
paper AIAA-2020-4046

Titan Turtle:

NIAC Phase II Design for a Submersible Vehicle for Titan Exploration


Steven R. Oleson, Jason W. Hartwig, Geoffrey A. Landis, Justin Walsh¹, Ralph D. Lorenz², Michael V. Paul² and the COMPASS team

NASA Glenn Research Center, 21000 Brookpark Road, Cleveland OH

steven.r.oleson@nasa.gov

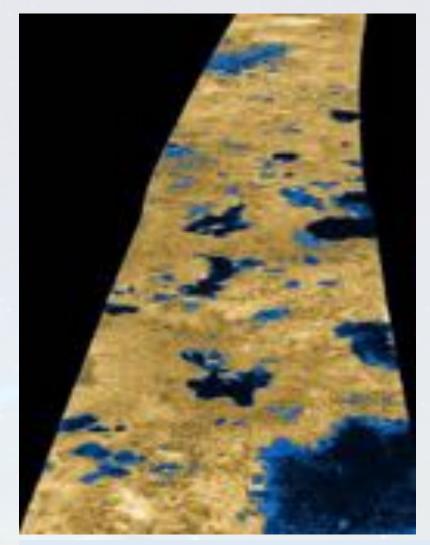
2020 AIAA Ascend, Nov. 16-18 2020

¹The Pennsylvania State University, Applied Research Laboratory, State College, PA ²Johns Hopkins University, Applied Physics Laboratory. Laurel, MD

This presentation is a work of the U.S. Government and is not subject to copyright protection in the United States.

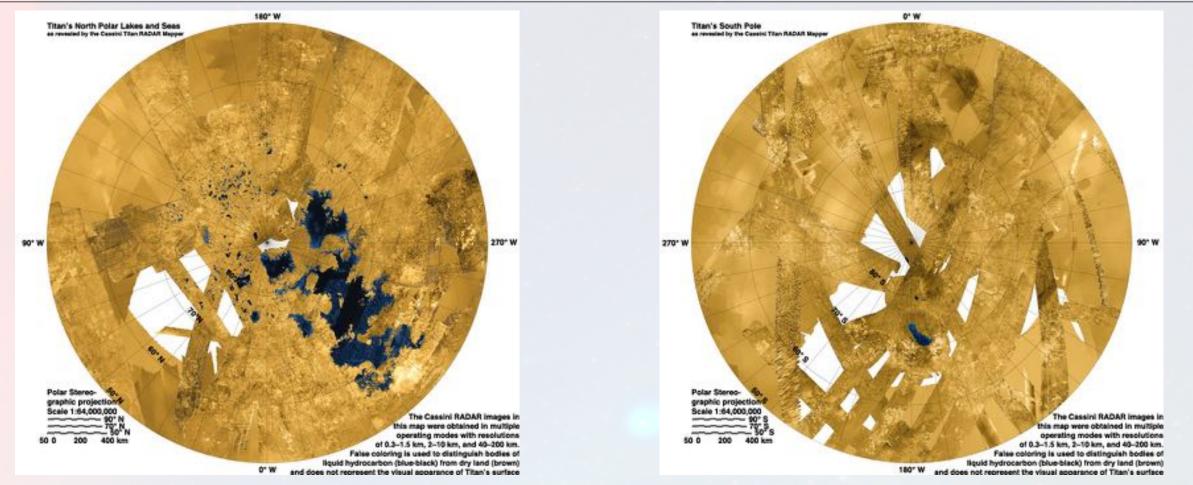
Titan Submarine Team

Customer: NASA NIAC, Phases I & II, 2015-2018


- Concept PIs: Steve Oleson (NASA/GRC), Ralph Lorenz (JHU/APL), Michael Paul (JHU/APL), Jason Hartwig (NASA/GRC), Justin Walsh (PSU/ARL)
 - **COMPASS** Design Team
 - Lead Steve Oleson
 - Science– Ralph Lorenz (APL)
 - System Integration, Conops, Launch vehicle J Michael Newman
 - Mission Steve McCarty
 - GN&C Mike Martini
 - Hydrodynamics and Propulsion Iskender Sahin (NYU), Shane Carberry Morgan (NYU), James Fittje
 - Mechanical Systems John Gyekenyesi
 - Thermal Tony Colozza
 - Physics: Geoffrey A. Landis
 - EDL Evan Roelke (Georgia Tech)
 - Power Paul Schmitz
 - C&DH, Software Amee Bogner
 - Communications Robert Jones
 - Configuration Tom Packard
 - Cost Tom Parkey, Elizabeth Turnbull
- University Support: Washington State Cryogenic Testing: Ian Richardson

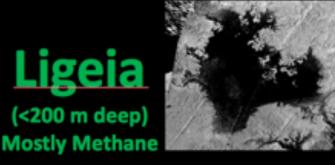
Titan— the *other* world with open liquid bodies on the surface

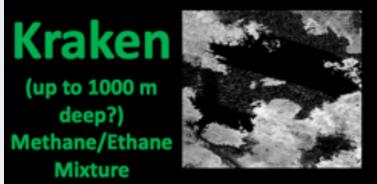
- Saturn's moon Titan is the only moon in the solar system to have a dense atmosphere, and the only body other than the Earth to have bodies of liquid on the surface.
- The Titanian oceans, however, are not composed of water, like Earth's oceans, but are in the form of a series of hydrocarbon (methane and ethane) lakes, covering a surface area of over 500,000 km².


Titan's hydrocarbon lakes shown in false color, as viewed by the Cassini radar.

Titan's Seas

🗑 ARL


 3 Seas in North: Kraken Mare, Ligeia Mare and Punga Mare (~1000, 400, and ~200 km across respectively) Only one large lake in the south, Ontario Lacus.



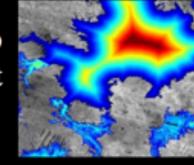
How Deep Are the Seas?

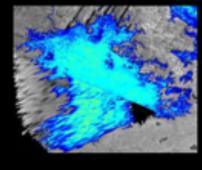
From Cassini Data:

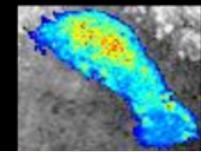
✓ Kraken and Ligeia in the north are the best Submersible Targets

deep?)

Mixture


Punga


(<100 m deep)


Ontario

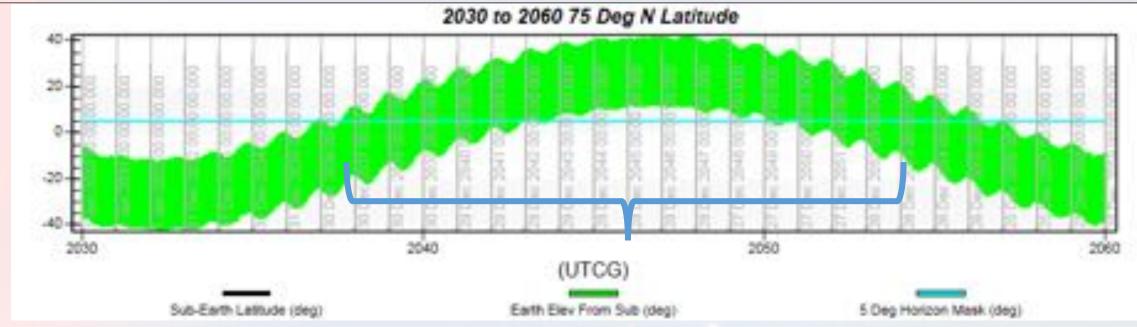
<10 m deep

No bottom echo detected, except in Moray Sinus

Ability of Cassini radio waves to penetrate seas hints as use of RF for submerged Comms!

5

Earth vs. Titan Seas



Parameter	Earth	Titan
Material	Water	Liquid Ethane & Methane (% mixture?, High N ₂ gas solublity)
Density	~1000 kg/m ³	~650 kg/m ³ / 450 kg/m ³
Temp	~0 to 30 °C	-178 °C
Viscosity	1000 µPa-s	200-4000 µPa-s
Gravity	1 g	0.14g
Depth	1000's m	200 m Ligea, 1000 m? Kraken
Pressure	~1 Bar / 10m depth	~ 1 Bar / 115m

When to Go: Seasons on Titan

- Direct Earth Communications and Light to image the shore AND Best to arrive in summer! (Summer ~ 2045)
- IF we have an orbiter for relay and submerge during 'night' (Spring ~2040)
- Trips to Saturn take ~6-9 years so we need to launch early to mid 2030s

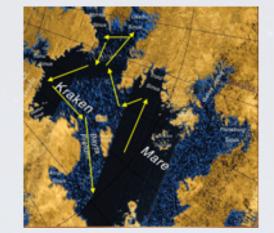
Science Surfaced and Submerged

 Titan is a target for the Ocean Worlds Exploration Program

- Titan's seas, while liquid methane based, are a key part of a weather system like ours
- Sampling of seafloor sediments could reveal Titan's Climate History

	Instrument	Technique	Rationale
	Chemistry Analysis	Liquid sample acquisition system coupled to	Measure bulk and trace constituents of sea at
	Package (CAP)	multiple analytic instruments (nominally	different locations and depths
		GCMS)	
	Surfaced Imager (SI)	Panoramic CCD imager (gimballed?) on	Observe sea surface, shoreline geomorphology,
σ		upper structure	clouds, atm.optics
Threshold	Depth Sounder (DS)	Single down-looking Acoustic sounder	Low frequency (10-20 kHz) to measure depth to
es l			bottom, possibly detect layers, bubbles etc.
Thr	Meteorology Package	Pressure, Temperature, Wind speed and	Record meteorological variability, forcing of air:sea
•	(MET)	direction, methane humidity	exchange
	Physical Properties	Sea temperature, speed of sound, dielectric	Structure of liquid column (stratification),
	Package	constant and turbidity	suspended sediment, air-sea exchange, local
	(P3)		variations in bulk methane/ethane
	Sidescan Sonar (SS)	Side-looking acoustic imaging array	Acoustic imaging of seabed morphology
	Undersea Imager (UI)	medium-field CCD imager equipped with	Optical imaging of seabed
ed		multicolor illuminators	(Combine with SI if vehicle orientation permits?)
De	Benthic Sample	Grinding/suction system to ingest solid or	Deliver seabed sediments to CAP instrument
	Acquisition (BSA)	semi-solid seabed materials	
	Infrared Spectrometer	Fiber-coupled Near- and Mid-IR absorption	
	(IRS)	spectrometer	

Phase I Sub Concept: Big and Fast!



- ~ 100 kg Autonomous
 Science Sonar, in situ exploration, sampling of bottom sediment
- Surface shore imaging and weather
- Propulsion: Four motors for 1 m/s submerged and 1 m/s surfaced speeds

 Power: Two 430 W Radioisotope Power Systems

~ 6 m long, ~ 1400 kg

 90 day journey Kraken-1

 Comms: X-Band Comms direct to Earth (~800 bps during 16 hr DSN passes each day surfaced) ~50 Mb per day

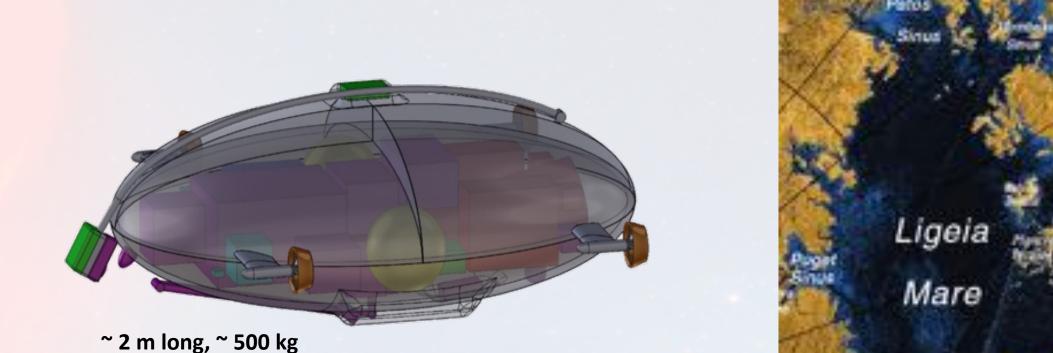
- Thermal: Interior RPS heated, 3cm aerogel insulation, 300 W/m² through skin, outer systems cryo-capable (-178 °C)
- **Navigation**: IMU, sun direction, earth tracking, liquid velocity doppler, sonar scanning

Medium Class Launcher using an X-37 derived lifting body

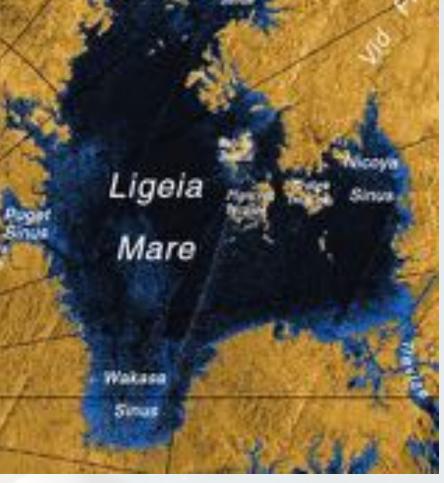
Power/Size/Mass/Aeroshell: Driven by DTE communications and 1 m/s speed (efficient long narrow shape) and Science mass/hover needs, needs new aeroshell

 Ballast: Closed Ne system with metal bellows ballast tanks submerging and hovering down to 1000 m at pressures ~ 10 bar, Ethane/Methane Sea Mixture

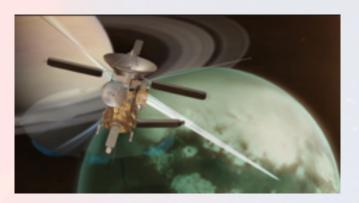
- **Propulsion**: Four motors
- 0.3 m/s submerged
- 0.2 m/s surfaced speeds and hovering

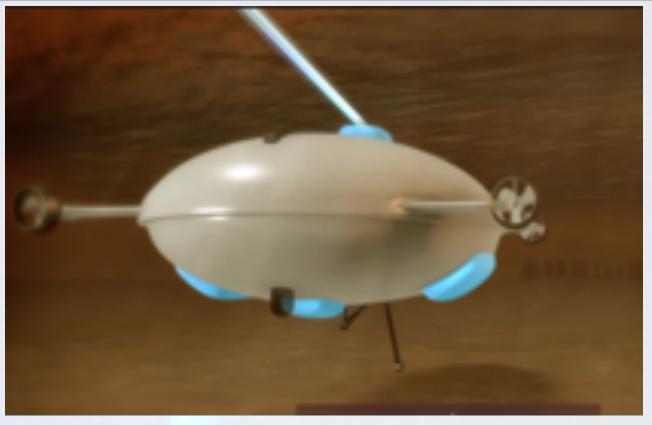

~ 2 m long, ~ 500 kg

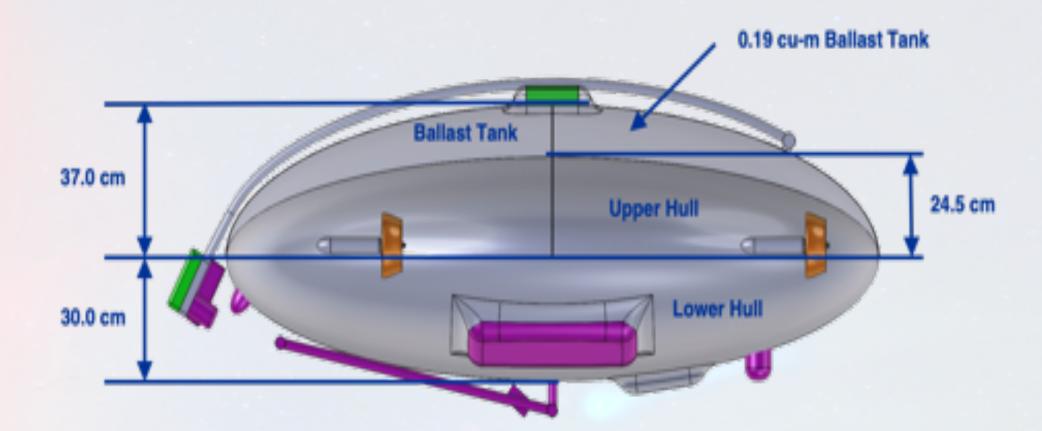
Power: Single 90W eMMRTG


Providing orbiter relay (even when submerged!) and slowing speed to 0.2 m/s speed allows reducing mass by 3X and same science suite but ~20X data return, smaller shape allows use of SOA 4.5m aeroshell

 180 day Journey around/beneath smaller Ligeia Mare


- ~ 100 kg Autonomous Science
 Sonar, in situ exploration, sampling of bottom sediment
- Surface shore imaging and weather
- Thermal: Internal RTG waste heat, 2.5 cm aerogel insulation, 300
 W/m² through skin
- Navigation using IMU, Orbiter tracking, sonar scanning

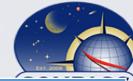

Titan Turtle submersible (top), and vehicle inside 4.5-m aeroshell for entry (bottom)


 Comms: UHF-Band Comms (~100 kbps during five, 30 min 1500 km orbiter passes each day surfaced: ~ 1Gb/day)

 Ballast: Pressure vessel with external, closed He system ballast tanks to allow for submerging and hovering up to 200 m at pressures < 5 bar (mostly Methane Sea)

ltem	Phase I Stand-Alone Sub	Phase II Orbiter Supported	Phase II Ship with Dropsondes	
Science	External Cryogenic Science Instruments			
Attitude, Location	Submerged navigation using IMU/floor tracking	Orbiter supported submerged, IMU	DSN Supported Cryogenic Sun sensors, terrain	
Command	Autonomous Operations			
Comms	Cryogenic exposed X-band DTE phased array antenna	UHF Comms through cryogen	Cryo UHF comms from Dropsonde	
Power	~ 400 W RTG or SRG	~ 100 W eMMRTG or SRG	~ 100 W eMMRTG or SRG	
Thermal/Mech	Aerogel internal Insulation, Cryogenic liquid external structures/mechanism			
Propulsion	Pressure Drop N ₂ Efferevescence, Cryogenic motors			
EDL	New, Long Aeroshell	SC	AC	
Ballast system	Cryo Valves/Expendable Ballast Gas (He) or Metallic None Bellows (sized for sea mixture uncertainty)			

Extraterrestrial Submarines



	Common to Cryogenic and Ice Covered Seas	Unique to Cryogenic Seas	Unique to Ice Covered Seas
Science	Both subs will need very robust science instruments to handle 'first contact' environment interaction	Instruments operate at -178°C	Instruments similar to terrestrial subs
Autonomy	Due to communications lag both subs will need to operate autonmously		
Navigation	Velocimeters could be used for both subs	Titan easier given the viewability of the sun and the RF transparency of the seas	Some seas may have a magnetic field
Communications	Both Subs could benefit from a sonar based comm system (albeit very low data rate)	Titan easier given an RF link	communications through ice shell may be difficult
Ballast	Both subs benefit from isolated pressurant or mechanical volume systems	Due to lower temperatures Titan sub will need to use He as a working ballast gas or metallic bellows	Water extraterrestrial subs could use other gases/fluids and non-metallic bellows
Size/Volume		Titan Subs can fit into SOA aeroshell	Must fit though a minimum diameter borehole!
Environment interaction	Both will need to be resistant to perhaps corrosive, contaminated environments	Subs outer instruments and equipment exposed to -178°C	Sub exposed to -150°C during transit thru top ~100 m of ice surface, 0°C in the sea
Power	An isotope or fission system will be needed for long term operation OR use tethered power (limits separation with mothercraft)	Isotope or fission power more important to keep sub warm	May need to melt ice
Propulsion	Providing propulsion in unknown seas will require robust systems with forgiving interfaces		
			17

Earth vs. Titan Submarine

S ARI		Cer. 2000
Parameter	Sea Horse UUV	Titan Submarine
Sea Material	Water	Liquid Ethane & Methane
Density	~1000 kg/m ³	~650 kg/m ³ / 450 kg/m ³
Тетр	~0 to 30 °C	-178 °C
Viscosity	1000 μPa-s	200-4000 μPa-s
Depth	1000' s m	200 m sensed (design max set to 1000 m)
Pressure by depth	Every 10 m ~1 additional Bar	Every 115m ~1 additional Bar
Gravity	1 g	0.14g
Max Depth	1000 m (100 Bar pressure)	1000 m (~12 Bar pressure)
Max Range	550 km	5000 km
Endurance	72 hr	1 yr
Speed	2 m/s	1 m/s (max)
Power	Battery	Isotope
Navigation	GPS (surfaced) & IMU	Sun Sensor, Earth Tracking & IMU, orbiter support
Communications	Surfaced satellite ~ 800 km	Direct to Earth (phase I) ~ 1.5 Billion km
		via orbital relay (phase II) while submerged

Science Surfaced and Submerged

- Titan is a target for the Ocean Worlds Exploration Program
- Titan's seas, while liquid methane based, are a key part of a weather system like ours
- Sampling of seafloor sediments could reveal Titan's Climate History

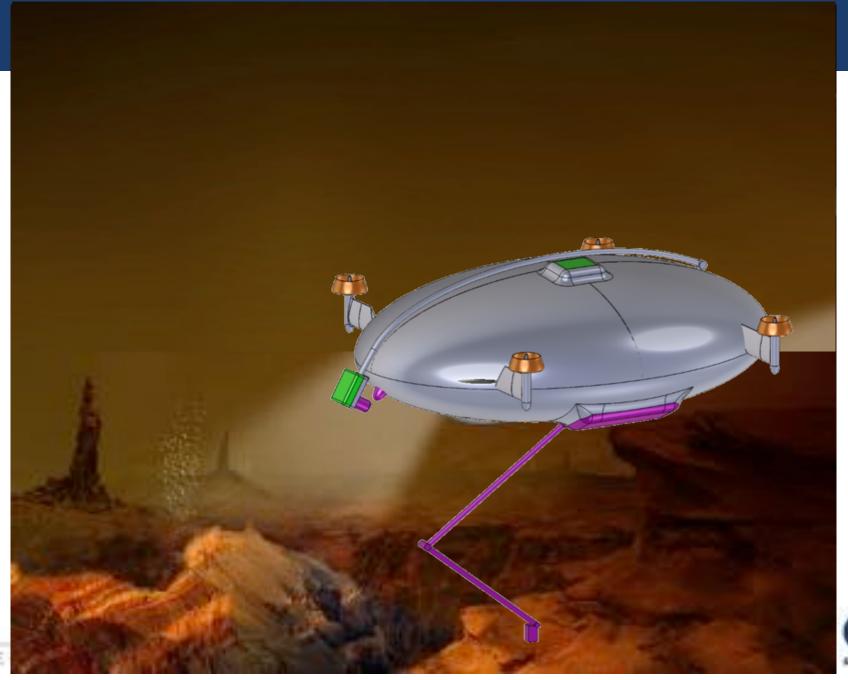
Added Science for Desired Baseline (intensive investigation of seabed)

Must Do Science

Floor

	Instrument	Technique	Rationale	Requirements	Basis
	Chemistry Analysis	Liquid sample acquisition system	Measure bulk and trace constituents of	Inlet isolated from heat source	Curiosity/
	Package (CAP)	coupled to multiple analytic	sea at different locations and depths	40 kg. 80 W when sampling (2 hr;	SAM
		instruments (nominally GCMS)		once per 2 days)	
	Surfaced Imager (SI)	Panoramic CCD imager	Observe sea surface, shoreline	Topside mount – 1m above sea	MER Pancam
		(gimballed?) on upper structure	geomorphology, clouds, atmospheric	surface 4 kg including housing.	
			optics	10W when imaging (2 hr/day)	
	Depth Sounder (DS)	Single down-looking Acoustic	Low frequency (10-20 kHz) to measure	Nadir view	TIME MP3,
		sounder	depth to bottom, possibly detect layers,	0.5 kg. 2 W continuous	commercial fish
Floor	<u> </u>		bubbles etc.		finders
1	Meteorology Package	Pressure, Temperature, Wind	Record meteorological variability,	Topside mount – 1 m above sea	TIME MP3,
	(MET)	speed and direction, methane	forcing of air:sea exchange	surface, desirably away from heat	Pathfinder ASI/ME
		humidity on Surface		source	terrestrial field
				3 kg. 6 W continuous	instruments
	Physical Properties	Sea temperature, speed of sound,	Structure of liquid column	Isolated from heat source	TiME MP3/ Huyge
	Package	dielectric constant and turbidity	(stratification), suspended sediment,	2 kg. 6 W continuous	SSP
	(P3)		air-sea exchange, local variations in bulk		
			methane/ethane		
	Sidescan Sonar (SS)	Side-looking acoustic imaging	Acoustic imaging of seabed morphology	Bottom/side view. 10W when	Terrestrial UUV
		array		operating (8 hr/day)	
	Undersea Imager (UI)	medium-field CCD imager	Optical imaging of seabed	Forward view	Curiosity MAHLI
a	2	equipped with multicolor	(Combine with SI if vehicle orientation	3 kg including housing	
eline		illuminators	permits?)	20 W when imaging (1 hr/day)	
Base	Benthic Sample	Grinding/suction system to ingest	Deliver seabed sediments to CAP	Forward/lower view	Phoenix rasp plus
m	Acquisition (BSA)	solid or semi-solid seabed	instrument	5 kg. 50 W when operating (1 hr/2	suction pump
		materials		days)	
	Infrared Spectrometer	Fiber-coupled Near- and Mid-IR		8 kg. 20 W . 2 hr/day	miniTES, laborator
	(IRS)	absorption spectrometer			instruments
B	Navigation Systems	Pressure depth gauge, Inertial	Infer ocean currents	(resources not book-kept under	(various)
Engineering	(NAV)	Measurement Unit, plus		payload)	
Dec		Doppler/DeltaDOR radio			
ligu	٥ ا	measurements			

Summary: submersible Basic Mass Growth Predicted Mass



Aggregate

Main Subsystems	(kg)	(kg)	(kg)	Growth (%)
Main Subsystems	Basic Mass (kg)	Growth (kg)	Predicted Mass (kg)	Aggregate Growth (%)
Titan Submarine	408.5	74.7	483.2	18%
Science Payload	78.4	23.5	101.9	30%
Attitude Determination and Control	6.0	0.2	6.2	3%
Command & Data Handling	16.7	4.5	21.2	27%
Cherma h Cantitoo ls(Alood Thaqle Hgnt)	284,59	0.9	299.44	18%
Electrical Power Subsystem	71.5	4.2	75.7	6%
Thermal Control (Non-Propellant)	24.9	4.5	29.4	18%
Mobility	53.0	10.1	63.1	19%
Propellant (Chemical)	0.0		0.0	TBD
Structures and Mechanisms	149.4	26.9	176.3	18%
Eleneropeloantn(EP)s (if used)	0.0		0.0	TBD
Estimated Spacecraft Dry Mass (no prop,consum)	408.5	74.7	483.2	18%
Estimated Spacecraft Wet Mass	408.5	74.7	483.2	
Estimated Spacecraft Dry Mass (no prop,consum)	408.5	74.7	483.2	
Estinated Bela Georath Welc Masions Titan Submarine	408.5	74.7	483.2	Total Growth
Dry Mass Desired System Level Growth	408.5	122.6	531.1	30%
Additional Growth (carried at system level)		47.9		12%
Total Wet Mass with Growth	408.5	122.6	531.1	

• The COMPASS design team incorporates an assumed growth in the mass estimates per ANSI/AIAA R-020A-1999 standards, with added growth carried at the system level to make total growth allocation 30%.

AMERICAN INSTITUTE

Acknowledgement

This work was supported by the NASA Innovative Advanced Concepts program

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS