

Designing shading schemes for microphone phased arrays

Christopher J. Bahr and David P. Lockard NASA Langley Research Center

NASA Acoustics Technical Working Group Meeting Glenn Research Center, Cleveland, OH (Virtual) November 3rd, 2020

- Introduction
- Methodology
- Application description
- Metrics and synthetic data
- Experimental data (beamforming/deconvolution)
- Summary and conclusions

- Array shading
 - Application of weight values to sensors in an array to emphasize some signals more than others
 - Distinct from steering vector weights
- Aeroacoustic concerns
 - Beamwidth control
 - Compensate for microphone distribution/source directivity
 - Mitigate coherence loss/decorrelation across array face

Shading design

- No standard method... aside from ad-hoc
 - Beamwidth control
 - Analytic for continuous aperture, plane waves
 - Sensor distribution correction
 - Geometry/source models
 - Coherence loss
 - Data-driven
 - Modeling
- This effort
 - Automate beamwidth control for discrete sensor array and point source with varying frequency
 - Monitor characteristics important to geometry correction, coherence loss
 - Propose appropriate cost function, formulate as optimization problem

- Addressing axisymmetric shading
- Lit. review dictates that an array designed for broadband application (e.g., full decade span) should emphasize:
 - <u>outer</u> mics at low frequencies (beamwidth control, microphone distribution)
 - <u>inner</u> mics at high frequencies (beamwidth control, source directivity, coherence loss)
- Beamwidth control common useful parameter for optimization
- Product of two functions often used first emphasizes outer sensors, second emphasizes inner ones

$$w_n = u(r_n, f)v(r_n, f)$$

- Function selection
 - Outer emphasis: radial power laws often used $u(r_n, f) = r_n^{\alpha(f)}$
 - Inner emphasis: variety of functions considered, should depend on r_n , $\beta(f)$
- Optimization
 - Maximize array gain at every frequency by varying α , β
 - Data-independent parameter
 - Fast calculation
 - Constraints
 - 3 dB beamwidth equality
 - 10 dB beamwidth inequality
 - $\alpha > 0$

Application

Array with screen cover, High-Lift Common Research Model (no nacelle)

- Airframe noise test in the NASA Langley 14- by 22- Foot Subsonic Tunnel
- 110-element array w/ 36-inch outer ring radius, 1-inch inner ring radius
- Desired beamwidth of 6 inches to separate slat brackets

- Candidate functions ($\rho_n = \frac{r_n}{r_{max}}$)
 - Modified Bessel function: $w_n(f) = \rho_n^{\alpha(f)} I_0 \left(\beta(f) \sqrt{1 \rho_n^2}\right)$
 - Complimentary error function: $w_n(f) = \rho_n^{\alpha(f)} \operatorname{erfc}(2[\beta(f)\rho_n 1])$
 - Decaying exponential (gamma PDF): $w_n(f) = \rho_n^{\alpha(f)} e^{-\beta(f)\rho_n}$
- Other comparisons
 - Uniform/no shading
 - Existing, nonoptimized function based on hyperbolic tangent
 - General radial optimization
 - No functional form, but enforce overall shape (only one peak as a function of radius)
 - Poorly constrained, requires further investigation

Shading method metrics

- Array gain
 - Existing method lowest
 - Two-parameter methods similar
 - General method highest
- Beamwidth optimized methods meet constraints
- Peak sidelobe levels not directly related to other metrics

Shading method plots

Two-parameter methods similar, general method does not reject outer mics at high frequencies

- Uniform shading narrow 3 dB mainlobe, wide 10 dB mainlobe due to inner array mic distribution
- tanh shows this to lesser extent
- General broad 20 dB mainlobe width
- Two-parameter methods
 broadly similar
- -5 y, m -10 -15 I_0 tanh uniform y, m 0 -10-15 -1 -2 -20 -2 -1 0 2 -2 0 2 -2 -1 0 2 dB x, m x, m x, m erfc general gamma

- Uniform shading 3 dB mainlobe more narrow, fewer, smaller sidelobes of similar magnitude
- tanh wider 3 dB mainlobe, 10 dB mainlobe width now wellcontrolled
- All optimized methods
 similar

- Model w/ nacelle: 7° AoA, Mach 0.2, embedded speaker operating at 5-10 kHz
- 35 second records processed to 96 Hz binwidth CSM, 75% overlap – ~7000 effective block averages
- Diagonal optimization of CSM mitigate contamination while keeping CSM positive semidefinite
- Beamforming results computed on ~ 4 m x 3.5 m grid w/ 3 cm spacing, ~15.7k grid points
- 200 DAMAS forward-backward passes of varying direction on the grid
- Images summed to 1/12th-octave bands

Speaker results – 8 kHz beamforming

- Optimized methods extremely similar – only plotting gamma
- Overall behavior matches to synthetic results for a point source
- All methods capture inboard slat/nacelle source
- Fewer sidelobes for uniform/tanh, most for gamma

3.5

2.5

0.5

0

E 2 ∽ 1.5

3

Beamforming spectrum – level at speaker location

- Minor variability across all methods for 5-10 kHz (optimized show agreement)
- Other frequencies combination of lobe overlap & noise floor

0.5

6

5

4

- Two sources inboard slat/nacelle & far wall reflection of unknown source
- uniform best resolution
- Two-parameter and general methods similar

2

0

3

x, m

gamma

17

Airframe results – 20 kHz DAMAS

- Broadly similar results for 5 of the 6 methods sources localized to similar points/clusters
- tanh very different smeared sources, energy pushed to boundaries
- BeBeC paper blames points/beamwidth; surrogate for A-matrix rank?
 - $\operatorname{rank}(A_{gamma} = 7565)$
 - $\operatorname{rank}(A_{tanh} = 1995)$

Integrated DAMAS – Inboard slat region

• Similar results – some deviation for uniform at low frequencies, tanh at high

• Spectral shapes match, dominant tone level agrees within fraction of dB

- Shading design method proposed: two-parameter optimization
- Designs compared to no shading, existing shading, and general optimization
- Shading functions show strong influence on visualization of beam maps; DAMAS images sensitive to grid density/A-matrix rank
- Quantitative values less sensitive
 - Minor influence on dominant point source
 - Little influence on integrated deconvolution spectra
- Initial conclusion: shading is important and should be used
 - Major differences between methods matter
 - Minor differences (e.g., erfc vs. gamma) do not

- Uniform extremely narrow 3 dB mainlobe
- tanh wider 3 dB mainlobe than optimized methods, wider sidelobes
- All optimized methods
 similar

