements

Low thermal conductivity arises from the highly porous aerogel structure

- Heat Transfer =
 - Solid Conductivity
 - + Gas Convection
 - + Radiative Transmission
- Low density = Low solid conductivity
 - → Complex solid network creates a tortuous path for heat transfer and decreases sectional area
 - ightarrow Also controlled by composition
- Pore sizes ≤ mean free path of gas
 - = Low gas convection
 - → Prevents transport of gas molecules through aerogel
- Opacifier (e.g. TiO₂) can lower radiative transmission if desired

Bunsen burner applied to aerogel (LANL)

Low thermal conductivity arises from the highly porous aerogel structure

- Heat Transfer =
 - Solid Conductivity
 - + Gas Convection
 - + Radiative Transmission
- Low density = Low solid conductivity
 - → Comple Highly porous structure of aerogel is
 a torti responsible for its extremely low
 and de thermal conductivity.

-> Also composition

- Pore sizes ≤ mean free path of gas
 - = Low gas convection

→ Prevents transport of gas molecules through aerogel

Opacifier (e.g. TiO₂) can lower radiative transmission if desired

Bunsen burner applied to aerogel (LANL)

Collapse of pore structure and loss of favorable properties upon exposure to high temperatures

- → Extremely high surface areas as synthesized
- → High surface energy provides large driving force for sintering & densification
- → Detrimental to favorable aerogel properties

	Sufficient		
Composition	porosity to (°C)		
SiO ₂	700		
Al ₂ O ₃	900		
Al ₂ O ₃ -Y ₂ O ₃	1000		
Al ₂ O ₃ -SiO ₂	1100		

Powell, R.W., et al; NSRDS-NBS 8, 1966, 99.

Lide, D. R., ed; "Thermal conductivity", CRC Handbook of Chemistry and Physics (100th ed.).

Project Objective

Develop aerogel to maintain **porosity** and **surface area** at high temperatures (≥1200°C) for use as insulation in nextgen aerospace applications

Folgar, C., et al. *J. of Non-Cryst. Solids.*, **2007**, 353, 1483-1490. Hurwitz F.I., et al. *Int. J. Appl. Glass Sci.*, **2014**, 5, 276-286. Al-Yassir, N., Le Van Mao, R. *Applied Catalysis A*, **2007**, 317, 275-283.

5

Yttria-Stabilized Zirconia (YSZ) as a candidate composition for a thermally stable aerogel

- Thermal barrier coatings \rightarrow YSZ is a ceramic used in thermal insulating layers on super alloys in aircraft engines \rightarrow ZrO₂-Y₂O₃
- Low thermal conductivity \rightarrow 0.8-2.9 W/(m·K)
- Inhibit zirconia phase transformations by substitution of Zr⁴⁺ with Y³⁺
- Questions to answer: how does yttria content affect as-dried structure, phase behavior, and structural evolution?

Selected compositions for study: 0, 15, 30, and 50 mol% YO_{1 5}

 Yb_2O_3 and Y_2O_3 below 20 mol% $MO_{1.5}$

Hurwitz, F.I., et al; J. Am. Cer. Soc., 2020, accepted.

Fabrichnaya, O., et al; Zeitschrift füür Metallkunde., 2004, 95(1), 27-39. Schlichting, K.W., et al; J. Mater. Sci., 2001, 36, 3003-10.

Measuring an aerogel's performance in extreme environments

Properties measured <u>as dried</u> and following <u>heat treatments</u> at **600**, **1000**, or **1200 °C** (1112, 1832, or 2192 °F) with an 18-minute hold for each temperature

Specific Surface Areas & Pore Size Distribution

→Combat shrinkage & densification
→Maintain high SSA at high temperatures
→Maintain constant pore size distribution
→Measure with N₂ physisorption

Microstructural Evolution

As Synthesized

1000°C (18 min)

- →Inspect pore structure and evolution after heat treatment
- $\rightarrow \! \text{Visualize}$ with SEM & TEM
- →Phase, crystallite size, and lattice parameters with XRD

As dried aerogels: yttria increases the pore size and distribution breadth

mol % YO _{1.5}	SSA (m²/g)	Pore Volume (cm³/g)	D _{peak} (nm)	Shrinkage (%)	Bulk Density (g/cm³)
 0	419	0.986	7.5	-25.6	0.292
15	456	1.950	22.9	-21.1	0.250
30	407	1.190	22.8	-13.2	0.193
50	301	0.997	28.5	-	-

Increased rate of reaction with increased [Cl⁻] tends towards precipitation over homogeneous gelation

Nitrogen physisorption quantifies improvement in thermal stability with increased yttria content

Nitrogen physisorption demonstrates porosity maintained to 1200 °C in 30 and 50YSZ

Nitrogen physisorption demonstrates porosity maintained to 1200 °C in 30 and 50YSZ

No unexpected phase transformations or separations as observed with x-ray diffraction (XRD)

0YSZ crystallizes into monoclinic with some tetragonal

15, 30, and 50YSZ crystallize into cubic (though tetragonal cannot be ruled out)

Crystallite growth is suppressed with increased yttria content (Scherrer method) Crystallite Size, Scherrer Method

 Took peak position (θ) & FWHM (β) and calculated D/C from Scherrer equation

$$\frac{D}{C} = \frac{\lambda}{\beta \cos\theta}$$

Allows for comparison between samples
 Avoids having to choose C value and subtract
 instrument broadening

Does NOT provide absolute values

 Large variation in 15 mol% explained by abnormal grain growth observed in SEM and quantified in ImageJ

> 0 mol%: Stable to 600 °C 15, 30 mol%: Stable to 1000 °C 50 mol%: Stable to 1200 °C

Furthering our understanding of crystallite growth with in-situ dark field transmission electron microscopy

- Dip grids into aerogel/ethanol dispersion and allow to dry
- Ramp of 20 °C / min
- Hold of 4 min every 100 $^{\circ}$ C
- Diffraction patterns & dark field images taken during each hold

Special thanks to Nathan Madden & Charles Smith (SMEE, UIUC) for TEM data

In situ video available: https://youtu.be/HGt6vPllwDs

* = Significantly different at α = 0.05

Increased yttria content in YSZ aerogels improves thermal stability

1. Reduces densification of the pore structure

2. Suppresses crystallite growth to 1200 °C

1200

60

50 -

40 -

D/C (nm)

20

10

0YSZ 15YSZ

30YSZ

50YSZ

600

1000

Temperature (°C)

By what mechanism is yttria improving the thermal stability of the pore structure?

Thermodynamics (Surface Energy)

Kinetics (Cation Diffusivity)

Understanding the effect of yttria on structural evolution: **thermodynamics** (surface energy)

According to Drazin & Castro, <u>significant decrease in surface energy</u> <u>with increased yttria content</u> via water adsorption microcalorimetry

> **Reduced surface energy** will reduce the driving force for elimination of surface area.

With SSAs of 300 to 500 m²/g, surface energy has massive impact!

Understanding the effect of yttria on structural evolution: **kinetics** (cation diffusivity)

Kilo, M., Borchardt, G., Lesage, B., Kaitasov, O., Weber, S., & Scherrer, S. (2000). Cation transport in yttria stabilized cubic zirconia: 96Zr tracer diffusion in (ZrxY1−x)
 O2−x/2 single crystals with 0.15 ≤ x ≤ 0.48. Journal of the European Ceramic Society, 20(12), 2069-2077.

2. Kilo, M., Borchardt, G., Weber, S., Scherrer, S., & Tinschert, K. (1997). Zirconium and calcium tracer diffusion in stabilized cubic zirconia. Berichte der Bunsen-Gesellschaft, 101(9), 1361-1365.

3. Kilo, M., Taylor, M. A., Argirusis, C., Borchardt, G., Lesage, B., Weber, S., ... & Martin, M. (2003). Cation self-diffusion of 44 Ca, 88 Y, and 96 Zr in single-crystalline calciaand yttria-doped zirconia. Journal of applied physics, 94(12), 7547-7552.

Increased yttria content is hypothesized to reduce the energy barrier to crystallization

r = particle radius (m) Δg = change in bulk free energy (J/m³) γ = interfacial specific energy (J/m²)

The difference between amorphous phase and crystalline phase at any given mol% $YO_{1.5}$ can give an approximation to the energy barrier.

This barrier decreases with increasing yttria content!

Lower barrier = smaller nuclei = smaller crystallites to begin with

Lower diffusivity **prevents their growth** until activation energy surmounted

Drazin, J. W., & Castro, R. H. (2015). Phase stability in nanocrystals: a predictive diagram for Yttria–Zirconia. *Journal of the American Ceramic Society*, 98(4), 1377-1384 20

Both kinetic and thermodynamic factors contribute to increased thermal stability with increased yttria content

• Decreased diffusivity of Zr^{4+} , Y^{3+} in YSZ with increased Y_2O_3 doping responsible for decreased mass flow

- Less densification AND crystallite/grain growth in 50YSZ relative to 30, 15, 0YSZ

- Lower surface energy with increased yttria content ($\gamma_c < \gamma_t < \gamma_m$) leads to:
 - Improved stability of pore structure (lower driving force for densification)
 - Smaller crystallites (lower barrier to nucleation)

Summary

1. Aerogels are a promising candidate for lightweight, highly insulating materials in next-gen aerospace applications. Pore structure must be preserved to

temperatures ≥ 1200 °C

2. Introduction of yttria into zirconia aerogels reduces densification of pore structure and crystallite growth to 1200 °C.

30 mol% YO_{1 5} pore structure evolution

1000 3. Increased yttria content improves stability of YSZ aerogels as a result of lower cation diffusivity (mass flow) and lower surface energy (driving force for densification).

Primary Contact:

Nathaniel (Nate) Olson no6@illinois.edu

University of Illinois at Urbana-Champaign Department of Materials Science and Engineering

Future Work

1. Study of effect of starting structure on structural evolution by tuning synthetic parameters independent of composition.

1.263 mmol M / mL EtOH

2.526 mmol M / mL EtOH

2. Characterization of **doped metal oxides** beyond YSZ to study effect of dopant charge, mass, and size (D_{cation}, γ) 15, 30 mol% M/(M+Zr) for Yb, Gd, Ce, Ca, Y

3. Leverage lessons learned from YSZ in development of framework to select favorable compositions & synthetic routes for porous materials with improved thermal stability.

Thank you for your attention!

Special thanks to:

- <u>Advisor</u>: **Dr. Jessica Krogstad** (UIUC)
- <u>Technical Collaborator</u>: **Dr. Jamesa Stokes** (NASA GRC)
- **Dr. Frances Hurwitz** (NASA GRC, retired)
- Krogstad Group Members
- At NASA GRC: Dr. Haiquan (Heidi) Guo, Jessica Cashman, Dr. Richard Rogers
 Funding:
- NASA Space Technology Research Fellowship (80NSSC18K1189)
 Facilities:
- Materials Research Laboratory, UIUC
- NASA Glenn Research Center

Summary

1. Aerogels are a promising candidate for lightweight, highly insulating materials in next-gen aerospace applications. Pore structure must be preserved to

temperatures ≥ 1200 °C

2. Introduction of yttria into zirconia aerogels reduces densification of pore structure and crystallite growth to 1200 °C.

30 mol% YO_{1 5} pore structure evolution

1000 3. Increased yttria content improves stability of YSZ aerogels as a result of lower cation diffusivity (mass flow) and lower surface energy (driving force for densification).

Primary Contact:

Nathaniel (Nate) Olson no6@illinois.edu

University of Illinois at Urbana-Champaign Department of Materials Science and Engineering

Future Work

1. Study of effect of starting structure on structural evolution by tuning synthetic parameters independent of composition.

1.263 mmol M / mL EtOH

2.526 mmol M / mL EtOH

2. Characterization of **doped metal oxides** beyond YSZ to study effect of dopant charge, mass, and size (D_{cation}, γ) 15, 30 mol% M/(M+Zr) for Yb, Gd, Ce, Ca, Y

3. Leverage lessons learned from YSZ in development of framework to select favorable compositions & synthetic routes for porous materials with improved thermal stability.