

Entropy Stable Methods for the Euler Equations Revisited

High Order Central Differencing via Entropy Splitting & SBP High Order Entropy Stable Split Schemes

H.C. Yee, NASA Ames Research Center (Joint work: Bjorn Sjogreen)

ECCOMAS-WCCM, MS318:700 Virtual Presentation, January 11-15, 2021

- **Objective & Motivation**
- **High Order Entropy Stable Methods for the Euler Equations - Revisited**
	- **- High Order Central Differencing on skew-symmetric splitting form of the inviscid flux derivative & SBP**
	- **- Physical entropy for perfect gas & thermally perfect gas, including chemical reacting flows**
- **High Order Entropy Conserving Method for the Euler Equations**
	- **- Under the frame work of Tadmor (2003) & high order central schemes**
	- **- Employing Harten physical entropy (1983) resulting in high order entropy conservating method**
- **Results**
- **Summary**

Revisit & Show

- **(I) Skew-Symmetric Splitting of the Euler Flux Derivatives (perfect gas …) Harten 1983**
	- **- Physical entropy of the Euler Equations**
	- **- Homogeneous of degree one of the Euler Flux**
	- **- Split the Euler flux into conservative & non-conservative portions**
	- **- L2 energy-norm estimate (integration-by-parts)**
- **(II) High Order Central schemes (classical & DRP) with SBP operators Olsson & Oliger (1994), Gerritsen & Olsson (1996), and Yee et al. (2000)**

Motivations

- **Improvement in Nonlinear Stability (reduce aliasing errors)**
	- **> Methods cater to long time integration of compressible turbulence**
- **Improvement in Accuracy (for a wide spectrum of flow speeds)**
	- **> Efficient Nonlinear Filter methods with adaptive local flow sensors designed to minimize the use of numerical dissipation**

$$
\mathsf{U}_t+\mathsf{F}(\mathsf{U})_x=\mathsf{0}
$$

Entropy function: $E(U)$ Entropy variables: $W = \nabla_U E$ (require $E_{U,U} > 0$) Entropy flux: $f = f(U)$ Entropy conservation if

$$
\mathbf{W}^T \frac{\partial \mathbf{F}}{\partial \mathbf{U}} = \nabla_{\mathbf{U}} f
$$

Take conservation law $&$ multiply by **to give**

$$
\mathbf{W}^T \mathbf{U}_t + \mathbf{W}^T \mathbf{F}_x = 0 \quad \rightarrow \quad \mathbf{E}_t + \mathbf{W}^T \frac{\partial \mathbf{F}}{\partial \mathbf{U}} \mathbf{U}_x = 0 \quad \rightarrow \quad \mathbf{E}_t + \mathbf{f}_x = 0
$$

Alternatively, if f is known, denote $\psi = \mathbf{W}^T \mathbf{F} - f$ and require

$$
\psi_{\mathbf{x}} = \mathbf{W}_{\mathbf{x}}^T \mathbf{F}.
$$

Entropy conservation shown by

$$
\mathbf{W}^T \mathbf{F}_x = (\mathbf{W}^T \mathbf{F})_x - \mathbf{W}_x^T \mathbf{F} = (\mathbf{W}^T \mathbf{F})_x - (\mathbf{W}^T \mathbf{F} - f)_x = f_x
$$

Entropy Conserving Discretization

TACP - Transformational Tools & Technologies Project

Numerical flux: $H_{j+1/2}$ Entropy numerical flux: $h_{j+1/2}$ Semi-discretized

$$
\frac{d}{dt}\mathbf{U}_j+\frac{1}{\Delta x}(\mathbf{H}_{j+1/2}-\mathbf{H}_{j-1/2})=\mathbf{0}
$$

If

$$
(\mathbf{W}_{j+1} - \mathbf{W}_j)^T \mathbf{H}_{j+1/2} = \psi_{j+1} - \psi_j
$$

Then can derive discrete entropy conservation law

$$
\frac{d}{dt}E_j + \frac{1}{\Delta x}(h_{j+1/2} - h_{j-1/2}) = 0
$$

with

$$
h_{j+1/2} = \frac{1}{2} (\mathbf{W}_{j+1} + \mathbf{W}_j)^T \mathbf{H}_{j+1/2} - \frac{1}{2} (\psi_{j+1} + \psi_j)
$$

[1] E. Tadmor, Math. Comput., 43(1984) pp. 369-381.

Local & Global Entropy Stability

TACP - Transformational Tools & Technologies Project

Local entropy conservation:

$$
\frac{d}{dt}E_j + \frac{1}{\Delta x}(h_{j+1/2} - h_{j-1/2}) = 0
$$

Local entropy stability:

$$
\frac{d}{dt}E_j+\frac{1}{\Delta x}(h_{j+1/2}-h_{j-1/2})\leq 0
$$

Global entropy conservation:

$$
\frac{d}{dt}\sum_j \Delta\mathsf{x}E_j = 0
$$

Global entropy stability:

$$
\frac{d}{dt}\sum_{i}\Delta xE_{j}\leq 0
$$

⁶ **Entropy Splitting of the Euler Flux Derivatives Leads to Global Entropy Conservation (Stability) by the Energy Norm**

Entropy Split Schemes

TACP - Transformational Tools & Technologies Project

Entropies considered by Harten (1983)

$$
E=-\rho(\rho\rho^{-\gamma})^{1/(\alpha+\gamma)}
$$

Symmetrizable & Homogeneous property of the Euler Flux lead to

$$
\mathsf{F}_{\mathsf{W}}\mathsf{W}=\beta\mathsf{F} \tag{1}
$$

for $\beta = \frac{\alpha + \gamma}{1 - \gamma}$. Use the split form with $\beta \neq -1$

$$
\textbf{F}_\textsf{x} = \frac{\beta}{\beta+1}\textbf{F}_\textsf{x} + \frac{1}{\beta+1}\textbf{F}_\textsf{w}\textbf{W}_\textsf{x}
$$

in a semi-discrete approximation:

$$
\frac{d}{dt}\mathsf{U}_j+\frac{\beta}{\beta+1}D\mathsf{F}_j+\frac{1}{\beta+1}(\mathsf{F}_{\mathsf{W}})_jD\mathsf{W}_j=0
$$

where D is a SBP difference operator.

Entropy Splitting Leads to Global Entropy Conservation & Stability

TACP - Transformational Tools & Technologies Project

Form the SBP scalar product by W_i^T to obtain the entropy

$$
\frac{d}{dt}\sum_{j}\omega_{j}\Delta xE_{j}+\frac{\beta}{\beta+1}(\mathbf{W},D\mathbf{F})+\frac{1}{\beta+1}(\mathbf{W},\mathbf{F_{W}}D\mathbf{W})=0
$$

 $(\omega_i$ are SBP norm weights) where SBP and property (1) give

$$
\beta(\mathbf{W}, D\mathbf{F}) = -\beta(D\mathbf{W}, \mathbf{F}) - \beta \mathbf{W}_1^T \mathbf{F}_1 + \beta \mathbf{W}_N^T \mathbf{F}_N = -\left(D\mathbf{W}, \mathbf{F}_{\mathbf{W}} \mathbf{W}\right) - \beta \mathbf{W}_1^T \mathbf{F}_1 + \beta \mathbf{W}_N^T \mathbf{F}_N
$$

and symmetry of F_w gives $(W, F_wDW) = (F_wW, DW)$, so that

$$
\frac{d}{dt}\sum_{j}\omega_{j}\Delta xE_{j}=\frac{\beta}{\beta+1}(\mathbf{W}_{1}^{T}\mathbf{F}_{1}-\mathbf{W}_{N}^{T}\mathbf{F}_{N})
$$

i.e., global entropy conservation with boundary contributions. Note, property (1) does not hold for $E = -\rho \log(p\rho^{-\gamma})$ commonly used in the literature

Entropy stable (generalized energy norm) with SBP for Central Schemes Physical Entropy, Homogeneous of Degree One of Euler Flux Derivative fx

$$
\mathbf{f}_x = \frac{\beta}{\beta+1} \mathbf{f}_x + \frac{1}{\beta+1} \mathbf{f}_W W_x, \quad \beta \neq -1
$$

$$
W = [w_1, w_2, w_3, w_3, w_5]^T
$$

= $\frac{p^*}{p} \bigg[e + \frac{\alpha - 1}{\gamma - 1} p, -\rho u, -\rho v, \rho w, \rho \bigg]^T$,

where

$$
p^* = -(p\rho^{-\gamma})^{\frac{1}{\alpha+\gamma}}
$$

and

$$
\beta=\frac{\alpha+\gamma}{1-\gamma}, \quad \alpha>0 \text{ or } \alpha<-\gamma.
$$

Entropy Conserving (EC) Discretization Tadmor-type with Boundaries

TACP - Transformational Tools & Technologies Project

Entropy Split Schemes: Achieving global entropy conservation & stability automatically by standard SBP & energy norm estimate (periodic or non-periodic BC)

Entropy Conserving Schemes - Tadmor-type: Achieving global entropy conservation & stability require generalized SBP & dissipation

Domain $j = 1, 2, \ldots$, with boundary at $j = 1$. Consider the scheme

$$
\frac{d}{dt}\mathbf{U}_j+\frac{1}{\Delta x}(\mathbf{H}_{j+1/2}^{EC}-\mathbf{H}_{j-1/2}^{EC})=\mathbf{0}
$$

with the E.C. 2nd-order numerical flux $H_{j+1/2}^{EC} = H^{EC}(\mathbf{U}_j, \mathbf{U}_{j+1})$, defined at $i = 1, 2, \ldots$ Define $\mathsf{H}_{1/2}^{EC} = 2\mathsf{F}_1 - \mathsf{H}_{3/2}^{EC}$, then the local entropy conservation law

$$
\frac{d}{dt}E_j + \frac{1}{\Delta x}(h_{j+1/2} - h_{j-1/2}) = 0
$$

holds for $i = 1, 2, \ldots$ with

$$
h_{1/2} = \mathbf{W}_1^T \mathbf{F}_1 - \psi_1
$$

and

$$
h_{j+1/2} = \frac{1}{2} (\mathbf{W}_{j+1} + \mathbf{W}_j)^T \mathbf{H}_{j+1/2} - \frac{1}{2} (\psi_{j+1} + \psi_j)
$$

for $j > 1$ (as previously).

Entropy Conserving (EC) Discretization of Tadmor-type with Boundaries (Cont.)

TACP - Transformational Tools & Technologies Project

11

The global entropy conservation with boundaries

$$
\Delta x \frac{d}{dt} \left(\frac{1}{2} E_1 + \sum_{j=2} E_j \right) + \mathbf{W}_1^T \mathbf{F}_1 - \psi_1 = 0
$$

follows, where $1/2$ is the SBP weight of the boundary entropy, and $f_1 = \mathbf{W}_1^T \mathbf{F}_1 - \psi_1$ is the boundary entropy flux.

For a construction that generalizes to higher order accuracy, see: Parsani, Carpenter, Nielsen, J.Comput.Phys., 292(2015),pp. 88-113.

Advantage of Entropy Split Method over Standard Tadmor-Type Entropy Conserving Methods

TACP - Transformational Tools & Technologies Project

Tadmor-type entropy conserving method (logarithmic entropy or physical entropy) requires 2 times CPU than entropy split method

+

Both Approaches Exhibit Similar Accuracy & Stability (Same order of central discretization)

Dispersion Relation-Preserving (DRP) Schemes

TACP - Transformational Tools & Technologies Project

Three DRP schemes in CAA: DRP4S7 (Tam & Webb), DRP4S9, ST09 (Bogey & Bailly)

$$
Du_j = \frac{1}{h} \sum_{k=1}^{q} a_k (u_{j+k} - u_{j-k}).
$$

Kennedy & Gruber Splitting (2008)

Split the derivative of triple products, kinetic energy preservation

TACP - Transformational Tools & Technologies Project

$$
\frac{\partial}{\partial x}(abc) = \alpha \frac{\partial}{\partial x}(abc) + \beta \left[a \frac{\partial}{\partial x}(bc) + bc \frac{\partial}{\partial x}(a) \right] + \kappa \left[b \frac{\partial}{\partial x}(ac) + ac \frac{\partial}{\partial x}(b) \right] + \delta \left[c \frac{\partial}{\partial x}(ab) + ab \frac{\partial}{\partial x}(c) \right]
$$

$$
+ \epsilon \left[bc \frac{\partial}{\partial x}(a) + ac \frac{\partial}{\partial x}(b) + ab \frac{\partial}{\partial x}(c) \right],
$$
where $\epsilon = 1 - \alpha - \beta - \kappa - \delta$

Common parameter:

$$
\alpha = \beta = \kappa = \delta = \frac{1}{4} \text{ and } \epsilon = 0,
$$

(a b c)_x = $\frac{1}{4}$ (a b c)_x + $\frac{1}{4}$ (a_x (b c) + b_x (a c) + c_x (a b)) + $\frac{1}{4}$ (a (b c)_x + b (a c)_x + c (a b)_x)

Numerical Example

Long Time Integration of Smooth Flows

TACP - Transformational Tools & Technologies Project

Accurate schemes developed for short time integration (or rapidly developing flows) usually SUFFER from nonlinear instability for long time integration

2D Isentropic Vortex Convection Exact Solution is Simple Translation

TACP - Transformational Tools & Technologies Project

Comparison of High Order Methods 8th order central (C08) vs. 4 different 8th-order skew-symmetric splittings

Improve Stability: Long time integrations by 4 skew-symmetric splittings of the inviscid flux derivative before the application of non-dissipative C08 Different Accuracy

2D Isentropic Vortex Convection Exact Solution is Simple Translation, 100x100 grid

Treatment of Discontinuities for Entropy Split Schemes

TACP - Transformational Tools & Technologies Project

Yee et al. Nonlinear Filter Approach:

- **- High order entropy split schemes as the base scheme**
- **- Local flow sensor to examine the regularity of the computed date after each full time step of the base scheme.**
- **- Determine the location and amount of numerical dissipation needed**
- **- Nonlinearly filter the computed data at these locations only**

Well-Balanced High Orde**r Nonliner** Filter Schemes

Non-Reacting & Reacting Flows Yee et al.*, 1999-2017, Sjogreen &Yee, 2004-2017,* Wang et al.*, 2009-2010. Kotov et al., 2012-2016*

Preprocessing step

Condition (equivalent form) the governing equations by, e.g., *Yee et al. Entropy Splitting* & *Ducros et al. Splitting* to improve numerical stability

High order **low dissipative** base scheme step (Full time step)

- High order Central**, DRP, or Entropy Conser. Num. Flux** scheme
- SBP numerical boundary closure, matching spatial & temporal order \bullet conservative metric evaluation *Vinokur & Yee, Sjögreen & Yee, Yee & Vinokur* (2000-2014)

Nonlinear filter step

- Filter the base scheme step solution by a dissipative portion of any positive high-order shock capturing scheme, e.g., 7 *th*-order positive **WENO**
- Use local flow sensor to control the amount & location of the nonlinear numerical dissipation to be employed

Well-balanced scheme: preserve certain non-trivial physical steady state solutions of reactive eqns exactly Note: "Nonlinear Filter Schemes" not to be confused with "LES filter operation"

Nonlinear Filter Step $(U_t + F_x(U) = 0)$

Denote the solution by the base scheme (e.g. 6 *th* order central, 4*th* order RK)

$$
U^* = L^*(U^n)
$$

• Solution by a nonlinear filter step

$$
U_j^{n+1} = U_j^* - \frac{\Delta t}{\Delta x} \left[H_{j+1/2} - H_{j-1/2} \right]
$$

$$
H_{j+1/2} = R_{j+1/2} \overline{H}_{j+1/2}
$$

 $H_{j+1/2}$ - numerical flux, $R_{j+1/2}$ - right eigenvector, evaluated at the Roe-type averaged state of U_j^*

Elements of $H_{j+1/2}$:

$$
\overline{h}_{j+1/2} = \frac{\kappa_{j+1/2}^m}{2} \left(s_{j+1/2}^m \right) \left(\phi_{j+1/2}^m \right)
$$

φ *m j*+1/2 *- Dissipative portion of a shock-capturing scheme s m j*+1/2 *- Local flow sensor (indicates location where dissipation needed)* $\kappa^{m}_{j+1/2}$ - Controls the amount of $\phi^{m}_{j+1/2}$

Improved High Order Filter Method

Form of nonlinear filter

$$
\overline{h}_{j+1/2} = \frac{\kappa_{j+1/2}^m}{2} \left(s_{j+1/2}^m \right) \left(g_{j+1/2}^m - b_{j+1/2}^m \right)
$$

 $\sqrt{2}$

Control amount of dissipation based on local flow condition

 Local flow sensor (Shock Sensor, ACM (Harten), Ducros et al, Multiresolution wavelet, etc.)

Any High Order Shock capturing numerical flux (e.g. WENO7)

❅ *High order central numerical flux (e.g.* 8 *th order central)*

 \setminus

❅■❅

 $2007 - \kappa =$ global constant $2009 - \kappa_{i+1/2} = \text{local}$, evaluated at each grid point Simple modification of κ *(Yee & Sjögreen, 2009)*

$$
\kappa = f(M) \cdot \kappa_0
$$

$$
f(M) = min\left(\frac{M^2}{2} \frac{\sqrt{4 + (1 - M^2)^2}}{1 + M^2}, 1\right)
$$

For other forms of κ*j*+1/² ,*sj*+1/² , see *(Yee & Sjögreen, 2009)*

Numerical Examples

3D DNS Computations of Shock-Free Turbulence & Turbulence with Shocklets

- **Standard shock-capturing methods are too diffusive for long time integration**
- **Careful design of appropriate nonlinear numerical dissipations with flow sensors can improve accuracy**

3D Taylor-Green vortex *(Inviscid & Viscous Shock-Free Turbulence)*

Computational Domain: 2π square cube, 64^3 grid. (Reference solution on $256³$ grid)

Initial condition

$$
\rho = 1,
$$

\n
$$
p = 100 + ([\cos(2z) + 2][\cos(2x) + \cos(2y)] - 2)/16,
$$

\n
$$
u_x = \sin x \cos y \cos z
$$

\n
$$
u_y = -\cos x \sin y \cos z
$$

\n
$$
u_z = 0.
$$

\nInitial turbulent Mach number: $M_{t,0} = 0.042$
\nFinal time: $t = 10$

Viscous case

$$
\mu/\mu_{ref} = (T/T_{ref})^{3/4}
$$

$$
\mu_{ref} = 0.005, T_{ref} = 1, Re_0 = 2040
$$

3D Taylor-Green Vortex (Shock-Free Turbulence) (Comparison of 4 Methods, 643 grids)

TACP - Transformational Tools & Technologies Project

C08-ES+WENO7fi: 8th-order central + Entropy split + WENO7fi C08-ES+WENO7fi: 8th-order central + Entropy Cons. + WENO7fi C010-ES+WENO7fi: 10th-order central + Entropy split + WENO9fi C010-ES+WENO7fi: 10th-order central + Entropy Cons. + WENO9fi

3D Taylor-Green Vortex (Shock-Free Turbulence) (Comparison of 6 Methods, 643 grids)

TACP - Transformational Tools & Technologies Project

C08-DS+WENO7fi: 8th-order central + Ducros et al. split +WENO7fi DRP4S7-DS+WENO5fi: Tam & Webb 4th-order DRP, 7pt grid stencil + Ducros et al. split + WENO5fi ST09-DS+WENO7fi: Bogey & Bailly 4th-order DRP, 9pt grid stencil + Ducros et al. split + WENO7fi DRP4S9-DS+WENO7fi: Tam & Webb 4th-order DRP, 9pt grid stencil + Ducros et al. split + WENO7fi

Compressible Isotropic Turbulence *(Low Speed Turbulence with Shocklets)*

Computational Domain: 2π square cube, 64^3 grid. (Reference solution on $256³$ grid)

Problem Parameters

Root-mean-square velocity: $u_{rms} = \sqrt{\frac{\langle u_i u_i \rangle}{3}}$ $\frac{V}{\sqrt{2}}$ 3 Turbulent Mach number: $M_t = \frac{\sqrt{\langle u_i u_i \rangle}}{\langle c \rangle}$ $\langle c \rangle$ Taylor-microscale: $\lambda = \sqrt{\frac{\langle u_x^2 \rangle}{\langle (\partial_x u_x \rangle)^2}}$ $\langle (\partial_x u_x)^2 \rangle$ Taylor-microscale Reynolds number: $Re_\lambda = \frac{\langle \rho \rangle u_{rms} \lambda}{\langle \mu \rangle}$ $\langle \mu \rangle$ Eddy turnover time: $\tau = \lambda_0/u_{rms,0}$

Initial Condition: Random solenoidal velocity field with the given spectra

$$
E(k) \sim k^4 \exp(-2(k/k_0)^2)
$$

\n
$$
\frac{3}{2}u_{rms,0}^2 = \frac{\langle u_{i,0}u_{i,0} \rangle}{2} = \int_0^\infty E(k)dk
$$

\n $u_{rms,0} = 1, k_0 = 4, \tau = 0.5, M_{t,0} = 0.6, Re_{\lambda,0} = 100$
\n**Final time:** $t = 2$ or $t/\tau = 4$

3D Isotropic Turbulence with Shocklets (Comparison of 6 Methods, 643 grids)

3D Isotropic Turbulence with Shocklets

(Entropy Split Scheme: Comparison of 7 Beta using WENO7fi, 643 grids)

3D Isotropic Turbulence with Shocklets

(Comparison of Two 10th-order nonlinear filter Methods (ES vs. EC), 643 grids)

3D Isotropic Turbulence with Shocklets (Comparison of 7th-order skew-symmetric splittings with EC method, 643 grids)

3D Isotropic Turbulence with Shocklets (Compressible & Inviscid)

Advantage of Entropy Split Method over Standard Tadmor-Type Entropy Conserving Methods

TACP - Transformational Tools & Technologies Project

Tadmor-type entropy conserving method (logarithmic entropy or physical entropy) requires 2 times CPU than entropy split method

+

Both Approaches Exhibit Similar Accuracy & Stability (Same order of central discretization)