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• Array shading

– Application of weight values to sensors in an array to emphasize some 

signals more than others

– Distinct from steering vector weights

• Aeroacoustic concerns

– Beamwidth control

– Compensate for microphone distribution/source directivity

– Mitigate coherence loss/decorrelation across array face

Introduction
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• No standard method… aside from ad-hoc

– Beamwidth control

• Analytic for continuous aperture, plane waves

– Sensor distribution correction

• Geometry/source models

– Coherence loss

• Data-driven

• Modeling

• This effort

– Automate beamwidth control for discrete sensor array and point source with 

varying frequency

– Monitor characteristics important to geometry correction, coherence loss

– Propose appropriate cost function, formulate as optimization problem

Shading design
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• Addressing axisymmetric shading

• Lit. review dictates that an array designed for broadband application 

(e.g., full decade span) should emphasize:

– outer mics at low frequencies (beamwidth control, microphone distribution)

– inner mics at high frequencies (beamwidth control, source directivity, 

coherence loss)

• Beamwidth control common – useful parameter for optimization

• Product of two functions often used – first emphasizes outer 

sensors, second emphasizes inner ones

Methodology
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𝑤𝑛 = 𝑢 𝑟𝑛, 𝑓 𝑣(𝑟𝑛, 𝑓)



• Function selection

– Outer emphasis: radial power laws often used

– Inner emphasis: variety of functions considered, should depend on 𝑟𝑛, 𝛽(𝑓)

• Optimization

– Maximize array gain at every frequency by varying 𝛼, 𝛽
• Data-independent parameter

• Fast calculation

– Constraints

• 3 dB beamwidth equality

• 10 dB beamwidth inequality

• 𝛼 > 0

Methodology
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𝑢 𝑟𝑛, 𝑓 = 𝑟𝑛
𝛼(𝑓)



Application
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• Airframe noise test in the NASA Langley 14- by 22- Foot Subsonic Tunnel

• 110-element array w/ 36-inch outer ring radius, 1-inch inner ring radius

• Desired beamwidth of 6 inches to separate slat brackets

uncovered array plate Array with screen cover, High-Lift Common Research Model (no nacelle)



• Candidate functions (𝜌𝑛 = Τ𝑟𝑛
𝑟𝑚𝑎𝑥)

– Modified Bessel function:  𝑤𝑛(𝑓) = 𝜌𝑛
𝛼(𝑓)𝐼0 𝛽(𝑓) 1 − 𝜌𝑛

2

– Complimentary error function:  𝑤𝑛(𝑓) = 𝜌𝑛
𝛼 𝑓 erfc 2 𝛽 𝑓 𝜌𝑛 − 1

– Decaying exponential (gamma PDF):  𝑤𝑛(𝑓) = 𝜌𝑛
𝛼 𝑓 𝑒−𝛽 𝑓 𝜌𝑛

• Other comparisons

– Uniform/no shading

– Existing, nonoptimized function based on hyperbolic tangent

– General radial optimization

• No functional form, but enforce overall shape (only one peak as a function of radius)

• Poorly constrained, requires further investigation

Application
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Shading method metrics
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• Array gain

– Existing method lowest

– Two-parameter methods 

similar

– General method highest

• Beamwidth – optimized 

methods meet 

constraints

• Peak sidelobe levels –

not directly related to 

other metrics



Shading method plots 
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Two-parameter methods similar, general method does not reject outer mics at high frequencies



Synthetic data – 8 kHz
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uniform tanh 𝐼0

erfc gamma general

• Uniform shading –

narrow 3 dB mainlobe, 

wide 10 dB mainlobe

due to inner array mic 

distribution

• tanh shows this to lesser 

extent

• General – broad 20 dB 

mainlobe width

• Two-parameter methods 

– broadly similar



Synthetic data – 20 kHz
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uniform tanh 𝐼0

erfc gamma general

• Uniform shading – 3 dB 

mainlobe more narrow, 

fewer, smaller sidelobes 

of similar magnitude

• tanh – wider 3 dB 

mainlobe, 10 dB 

mainlobe width now well-

controlled 

• All optimized methods 

similar



• Model w/ nacelle:  7° AoA, Mach 0.2, embedded speaker operating 

at 5-10 kHz

• 35 second records processed to 96 Hz binwidth CSM, 75% overlap 

– ~7000 effective block averages

• Diagonal optimization of CSM – mitigate contamination while 

keeping CSM positive semidefinite

• Beamforming results computed on ~ 4 m x 3.5 m grid w/ 3 cm 

spacing,  ~15.7k grid points

• 200 DAMAS forward-backward passes of varying direction on the 

grid

• Images summed to 1/12th-octave bands

Experimental data – processing parameters
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Speaker results – 8 kHz beamforming
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uniform tanh

gamma general

• Optimized methods 

extremely similar – only 

plotting gamma

• Overall behavior 

matches to synthetic 

results for a point source

• All methods capture 

inboard slat/nacelle 

source

• Fewer sidelobes for 

uniform/tanh, most for 

gamma



Beamforming spectrum – level at speaker location
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• Minor variability across all methods for 5-10 kHz (optimized show agreement)

• Other frequencies – combination of lobe overlap & noise floor



Airframe results – 20 kHz beamforming
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uniform tanh

gamma general

• Two sources – inboard 

slat/nacelle & far wall 

reflection of unknown 

source

• uniform – best resolution

• tanh – more emphasis of 

reflected source, 2 dB 

higher peak level

• Two-parameter and 

general methods similar



Airframe results – 20 kHz DAMAS
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uniform tanh

gamma general

• Broadly similar results for 

5 of the 6 methods -

sources localized to 

similar points/clusters

• tanh very different –

smeared sources, energy 

pushed to boundaries

• BeBeC paper blames 

points/beamwidth; 

surrogate for A-matrix 

rank?

– rank(Agamma = 7565)

– rank(Atanh = 1995)



Integrated DAMAS – Inboard slat region
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• Similar results – some deviation for uniform at low frequencies, tanh at high

• Spectral shapes match, dominant tone level agrees within fraction of dB



• Shading design method proposed: two-parameter optimization

• Designs compared to no shading, existing shading, and general 

optimization

• Shading functions show strong influence on visualization of beam 

maps; DAMAS images sensitive to grid density/A-matrix rank

• Quantitative values less sensitive

– Minor influence on dominant point source

– Little influence on integrated deconvolution spectra

• Initial conclusion:  shading is important and should be used

– Major differences between methods matter

– Minor differences (e.g., erfc vs. gamma) do not

Summary and conclusions

19



Questions?



Synthetic data – 50 kHz
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uniform tanh 𝐼0

erfc gamma general

• Uniform – extremely 

narrow 3 dB mainlobe

• tanh – wider 3 dB 

mainlobe than optimized 

methods, wider 

sidelobes

• All optimized methods 

similar


