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I. Abstract 
 
A new approach to NASA space radiation risk modeling has successfully extended the current NASA probabilistic 
cancer risk model to an ensemble framework able to consider sub-model parameter uncertainty (e.g. uncertainty in a 
radiation quality parameter) as well as model-form uncertainty associated with differing theoretical or empirical 
formalisms (e.g. combined dose-rate and radiation quality effects). Ensemble methodologies are already widely used 
in weather prediction, modeling of infectious disease outbreaks, and certain terrestrial radiation protection 
applications to better understand how uncertainty may influence risk decision-making. Applying ensemble 
methodologies to space radiation risk projections offers the potential to efficiently incorporate emerging research 
results, allow for the incorporation of future (including international) models, improve uncertainty quantification for 
underlying sub-models developed against sparse experimental data, and reduce the impact of subjective bias on risk 
projections. Moreover, risk forecasting across an ensemble of multiple predictive models can provide stakeholders 
additional information on risk acceptance if current health/medical standards cannot be met or the level of 
knowledge doesn’t permit a specific risk or exposure limit to be developed for future space exploration missions. In 
this work, ensemble risk projections implementing multiple sub-models of radiation quality, dose and dose-rate 
effectiveness factors, excess risk, and latency as ensemble members are presented. Initial consensus methods for 
ensemble model weights and correlations to account for individual model bias are discussed. In these analyses, the 
ensemble forecast compares well to results from NASA's current operational cancer risk projection model used to 
assess permissible exposure limits and permissible mission durations for astronauts.  However, a large range of 
projected risk values are obtained at the upper 95th confidence level where models must extrapolate beyond available 
biological data sets; closer agreement is seen at the median + one sigma due to the inherent similarities in available 
models. Future work, including the addition of new models and methods for statistical correlation between 
predictive members are discussed to define alternate ways of thinking about risk and ‘acceptable’ uncertainty with 
respect to NASA’s current permissible exposure limits.  
 
II. Introduction 
 
II.I Challenges in space cancer risk projection 
 
For future missions beyond low Earth orbit (LEO), astronauts exposed to space radiation are at increased risk of 
potential in-flight performance decrements and long-term health consequences including radiogenic cancers, 
cardiovascular disease, and possible cognitive impairment. While exposure to intermittent solar particle events are 
more easily mitigated with shielding and operational dosimetry systems [Mertens et al. 2018, Mertens and Slaba 
2020], the ever-present galactic cosmic rays (GCR) are difficult to shield against and interact with spacecraft 
shielding and human tissues to create a complex high energy field of primary and secondary particles [Walker et. al 
2013, Norbury and Slaba 2014]. To protect astronauts and mission objectives from the risks associated with space 
radiation exposure, NASA has defined permissible exposure limits (PELs) [NASA 2014]. The current PEL for 
cancer is defined such that astronaut exposures do not exceed a 3% risk of exposure induced death (REID) evaluated 
at a 95% confidence level (CL) (equivalent to the 97.5th percentile). This CL has been set to protect against 
significant uncertainties in the risk projection associated with a lack of directly relevant experimental and 
epidemiological data for humans exposed to space radiation.  Modeling plays a critical role in capturing our current 
state of knowledge explicitly expressed by evaluation of the CL. 
 
Characterizing and communicating the space radiation risk landscape to a diverse group of stakeholders and 
decision-makers over a broad range of exploration mission architectures remains challenging due to the uncertainties 
involved and insufficient reliable data to fully anchor projections. Meeting today’s PELs can be difficult for crew 
with previous spaceflight experience and for young female crew selected for lunar surface missions. Mars mission 
architectures present even greater challenges with radiation risks that exceed NASA career PELs for all crew 
[Cucinotta et al. 2013]. In such cases where health or medical standards cannot be met or the level of knowledge 
does not permit a standard to be developed, NASA has established an ethical framework to accept increased risk 
[IOM 2014]. However, the risks and uncertainties still need to be quantified to guide informed decision-making.  
 
Inclusion of international crew and post-mission treatment requirements may impose further complexity. NASA’s 
Strategic Plan for Lunar Exploration [NASA 2020] will foster opportunities for international partnerships and most 
likely lead to international crews for lunar sustainability and Mars missions. The world’s space agencies that are 
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currently involved in human spaceflight use a variety of methods to assess radiation exposure and risk to crew, as 
well as a variety of protection quantities and limits. Efforts are underway by the International Commission on 
Radiological Protection (ICRP) to develop a common health risk assessment framework and provide 
recommendations on exposure limits for exploration-class missions among the International Space Station partner 
countries [ICRP 2019]. Still, some level of ambiguity remains due to the breadth of quantities and requirements set 
forth by the agencies. With the implementation of the TREAT (To Research, Evaluate, Assess, and Treat) 
Astronauts Act (https://www.congress.gov/bill/114th-congress/house-bill/6076), NASA will provide former 
astronauts and payload specialists with monitoring and treatment for psychological and medical conditions 
associated with spaceflight. This new Act may necessitate probabilistic assessments at higher confidence intervals 
and/or additional applied and translational research data sets (e.g. mutational signatures) to understand whether 
conditions can be identified as associated with spaceflight. As will be discussed, extreme confidence intervals are 
particularly sensitive to the underlying model assumptions used to represent biological outcomes since the amount 
and precision of the available data are not sufficient to resolve them directly. 
 
With the commissioning of the NASA Space Radiation Laboratory (NSRL) in 2003 and development of a robust 
space radiation research program, integrated strategies were in place to collect the radiobiological data required to 
significantly reduce cancer risk projection uncertainties and meet timelines required for lunar sustained missions, 
one-year deep space missions, and Mars exploration missions [NASA 2012]. Due to budgetary constraints, emphasis 
has since been shifted toward countermeasure development and testing with the goal of directly reducing the 
absolute risk. Within this new paradigm, it has not been possible to collect additional data of sufficient quantity or 
statistical quality to substantially reduce uncertainties to meet requirements for long-duration exploration missions 
as previously envisioned [NASA 2012].   
 
Although significant new space relevant data sets are not anticipated, re-analysis of existing data and additional 
models continue to be developed to describe radiation quality [Cucinotta 2015], dose-rate effects [Kocher et al. 
2018; Cucinotta and Cacao 2017], and dose response in the atomic bomb survivor cohort [Kaiser et al. 2012; Kaiser 
and Walsh 2013]. A strategy on how or when to incorporate newly developed state-of-the-art models into NASA 
risk assessments is critical, since experience has shown that such advancements can often lead to noticeably 
different REID projections at the upper 95% CL [Cucinotta and Cacao 2017] but often without sufficient data to 
anchor or independently validate such changes [Chappell et al. 2020]. Such dynamic changes to underlying sub-
models and risk projections can be problematic for mission architecture design as well as operational planning.  
 
The NASA Space Cancer Risk model (NSCR2020)1 translates human epidemiology data from an acutely exposed 
1940s Japanese population to a present day US healthy population (e.g. astronauts) chronically exposed to space 
radiation. Here, we refer to NSCR2020 as a "single model" comprised of distinct sub-models selected for each of the 
major components of Fig 1. For certification with the NASA PEL, risk must be evaluated probabilistically, thus 
requiring uncertainties to be defined for each of the major components of Fig 1. Uncertainties have been assigned to 
underlying sub-model parameters based on available epidemiological data, limited experimental data and/or subject 
matter expert opinion. Other inherent uncertainties within this model framework exist in the applicability of scaling 
risk from a terrestrial population acutely exposed to predominantly gamma radiation (left hand side of Fig 1) to an 
interplanetary crew exposed to a vastly different extraterrestrial space radiation environment (right hand side of Fig 
1) that are not quantified in current sub-model parameterizations (See Section III.II). The CL applied in the cancer 
PEL is thought to protect against these uncertainties as well. 
 
Radiation exposure estimates and risk projections depend on multiple factors such as mission destination and 
duration, vehicle design, and heliospheric conditions. Previous analyses have assessed the modification of the free-
space GCR environment through both complex spacecraft (such as the International Space Station) and simplified 
geometries to quantify the variability of the induced tissue field within critical body tissues. A simplified spherical 
shield of 20 g/cm2 aluminum provides a reasonable estimate of typical spacecraft shielding with a variation in dose 
(Gy) and dose equivalent (Sv) across all major radiosensitive tissues and geometries found to be +3% and +16%, 
respectively [Slaba et al. 2016]. Similar conclusions are reached from assessments of the modified GCR spectrum in 
terms of flux versus linear energy transfer (LET) [Slaba et al. 2016].   
                                                           
1 NSCR2020 is an update of NSCR2012 [Cucinotta et al. 2013] approved by NASA OCHMO for operational use. Cucinotta and colleagues have 
reported on separate updates referring to NSCR2014 [Cucinotta 2015], NSCR2015 [Cucinotta 2016], NSCR2016 [Cucinotta 2018], NSCR2018 
[Cucinotta et al. 2020b] and NSCR2020 [Cucinotta et al. 2020a,b], but those models are not approved for use at NASA. Updates included in 
approved NASA version of NSCR2020 are described in Appendix A.   
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Analyses in this paper are based on a ~6 month extended lunar orbital design reference mission (DRM) 
(https://www.nasa.gov/topics/moon-to-mars/lunar-gateway) during solar minimum conditions (time of maximum 
GCR flux) with a 35-year-old female astronaut (never smoker) behind nominal spacecraft/habitat shielding of 20 
g/cm2 aluminum. Specifics of the DRM were selected such that the upper 95% CL REID value, denoted as R95%, is 
aligned with the 3% PEL as shown in Fig 2 to directly compare with NASA’s current PEL. We have used the 
Badhwar-O'Neill 2020 GCR model [Slaba and Whitman 2020] combined with the HZETRN radiation transport 
code [Slaba et al. 2020] to evaluate relevant physical quantities. The average effective dose [ICRP 2007] was found 
to be approximately 185 mSv, with only minor differences of <3% resulting from male or female tissue shielding 
models. This corresponds to slightly higher external body exposures (i.e. just outside the astronaut) of approximately 
82 mGy and 215 mSv, consistent with previous measurements [Zeitlin et al. 2013] and model assessments 
[Simonsen et al. 2020]. The resulting probabilistic REID distribution from NSCR2020 is shown in Fig 2 along with 
the median (Rmed) and upper 95% CL (R95%) values. The overall uncertainty of the risk projection is often expressed 
in terms of a fold-factor, computed as (R95%/Rmed); the NSCR2020 fold-factor for the DRM configuration of Fig 2 is 
3.6.   

 

 
Fig 1. Notional implementation of the NASA’s current space radiation cancer risk model illustrating the use of 

epidemiological and radiobiology data sets to scale cancer incidence and mortality in exposed terrestrial 
populations to space-based estimates of radiogenic cancer risk. 

 
 

The radiation environment seen by critical tissues within the spacecraft comprises protons, helium ions, and heavy 
ions. The spatial distribution of energy deposition from these highly ionizing particles is characteristically different 
than what is observed from common terrestrial radiation sources such as x-rays and gamma rays. The pattern of 
energy loss from highly ionizing particles is characterized by a dense track of ionizations and atomic excitations, 
along a straight line corresponding to the particle’s trajectory, and a penumbra of higher-energy electrons that may 
extend hundreds of microns from the particle’s path in tissue. The track core produces extremely large clusters of 
ionizations within a few nanometers, which is qualitatively distinct from the electron energy depositions more 
uniformly distributed by x-rays or gamma rays. These differences in the temporal and spatial deposition of energy in 
tissues from space radiation impart unique biological damage to biomolecules and cells compared with terrestrial 
radiation, which, for a given dose, is much more damaging. The biological effects of these ions are poorly 
understood leading to large uncertainties is risk estimation. As shown in Fig 1, models of radiation quality are 
employed to translate epidemiological data of terrestrial exposures to space based risks.   
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Fig 2. Probability density (A) and cumulative probability (B) functions of REID (radiation exposure induced death) 

for a 35-year-old female astronaut (never smoker) on a 6 month mission behind 20 g/cm2 of aluminum shielding 
during solar minimum conditions. The median (Rmed) and upper 95% CL (R95%) values are explicitly shown. 
Specifics of the DRM were selected such that R95% compares directly with the 3% PEL. The probability density 
function is normalized so that the area under the curve is unity; the area of the red shaded region is 0.025.  

 
 
The current risk acceptance paradigm, as defined by the PEL and single model risk projection, is highly sensitive to 
the low-probability tails of one or more of the underlying sub-model uncertainties (e.g. radiation quality). The data 
to support these low probability tails are extremely limited even compared to the already sparse datasets to which 
more probable risk projections are anchored. In such situations, extreme model uncertainties become increasingly 
dependent on initial assumptions (or model form) and subjective decisions that cannot be robustly tested or validated 
with available data. 
 
To illustrate, consider the radiation quality component of the risk model (Fig 1) which characterizes increased 
relative biological effectiveness of the particles and energies comprising the space environment compared with 
gamma radiation. The NASA quality factor, Q(E,Z) [Cucinotta et al. 2013], is described by a biophysical model 
calibrated to available animal and cellular experimental data. Included in this model is the parameter, κ, related to 
the ion and energy of maximal biological effectiveness. Cucinotta and colleagues [2013] identified preferred, or 
"point estimate," κ values for light ions and heavy ions based on the limited experimental data that were available. 
Uncertainty distributions were then subjectively assigned to κ for use in probabilistic risk projections. Subsequent 
updates to the quality factor model [Cucinotta 2015, Cucinotta and Cacao 2017] followed a similar approach. In 
these publications, the relative uncertainties for κ were subjectively assigned as normally distributed with a mean of 
one and a standard deviation of one-third. Further analyses have been performed here to better define κ and have 
been implemented in NSCR2020, NASA’s current operational model. The relative uncertainties for κ have the same 
mean and standard deviation but are now assumed to be log-normally distributed to ensure maximal biological 
effectiveness is assigned to ions and energies in a more realistic manner (see Appendix A). This seemingly minor 
change to a single parameter uncertainty distribution is found to have a significant impact on risk projections at large 
confidence levels.   
 
Fig 3 shows calculated REID distributions from both NSCR2020 and NSCR2012 with related information about κ 
in the insets. Of particular interest are the values of κ, shown in red, contributing to the upper tail of the REID 
distribution. The Rmed values from both models are identical since they are both reasonably anchored by available 
experimental data. However, the R95% value from NSCR2012 is 20% higher and is driven by low probability κ 
values characterized by the subjective selection of a normal versus log-normal uncertainty distribution. Sparsity of 
relevant data precludes a more robust and objective characterization for parameter uncertainties in this case. It 
should be clear though, that the R95% value can be acutely sensitive to subjective assumptions and decisions included 
in sub-model parameters.   
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Fig 3. Sensitivity of the upper 95% CL of REID (R95%) to a specific parameter uncertainty distribution. Panel A 

shows the current NASA model (NSCR2020) where the quality factor parameter, κ, is described by a lognormal 
distribution. Panel B shows the previous NASA model (NSCR2012) where κ is described by a normal 
distribution. Results are for a 35-year-old female astronaut (never smoker) on a 6 month mission behind 20 
g/cm2 of aluminum shielding during solar minimum conditions.  

 
Likewise, even the median risk projection values, Rmed, have been found to be sensitive to these kind of modeling 
assumptions. Recent publications by Cucinotta and colleagues [Cucinotta and Cacao 2017, Cucinotta et al. 2020a] 
examine the impact of non-targeted effects (NTE) in representing low dose biological responses that appear as 
modifications to the quality factor component of the risk model. In their analysis, Rmed values were calculated 
separately using both a targeted effects model that is similar to what is used in NSCR2020 as well as a NTE model 
with different bystander effect sizes (number of cells nearby a directly hit cell that receive an intercellular, 
potentially carcinogenic signal). The Rmed estimates produced by the targeted and non-targeted effects models 
differed by factors of two or more depending on the bystander effect size chosen. While the existence and relevance 
of NTE effects to risk have been shown [Barcellos-Hoff and Mao 2016], available data sets to sufficiently resolve 
model assumptions remain elusive [Chappell et al. 2020, Cucinotta and Cacao 2017].    
 
II.II A new approach for space cancer risk projection 
 
Ensemble modeling offers a different approach and represents a paradigm shift from NASA’s current methodology 
for risk assessment. The goal is not to identify the "best" model but rather to use information from multiple single 
models or underlying sub-models to better describe the risk landscape in the face of limited data and large 
uncertainties. Ensemble forecasting is widely used in weather applications to account for uncertainty in initial 
conditions or various sources of uncertainty in predictive models [Slingo and Palmer 2011].  Over the past decade, 
the National Hurricane Center has greatly improved its forecasting by relying on consensus forecast models using 
various simple and weighted combinations of predictive models. Other entities, including the World Health 
Organization have considered ensemble approaches to predict the health impact of vaccines on the transmission of 
infectious diseases, such as malaria, using multiple predictive models where immunity and variability in host 
response are poorly understood [Smith et al. 2012]. Recent Ebola epidemics have also been simulated based on a 
probabilistic assessment of transmission and control models to derive a probability distribution of outbreak sizes and 
durations [Kelly et al. 2019, Chowell et al. 2017]. Likewise, the annual prediction of influenza season severity and 
timing has been modeled using weighted-density ensemble methodologies to obtain single predictions that leverage 
the strengths of each ensemble model member [Ray and Reich 2018]. New to space weather applications, 
researchers are also looking toward ensemble forecasting as a way to combine the multiple predictive models being 
developed for solar flares by linearly combining the probabilistic forecasts from a group of operational forecasting 
methods [Guerra et al. 2020]. 
 
More directly relevant to space radiation cancer risk projection, the Oak Ridge Center for Risk Analysis (ORCRA) 
recently developed an ensemble of DDREF [Kocher et al. 2018] which will be explicitly considered here. Similar 
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statistical approaches to assess risk from radiation exposure include multi-model inference (MMI) analyses to 
provide a joint risk estimate from several plausible models rather than relying on a single model of choice. MMI can 
produce more reliable point estimates, reduce bias, and provide a more comprehensive characterization of 
uncertainties [Kaiser et al. 2012, Kaiser and Walsh 2013]. MMI statistical analyses employing multiple biologically-
based and/or empirical models have been used to model risks of leukemia, breast cancer, cerebrovascular, and heart 
disease using Japanese atomic bomb survivor data [Kaiser et al. 2012, Kaiser and Walsh 2013, Schöllnberger et. al 
2018]. 
 
Ensemble risk estimates can be used to characterize the detrimental health effects associated with spaceflight. This 
approach also facilitates the comparison of NSCR2020 with historical models of risk [ICRP 1991], alternate models 
[Cucinotta et al. 2020a], and future international models [Walsh et al. 2019] which may prove important in planning 
for international crews.  Moving to an ensemble framework for NASA risk prediction provides an opportunity to 
shift the focal point of astronaut risk projection from a region of uncertainty, sensitivity, and subjective bias (the 
R95%) toward a region of stability and general agreement between models more directly determined by the bulk of 
experimental and epidemiological data. Risk forecasting across an ensemble of multiple predictive models can 
provide crew and decision makers a comprehensive assessment of current and future mission risk landscapes, 
especially when mission architectures may not immediately meet established PELs and decisions are needed for the 
informed acceptance of additional risk. Here, we describe the development of alternate methods of evaluating risk 
for US and international exploration missions through a statistical analysis using the ensemble of sub-models 
described in Fig 1. 
 
III. Materials and Methods   
 
III.I NASA exposure limits and current risk modeling 
 
III.I.I Space radiation permissible exposure limits 
 
NASA health standards are in place to provide a healthy and safe environment for crewmembers to enable 
successful human space exploration. NASA has the authority to establish dose limits for crew members in space 
flight [NASA 1958] and follows an occupational health model that sets hazardous exposure limits and delineates 
health criteria for workers [IOM 2014]. In establishing those limits, NASA has considered the advice from the 
National Research Council [NA/NRC 1996, 1998] and the National Council on Radiation Protection [NCRP 1989, 
2000].  In 1989, NCRP Report No. 98, "Guidance on Radiation Received in Space Activities," recommended age- 
and sex- dependent career dose limits using a 3% increase in cancer mortality as a common risk limit. This limit was 
based on several criteria including a comparison to dose limits for terrestrial radiation workers and to the rates of 
occupational death in less-safe industries. Given that astronauts face many other risks, NCRP noted that acceptance 
of an overly large radiation risk was not justified at the time [NCRP 1989]. Today, NCRP report No. 132, 
"Radiation Protection Guidance for Activities in Low-Earth Orbit [NCRP 2000]," forms the basis of NASA’s 
radiation protection approach [NASA 2014] and the majority of methodologies implemented in NASA’s cancer risk 
projection model including the recommended age- and sex-specific response to radiation dose. 
 
Permissible limits are currently defined for low Earth orbit (e.g. International Space Station missions), such that 
"planned career exposure to ionizing radiation shall not exceed 3 percent REID for cancer mortality at a 95 percent 
confidence level to limit the cumulative effective dose (in units of Sievert) received by an astronaut throughout his 
or her career [NASA 2014]." Unlike terrestrial dose limits, where risk as a function of dose can often be more 
reasonably estimated from response to low-LET2 irradiations, NASA has established their limits in terms of risk to 
account for the complex nature of HZE radiation in space where equal absorbed doses of space radiation and 
terrestrial radiation do not have the same biological effects. A 95% confidence level has been included in the limit to 
account for large uncertainties in risk projections including the understanding of the radiobiology of heavy ions, 
dose-rate and dose protraction and limitations in human epidemiology data. This confidence interval is the basis for 
establishing allowable cumulative effective dose (Sievert, Sv) and consequently a crew member’s permissible 
mission duration (PMD) based on previous and projected exposures. By establishing career limits in terms of risk, 
rather than dose, it was anticipated that NASA could modify corresponding dose limits (Sv) to allow for increased 

                                                           
2 Linear energy transfer (LET) is defined as the energy lost per unit path length and is usually expressed in units of keV/μm.  
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PMDs as scientific knowledge describing the relationship between risk and dose evolved and uncertainties were 
reduced [NCRP 2014].   
 
Following established processes within NASA's Office of the Chief Health and Medical Officer (OCHMO), 
scheduled reviews of the health standards are conducted every five years [NASA 2016].   Reviews and/or proposed 
revisions to the standard can also be conducted at any time that new research data or information from clinical 
observations indicate that an update review is warranted [NASA 2016]. A comprehensive review of available 
scientific and clinical evidence as well as operational data and experience from Apollo, Skylab, Shuttle, Shuttle-Mir, 
and International Space Station missions [NASA 2012, 2016] is conducted to inform any proposed revision. 
Proposed updates typically include external technical review by the National Academies of Sciences, Engineering 
and Medicine, or the NCRP. These reviews and guidelines ensure standards remain evidence based and represent a 
reasonable approach to risk assessment. 
 
III.I.II Current NASA risk model 
 
NSCR2012 [Cucinotta et al. 2013] was a significant step forward in gathering and making use of the available 
radiobiology and epidemiology data into a single formalism capable of projecting astronaut cancer risk for past and 
future missions. The current operational version, NSCR2020, used by NASA to certify crew for missions has been 
significantly updated over the years to include recommendations from a National Academy of Science review in 
2012 [NRC 2012] as well as other corrections to underlying models and software [Slaba et al. 2010, 2020; Slaba and 
Whitman 2020]. The model estimates probabilistic REID in accordance with the NASA PEL. This REID quantifies 
the lifetime mortality risk attributable to radiation exposure and accounts for competing causes of death. It is 
calculated by folding a tissue-specific mortality rate, ( )T

m  , against a hazard function and integrating over age 
according to  
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where aE is the age at exposure, a is the attained age, S0 is the survival probability for the unexposed background 
population [Arias 2015], and the summation is taken over all radiosensitive tissue types, T. The variables a' and T' 
are integration variables with the same meaning as a and T, respectively.  
 
For solid cancers, the sex- and tissue-specific radiation-induced mortality rate, ( )T

m , is calculated in terms of the 

corresponding incidence rate, ( )T
i , as   
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where ( )
0, ( )T

m a and ( )
0, ( )T

i a are the sex- and tissue-specific cancer mortality and incidence rates for the background 
population of interest, respectively. The radiation-induced solid cancer incidence rate is written here as  
 
 ( ) ( ) ( )

0, DDREF
( , , ) ( ) ERR ( , ) ( ) (1 )EAR ( , ) THT T T

i E T L T T E i T T Ea a H C a a a a a         
,  (3) 

 
where ERRT and EART are the sex- and tissue-specific excess relative and absolute excess risk functions, 
respectively, and  𝜈𝜈𝑇𝑇  is the transfer weight defining the contributions of the relative and absolute risks to the total. 
The term ( )( )T

LC  , with τ = a – aE, is the latency factor used to describe the time-lag between age at exposure and 
first appearance of cancer. 
 
Combining equations (2) and (3) yields the final form for the mortality rate 
 

https://www.ncbi.nlm.nih.gov/books/NBK222156/
https://www.ncbi.nlm.nih.gov/books/NBK222156/
https://www.ncbi.nlm.nih.gov/books/NBK222156/
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For leukemia, the ERR and EAR are derived directly from mortality data, and the scaling of equation (2) is not 
needed.  The tissue dose equivalent, HT, is computed as  
 
 ( )

0
( , , )T

T j j j
j

H E A Z Q LdE


  ,  (5) 

 

Where ( )( , , )T
j j jE A Z is the fluence of type j particles with atomic mass Aj and charge number Zj, Q is the quality 

factor, and L is the LET.  
 
The DDREF and Q are the scaling factors specifically used to translate the radiation-induced cancer mortality rate 
derived from populations exposed to acute gamma radiation to the low dose-rate and mixed-LET exposure 
characteristic of the space environment. The quality factor has been defined thus far by fitting parametric 
biophysical models to available relative biological effectiveness (RBE) data ascertained from experiments with 
animals and cells for various biological endpoints. The DDREF is derived from a combination of radiobiological 
studies and epidemiological data. The instantaneous, low-LET excess risk terms are derived from the Life Span 
Study (LSS) of the atomic bomb survivor cohort assuming a linear no-threshold (LNT) dose response; it includes 
both absolute and relative risk parameterizations [NRC 2006, UNSCEAR 2006, Preston et al. 2007, Little et al. 
2008] to transfer risks to a United States background population with or without a history of smoking. As noted by 
Cucinotta and colleagues [2013] and in the National Research Council (NRC) review of NSCR2012 [NRC 2012], 
uncertainties associated with Q, DDREF, and excess risk terms remain the major sources of uncertainty currently 
accounted for in the model. As will be discussed, other sources of uncertainty not accounted for in the model 
formalism may also be significant [Cucinotta et al. 2013, NCRP 2014].  
 
In order to ensure that crew career limits are not exceeded, for planned mission exposures, equation (1) must be 
evaluated probabilistically to account for uncertainties associated with the various parameters and assumptions 
contained within the radiation mortality and survival terms. The quantities needed to evaluate equation (1) such as 
Q, DDREF, and the excess risk functions have varying levels of uncertainty arising from either a lack of relevant 
data and/or knowledge, inherent variability that cannot be reduced with new data, or both. These uncertainties are 
propagated into REID assessments so that critical values such as Rmed or R95%, can be obtained. As in NSCR2012, 
Monte Carlo procedures are used to perform this probabilistic analysis, requiring uncertainty distributions for each 
of the pertinent values and assumptions contained within equation (1). These distributions, intended to represent the 
range of possible parameter values, are either assigned through subjective assessments of available data or 
objectively determined through uncertainty quantification when enough data exist. Other than the exceptions noted 
in Appendix A, uncertainty distributions used in NSCR2020 are the same as those defined for NSCR2012.  
 
The uncertainty distributions included in the NASA model are summarized in Table 1. To understand the relative 
impact of the major uncertainties on the final REID assessment, sensitivity tests can be performed wherein 
parameters of interest are sampled probabilistically while all other parameters are held fixed at their preferred 
values, or point estimates. Results from this type of sensitivity analysis are given in Fig 4 for the extended lunar 
orbital DRM mission configuration. The items identified in Table 1 as DS02, tissue specific statistical errors, and 
mixture model weights are collectively identified in Fig 4 as the excess risk model. These values and parameters are 
derived from the LSS cohort [Kotaro et al. 2012] to describe cancer incidence and mortality risk following acute 
exposure to low-LET radiation. Included in this model is the transfer of risk to the appropriate population of interest 
as defined by equations (2) – (4). The DDREF and Q are then used to scale these low-LET risks to the mixed LET 
environment in space. It can be seen in Fig 4 that uncertainty associated with Q is the dominant term contributing to 
the total fold-factor of 3.6.  
 
Other assumptions included in the NSCR2020 formalism may produce additional uncertainty not currently 
accounted for in Fig 4 including simple additivity of single ion results, similar tumor spectra and aggressiveness in 
low-LET exposed cohorts compared with high-LET, translatability of animal results to humans, and the impact of 
non-targeted effects on low dose and low dose rate extrapolations. 
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Table 1. Summary of uncertainties used in NSCR2020. N(μ,σ) refers to the normal distribution with mean μ and 
standard deviation σ. Log-N(μG,σG) refers to the log-normal distribution with geometric mean μG and geometric 
standard deviation σG.  

Quantity Uncertainty distribution Notes 

Radiation quality, Q 

m Discrete distribution for values [2.0,2.5,3.0,3.5,4.0] 
with weights [0.2,0.2,0.35,0.2,0.05] For κ, the sampled value is multiplied by 

a point estimate of 1000 for Z < 4 and 550 
for Z > 4. For Σ0/γ, the uncertainty is 
multiplied by 7000/6.26 for solid cancers 
and 1750/6.26 for leukemia. 

 Log-N(0.95,1.4) 

Σ0/γ 
Log-N(0.9,1.4) for solid cancer and Log-N(1.0,1.6) for 
leukemia 

σsparse N(1,0.15) 

DDREF Student's t-distribution with 5 degrees of freedom and 
transformed argument  

Dose Estimates, DS02* Log-N(0.9,1.3) 
Sampled values are applied as 
multiplicative factors scaling the radiation 
risk coefficient 

Tissue specific statistical errors* Gaussian with a mean of 1.0 and tissue specific 
standard deviations ranging from 0.2 to 1.0 

Never smoker  N(1,0.15) 
Physics N(1.05,1/3) for Z < 2 and N(1,0.25) for Z > 2 

Mixture model weights* νT Bernoulli distribution about preferred weight Preferred weights are defined in Cucinotta 
et al. [2013] 

*Parameters collectively used in evaluation of what is defined as the excess risk model obtained from the LSS cohort. 
 
 

 
Fig 4. NSCR2020 uncertainty in probabilistic REID assessment associated with radiation quality, excess risk, dose 

and dose-rate effectiveness factor (DDREF), and physics for an extended lunar orbital design reference mission. 
REID, radiation exposure induced death.  

 
 

III.I.III Permissible mission durations 
 
Permissible mission durations (PMD) for individual crew members may be calculated from equation (1) by 
determining the mission exposure (and hence, duration) required to yield a R95% = 3% for a given age at exposure. 
For the exposure ranges of interest to human missions, REID is nearly directly proportional to effective dose (Sv) 
which accumulates with mission duration. For a given mission configuration with duration dm and projected R95% 
value, the PMD for an astronaut to remain in the radiation environment characterized for the mission may be 
calculated as PMD = 3dm/R95%. PMD are directly dependent on the projected space radiation environment and thus, 
time in solar cycle. Within our solar system, the solar wind modulates the flux of GCR over an approximate 11-year 
cycle with an intensity that is inversely correlated with solar activity. During phases of higher solar activity, the 
GCR intensity is at a minimum, whereas at solar minimum, the GCR intensity is maximal. At solar maximum, 
effective dose estimates behind typical spacecraft shielding are reduced by roughly a factor of 2 compared with solar 
minimum dose estimates [Townsend et.al 1990, Slaba et. al 2016]. Calculations in the deep-space environment are 
used to guide long-term mission design and are shown in Table 2 for both solar minimum and maximum solar 
conditions. These values can be compared with mission durations required for one year deep space habitat (365 
days) and Mars short stay (621 days) exploration-class missions. 
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Table 2. Permissible mission durations beyond low Earth orbit as a function of age and sex for crew with no 
previous radiation exposure. Calculations were performed using NSCR2020 for never smokers with 20 g/cm2 of 
aluminum shielding during both solar minimum (June 1976) and solar maximum (June 2001) conditions. 
Average exposure rates external to the body are provided along with the effective dose rate (mSv/day). Only 
minor differences (<3%) were found as a result of tissue shielding between males and females.  

Age at exposure (years) 
Permissible mission duration (days) 

Solar minimum Solar maximum 
Female Male Female Male 

30 163 236 312 453 
35 174 248 336 477 
40 186 262 357 503 
45 198 276 381 530 
50 210 291 407 560 
55 225 311 435 596 
60 243 335 470 645 

Dose (mGy/day) 0.47 0.23 
Dose eq. (mSv/day) 1.24 0.65 
Effective dose (mSv/day) 1.06 0.56 

 
 
III.II Ensemble-based methods for radiogenic cancer risk prediction  
 
Consensus projections formulated on the basis of perturbed parameter (PP) and multi-model (MM) methods, on 
average, are more accurate than predictions from their individual model or sub-model components [Fritsch et al. 
2000; Ray and Reich 2018]. Although it has not previously been described in these terms, the NSCR2020 model 
employs PP methods which are an aspect of ensemble forecasting.  In PP schemes, uncertain parameters within a 
specific model are repeatedly perturbed to yield distinct outcomes which collectively form a distribution, or 
ensemble. Parameter perturbations may be guided by random noise, subject matter expert opinion, or direct 
comparison of the parameter to measured data, if possible. As noted, the evaluation of REID employs single sub-
models for radiation quality, dose-rate effects, excess risk, and latency. These sub-models are parametric in nature, 
with uncertainty distributions assigned to each of the relevant parameters (Table 2). Monte Carlo methods are then 
used to randomly sample parameters within the prescribed distributions over numerous trials to calculate a 
probabilistic distribution of REID values from which the upper 95% CL is obtained to evaluate PELs and PMDs. 
Given a large enough sampling of perturbed parameters, the PP approach appears similar to the Monte Carlo 
uncertainty propagation methods employed in NSCR2020.  
  
While PP schemes account for parameter uncertainty, they do not capture uncertainty associated with the 
fundamental assumptions or form of an underlying model [Tebaldi and Knutti 2007]. This additional source of 
uncertainty is sometimes referred to as model-form error and may be addressed with multi-model (MM) ensemble 
forecasting.  In MM methods, multiple predictive models that may be based on different theoretical formulations, 
assumptions, data sources, or solution methodologies are evaluated as ensemble members. In applications where 
basic principles and mechanisms are well understood and significant data exists to calibrate, validate, and quantify 
uncertainty for predictive models, the PP and MM schemes may not provide significantly different information 
about overall model uncertainties. However, astronaut risk projection relies on sparse experimental datasets in cells 
and animals for which the driving mechanisms of carcinogenesis are not yet fully understood. Methods for 
translating available experimental data to astronauts in the space environment also remain largely elusive and highly 
uncertain. In this scenario, it is clear that even when individual sub-models for radiation quality or dose-rate effects 
are developed, improved, and validated, PP ensemble results would only partially reflect uncertainties in risk 
projection. MM methods may offer an additional avenue to better characterize the current state of scientific 
knowledge and the associated uncertainties. 
 
Fig 5 illustrates the computational framework considered here for MM ensemble forecasting of astronaut risk. The 
green boxes denote the sub-models specifically considered, and the red boxes indicate emerging models or 
epidemiology studies that can be incorporated in future assessments. Currently, there are a limited number of sub-
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models available to demonstrate MM methods which incorporate non-trivial differences in underlying assumptions, 
functional forms, and quantified uncertainties (green boxes in Fig 5).   
 
For example, the radiation quality factor used in NSCR2020 is based on the Katz biological risk cross section 
coupled with an initiation-promotion model of tumor induction [Katz et al. 1971, Wilson et al. 1993] and is 
calibrated against experimental RBEmax values. Recent updates to this radiation quality model (denoted as 
UNLV2017 box in Fig 5) consider separately a densely ionizing component associated with the ion track core and a 
sparsely ionizing component associated with longer range δ-ray electrons in the penumbra region [Cucinotta 2015]. 
Included in this separation is an important additional assumption that dose-rate effects are negligible in the track 
core and only appear in the sparsely ionizing δ-ray component. This modified radiation quality model is also 
calibrated against distinct experimental data, RBEγ-acute, instead of RBEmax, resulting in a different uncertainty 
assessment than its NSCR2012 predecessor and with significant consequences on the upper 95% CL REID value. 
Likewise, several DDREF and excess risk sub-models are readily available in the literature with non-trivial 
differences in model formulation and uncertainty quantification (green boxes in Fig 5). While the current number of 
sub-models and distinct single models may be somewhat limited, numerous development activities are underway to 
provide additional data sets and methods for inclusion given similar endpoints of REIC (risk of exposure induced 
cancer) or REID (red boxes of Fig 5) (Section V.III Future ensemble members). 
 
Additional known uncertainties, that are not explicitly accounted for, exist in the current risk projections (gray boxes 
of Fig 5) including assumptions about: the applicability of scaling space radiation effects directly from gamma 
responses resulting in a similar spectrum of tumors; the shape of the dose response curve at space relevant doses; the 
simple additivity of mixed field responses; the translation of exposed animal cohort data to humans; and the effects 
of individual sensitivity on projected risk. In addition to the space radiation environment, crew are exposed to a 
multitude of spaceflight stressors (such as, micro-gravity, isolation, confinement, and sleep disturbances) which may 
synergistically effect the actual risk. These uncertainties not only exist for projections of radiogenic cancers, but also 
for other long-term health effects associated with exposure to space radiation including central nervous system 
effects resulting in potential in-mission cognitive or behavioral impairment and/or late neurological disorders, 
degenerative tissue effects including circulatory and heart disease, as well as potential immune system decrements 
impacting multiple aspects of crew health. For long durations in space, the interdependency of these disease risk 
factors and combined stressors to the human as a system is largely unknown. Additional data in these areas will be 
required to inform the development of new models for future incorporation into an ensemble framework.  
 
 

 
Fig 5. Example of current and near-term modeling and epidemiology studies that support ensemble methods in 

estimating the risk of cancer in astronauts from exposure to the space environment. Green boxes identify sub-
models specifically considered in this analysis. Red boxes identify new models and data available in the near 
term. Gray boxes identify known uncertainties not explicitly accounted for in current risk model.  
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Here, a new approach to NASA risk modeling has been developed to extend the current NASA probabilistic cancer 
risk model to a multi-model ensemble framework capable of assessing sub-model parameter uncertainty (e.g. 
uncertainty in a radiation quality parameter as described) as well as model form uncertainty associated with differing 
theoretical or empirical formalisms (e.g. combined dose-rate and radiation quality effects). This hybrid PP/MM 
approach has been specifically applied to the dominant terms in the astronaut risk projection sub-models - the 
radiation quality factor, DDREF, latency function, and excess risk functions - with each sub-model containing its 
own description of parameter uncertainty. While a larger number of relevant sub-models exist, here we focus on a 
limited number, as described in the following sections, to inform the development of an ensemble-based risk 
calculation. 
 
III.II.I Latency 
 
Latency (τ) is used to describe the time-lag between age at exposure and first appearance of cancer. This term enters 
into the tissue-specific cancer mortality rate as a multiplicative factor, ( )( )T

LC  , as previously shown in equation (4).  
 
NSCR2020 latency 
 
The latency factor included in NSCR2020 was obtained from National Research Council's Committee on the 
Biological Effects of Ionizing Radiation, BEIR VII [NRC 2006] and is defined as  
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 , (6) 

 
with τ0 = 2 years for leukemia, and τ0 = 5 years for solid cancer. No uncertainties were assigned to the value of τ0.   
 
RadRAT latency 
 
The Radiation Risk Assessment Tool (RadRAT) [de Gonzalez 2012] provides an alternative latency factor defined 
as  
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The values of μ and S are given in Table 3. Uncertainty in prescribing μ is addressed with triangular probability 
distributions selected as T(2,2.25,2.5) for leukemia, T(3,5,7) for thyroid, and T(5,7.5,10) for solid cancers except 
thyroid.  
 
 
Table 3. Values of μ and S for the RadRAT latency factor. 

Tissue μ S 
Leukemia 2.25 1.85/ln(99) 
Thyroid 5.0 2.5/ln(99) 
Solid cancers except thyroid 7.5 3.5/ln(99) 

 
 

Fig 6 shows a direct comparison of the two latency models for leukemia, thyroid, and solid cancers except thyroid. 
Aside from the uncertainties, which are included in RadRAT and excluded in NSCR2020, the latency models appear 
qualitatively similar with some non-trivial differences for leukemia and solid cancer.  
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Fig 6. Comparison of NSCR2020 and RadRAT latency models for leukemia (A), thyroid (B), and solid cancer (C). 

For RadRAT, the solid and dashed lines represent the median and 95% CL values, respectively. 
 
 
III.II.II Excess risk 
 
Excess risk (ER) models quantify the additional risk of cancer incidence or mortality associated with radiation 
exposure. Included in the ER model is the transfer of risk from the exposed population to the population of interest 
(see equations (2) – (4) and the transfer weights, νT) and the sex- and tissue-specific ERR and EAR functions 
appearing in equations (3) and (4).  
 
In establishing the initial ensemble framework, we have limited our consideration of ER models to those relying on 
the assumption of LNT dose response and epidemiological data from the LSS cohort, namely those included in 
NSCR2020 and RadRAT.  The NSCR2020 ER model is based on a combination of BEIR VII [NRC 2006], 
UNSCEAR [UNSCEAR 2006], Preston et al. [2007], and Little et al. [2008] analyses with subjectively assigned 
statistical uncertainties and dosimetry errors as shown in Table 4. The RadRAT ER model [de Gonzalez 2012] relies 
on the BEIR VII definitions with additional cancer sites. While other models exist which incorporate alternate dose 
response assumptions (i.e. not LNT) [Bennett et al. 2004; Pierce et al. 1991], they often do not explicitly include ER 
estimates for each of radiosensitive tissue sites (Table 4) required for the REID calculation as currently 
implemented.  Future analyses may consider incorporating multiple single-tissue models for tissues at high risk of 
radiogenic cancers. 
 
Table 4. Tissue specific excess risk sources used in NSCR2020.  

Tissue Source Tissue Source 
Leukemia Little et al. [2008] Skin Preston et al. [2007] 
Stomach UNSCEAR [2006] Other UNSCEAR [2006] 
Colon UNSCEAR [2006] Kidney Preston et al. [2007] 
Liver UNSCEAR [2006] Rectum Preston et al. [2007] 
Bladder UNSCEAR [2006] Gall bladder Preston et al. [2007] 
Lung UNSCEAR [2006] Pancreas Preston et al. [2007] 
Esophagus UNSCEAR [2006] Prostate Preston et al. [2007] 
Oral cavity Preston et al. [2007] Breast NRC [2006] 
Brain UNSCEAR [2006] Ovary Preston et al. [2007] 
Thyroid NRC [2006] Uterus Preston et al. [2007] 
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A direct comparison between the NSCR2020 and RadRAT excess risk models for lung, leukemia, and breast are 
provided in Fig 7. The two models appear qualitatively similar for all tissues, with RadRAT providing slightly larger 
median values in most cases. However, the upper 95% CL from the two models are noticeably different, especially 
for the lung and breast.  
 

 
Fig 7. Comparison of NSCR2020 and RadRAT ER models for lung (A), leukemia (B), and breast (C). Solid and 

dashed lines correspond to median and upper 95% CL values, respectively.  
 
 
III.II.III DDREF 
 
The DDREF is used to scale risk estimates obtained from acute exposure to risk for chronic exposure as would occur 
in space. In all cases, there is assumed to be no dose-rate effect for leukemia, and the DDREF is only applied to 
solid cancer risks.  
 
RadRAT DDREF 
 
The RadRAT DDREF is a log-normal distribution with μ = ln(1.5) and σ = ln(1.35) based on BEIR VII [NRC 2006].  
 
NSCR2020 DDREF 
 
The NSCR2020 DDREF is defined as a Student's t-distribution with 5 degrees of freedom [Cucinotta et al. 2013]. 
This distribution may be written as  
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where s = 0.251, and δ is used to denote the DDREF value. The symbol Nc is a normalization constant defined so 
that the integral over f(δ) from 0.2 to 6 is unity. 
 
UNLV2017 DDREF 
 
Cucinotta and colleagues [2017] provided a revised DDREF based on experimental data with greater emphasis on 
high energy proton experiments than previous efforts. It was also pointed out that a study by Hoel [2015] suggests 
that the BEIR VII analysis underestimates the DDREF due to subjective assumptions and exclusion of higher doses 
associated with downward curvature in the dose responses. Insufficient information was available in the published 
manuscript [Cucinotta et al. 2017] to reproduce their DDREF distribution exactly. Instead, a plot from the 
manuscript was digitized and resulted in a log-normal distribution with μ = ln(2.27) and σ = ln(1.22).  
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ORCRA2017 DDREF 
 
The ORCRA recently completed an extensive study [Kocher et al. 2018], resulting in an ensemble distribution of 
DDREF based on low-dose effectiveness (LDEF) and dose-rate effectiveness factor (DREF) representations of 
incidence and mortality data. The ensemble was constructed from three LDEF-incidence distributions, six LDEF-
mortality distributions, two DREF-incidence distributions, and three DREF-mortality distributions. Subjectively 
8assigned unequal weights were assigned to each of the 14 distributions to obtain ensembles for LDEF-incidence, 
LDEF-mortality, DREF-incidence, and DREF-mortality. The final DDREF ensemble was calculated by giving equal 
weight to LDEF and DREF with 2/3 weight to incidence and 1/3 weight to mortality.  The ensemble distribution 
cannot be described by a simple function; a visual description is therefore provided in Fig 8A. Although a peak in 
the ensemble distribution is observed near 1.2, comparable to the NSCR2020 and BEIR VII distributions, a shoulder 
in the distribution appears below 1, indicating moderate probabilities of inverse dose-rate effects.  
 
Fig 8B shows a direct comparison of the DDREF models. The NSCR2020 and BEIR VII models appear similar, 
with peak values occurring near DDREF = 1.5. The ORCRA2017 was obtained from ensemble analysis including 
incidence and mortality data under LDEF and DREF representations. Of particular note is the shoulder appearing 
below DDREF = 1, coinciding with inverse dose-rate effects reflected strongly in the DREF mortality data. The 
UNLV2017 DDREF model placed greater emphasis on high energy proton experiments, arguing that the track 
structure of these ions more closely resembles space radiation than the γ irradiations typically associated with 
epidemiological data. The peak of this DDREF distribution appears distinct from the others. 
 

           
Fig 8. Panel A shows the ORCRA2017 ensemble DDREF model [Kocher et al. 2018]. The underlying LDEF and 

DREF incidence and mortality distributions, which are also ensembles formed from distinct datasets, are 
included as well. Panel B compares the DDREF models considered in this paper.  

 
 
III.II.IV Radiation quality 
 
The radiation quality factor is used to represent the increased biological effectiveness of a given radiation type 
compared to γ-rays. 
  
ICRP60 quality factor 
 
The ICRP defined an LET-dependent quality factor [ICRP 1991] that was widely used in NASA applications until 
~2012. Uncertainties were assigned to the ICRP quality factor by Cucinotta and colleagues [2006] and later clarified 
by Werneth and colleagues [2014]. The general form of this quality factor is given by  
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The distribution for Qm is described by a log-normal with μ = ln(30) and σ = 0.72. The remaining distributions are 
defined as piece-wise functions with details provided by Werneth and colleagues [2014]. 
 
NSCR2020 quality factor 
 
A NASA quality factor was developed for NSCR2012 [Cucinotta et al. 2013] based on the Katz risk cross section 
and an initiation-promotion model of tumor induction [Katz et al. 1971, Wilson et al. 1993]. The NASA quality 
factor may be written as  
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where L is LET, Xtr = (Z*/β)2 is the track-structure parameter with Z* being the effective charge, and β the ion 
velocity relative to the speed of light. The term in brackets in the expression for P is intended to account for the 
thindown of ion tracks as the ion comes to rest; the value of 0.2 is referred to as the thindown energy. The symbols 
Σsparse, m, κ, and Σ0/αγ are uncertain parameters. The parameter Σsparse represents the value of Q for low-LET ions 
when P → 0 (i.e. high energy protons). It is described by a normal distribution with μ = 1 and σ = 0.15. The 
distribution for m is given by the discrete distribution m = {2, 2.5, 3, 3.5, 4} with weights w = {0.2, 0.2, 0.35, 0.2, 
0.05}. Once m is selected, the value of κ is obtained via conditional sampling through the relations 
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where κpt is the "point-estimate" of κ with distinct values for Z < 4 (1000) and Z > 4 (550), uκ is a relative uncertainty 
sampled from a log-normal distribution with μ = -1/18 and σ = 1/3 defined over the interval [0.07,∞], and cκ(m) is 
the correlation function.  For Σ0/αγ, the parameter αγ = 6.24 is held fixed. The value of Σ0 is obtained via conditional 
sampling through the relation 
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where Σpt is the "point-estimate" of Σ0 with distinct values for solid cancer (7000) and leukemia (1750), uΣ is a 
relative uncertainty sampled from a log-normal distribution with μ = ln(0.9) and σ = 1/3, and cΣ(m) is the correlation 
function. The conditional sampling relations and correlation functions described in equations (12) and (13) are 
utilized in NSCR2020 but differ from the original implementation in NSCR2012. More detailed information on the 
correlation functions can be found in Appendix A.  
 
 



 

17 
 

 

UNLV2017 quality factor 
 
Cucinotta and colleagues [2015, 2017] published an extension to the NSCR2012 model by separating the expression 
for Q in equation (11) into a densely ionizing component associated with the track core, Qdense, and a sparsely 
ionizing component associated with δ-ray electrons ejected in the penumbra region of the track, Qsparse. Dose-rate 
effects were assumed to only contribute in the sparsely ionizing component and not at all in the densely ionizing 
component. The model was also calibrated to modified RBE calculations, labeled as RBEγ-acute, as opposed to the 
RBEmax data used to calibrate the NSCR2020 quality factor.  
 
Since the DDREF appears as a divisor to the dose equivalent in the excess risk coefficient of equation (4), one may 
write 
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The symbols appearing in equation (14) have the same meaning as before. However, certain changes to the 
parameter values and uncertainty distributions were made by Cucinotta and colleagues [2017]. First, the thindown 
energy was changed from 0.2 to 0.1. The distribution for m was changed to a normal distribution with μ = 3 and σ = 
0.5. Once m is selected, the value of κ is obtained via conditional sampling through the relations 
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where κpt is the "point-estimate" of κ with distinct values for Z < 2 (1000) and Z > 2 (624), uκ is a relative uncertainty 
sampled from a normal distribution with μ = 1 and σ = 0.25 for Z < 2 and σ = 0.11 for Z > 2, and cκ(m) is the 
correlation function. The cumulative probability distribution for Σ0/αγ was represented by the Gompertz equation,  
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with αγ = 6.24, B = 2104/6.24, and C = 1109/6.24. Fig 9 shows a direct comparison of the quality factor models for 
selected ions as a function of kinetic energy.  
 

 
Fig 9. Comparison of NSCR2020, ICRP 60, and UNLV2017 quality factor models for 1H (A), 28Si (B), and 56Fe (C). 

To facilitate direct comparison, the quality factor (Q) values have all been divided by a static DDREF value of 
1.5. Solid and dashed lines correspond to median and 95% CL bounds, respectively.  
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To provide consistency between UNLV2017 and the other models, all quality factors have been divided by a 
constant dose-rate effectiveness factor of 1.5. It can be seen that the scaled quality factor models exhibit roughly the 
same qualitative behavior as a function of ion charge and kinetic energy. However, significant differences exist in 
the median values (solid lines) and 95% CL bounds (dashed lines), especially for the heavy ions. The UNLV2017 
medians and 95% CL bounds appear systematically lower than the predictions from NSCR2020. This occurs for two 
main reasons. First, for high-LET ions and low energy protons, the second term in the expression for Q dominates, 
and the magnitude of the quality factor is dictated by the Σ0/αγ parameter with median values of 6300/6.24 and 
2510/6.24 for NSCR2020 and UNLV2017, respectively. Second, the assumption that dose-rate effects can be 
neglected for heavy ions in the UNLV2017 model implies that Q is unmodified by DDREF for high-LET ions. 
However, this same assumption is not applied in the NSCR2020 model and effectively reduces the estimated 
Q/DDREF values shown in Fig 9. Such differences have significant impacts on risk assessments, as will be shown in 
the next section. 
 
IV. Results 
 
Previous modeling efforts have focused on reducing uncertainty through refinements to the individual sub-models 
described in the previous section as a means to increase permissible mission durations. However without major 
advancements in our scientific knowledge about the relationship between risk and dose, reducing uncertainties by 
several fold, as envisioned for Mars missions, is not achievable. Moving to an ensemble framework for risk provides 
an opportunity to shift the focal point of risk projection from a region of uncertainty, sensitivity, and subjective bias 
(R95%) toward a region of stability and general agreement between models where the bulk of experimental and 
epidemiological data lie.   Here, we shift our modeling focus to emphasize enhanced strategies for decision-making 
when faced with these large uncertainties.  
  
IV.I Comparison of ensemble risk projection with NSCR2020 
 
Combining the multiple sub-models described in the prior section provides a hybrid PP/MM ensemble risk 
projection tool, wherein each sub-model contains its own description of parameter uncertainty and the combination 
of multiple models provides a framework to begin quantifying model-form uncertainty. Fig 10 notionally illustrates 
how the various sub-models are combined.  
 

 
Fig 10. Visual depiction of current sub-models evaluated in the multi-model ensemble risk projection tool with 

green lines representing 48 distinct combination of sub-models. Distinct paths through the ensemble are 
highlighted as black (NSCR2020), red (UNLV2017), purple (ORCRA2017), and green (RadRAT) lines. 
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Colored boxes along the bottom of the figure identify the major components of REID being represented with 
multiple sub-models with each line in the figure representing an ensemble REID estimate passing through a distinct 
combination of sub-models. NSCR2020 is currently considered NASA’s best estimate of individual sub-model 
implementation (black line) and is considered the "anchor model" of the ensemble. Additional distinct paths through 
the ensemble framework have been identified for comparison as illustrated by the highlighted purple, red, and green 
lines. In the following sections, REID results implementing multi-model ensemble methods are compared to 
highlight variations associated with the selection of specific sub-models (identified in Fig 10) as well as comparison 
with the anchor model (NSCR2020) and full ensemble distribution.  
 
Fig 11 shows the probability density functions and cumulative probability functions formed by the individual 
ensemble members for an extended lunar orbital DRM. Panel A shows the probability densities for the ensemble 
median, anchor model, and bounding ensemble members. Cumulative probabilities for the ensemble distribution 
(color contour), ensemble median, and anchor model are shown in panel B. The ensemble median and anchor model 
fall near the middle of the path formed by the collection of individual members. The ensemble distribution was 
calculated from the ensemble member cumulative probabilities as follows. For a given percentile (y-axis of panel 
B), the inverse cumulative probability function of each ensemble member is evaluated. This creates a set of 48 
discrete REID values from which a continuous distribution can be estimated to represent the level of agreement 
amongst the ensemble members.  
 
Kernel density estimation (KDE) has been used in this initial phase of development to describe the continuous 
distribution with equal weight given to the ensemble members. The KDE bandwidth parameter was set as 
Silverman’s rule of thumb [Silverman 1986] with a scaling factor of 1.5 to ensure all ensemble members fell within 
the KDE distribution at each percentile. Generating theses probability distributions over the range of percentiles 
from 0 to 1 yields a continuum of distributions shown as the contour plot in Fig 11B. We also obtain a median value 
at each percentile to form the ensemble median (dashed lines). Areas of dark green indicate close agreement 
amongst the ensemble members while areas of light red indicate increased dispersion. The color contour indicates 
regions of consensus amongst ensemble members and should not be interpreted as with the most probable REID 
value for this lunar orbital DRM. Alternate methods for combining member and sub-model results into an ensemble 
distribution are discussed in Section VIII. 
 
 

     
Fig 11. Ensemble risk of exposure induced death (REID) distribution for an extended lunar orbital design reference 

mission with an effective dose of 185 mSv. Probability densities are shown in panel A for the anchor model 
(solid line), ensemble median (dashed line), and ensemble extremes. Bounding ensemble member values are 
provided in the plot as Rmed [R95%]. Ensemble cumulative probabilities are shown in panel B. The contour heat 
map is obtained from a kernel density estimation of the ensemble members, where green is used to indicate 
increased member agreement relative to red.  
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As discussed, the ensemble risk model has been developed to extend our understanding of uncertainties to include 
model-form contributions. Each of the single model ensemble members are able to characterize parameter 
uncertainties, seen in Fig 11A as the width of a given probability density function (i.e. fold-factor of R95%/Rmed 
discussed in Section II.I). The bounding probability density functions highlight the broad diversity of R95% and Rmed 
values calculated by the relatively limited set of sub-models being considered. These variations are largely driven by 
quality and DDREF sub-models (see Appendix B or Supporting Information: Impact of sub-model selection on 
ensemble risk prediction).  
 
Model-form uncertainty is more easily seen in Fig 11B as the width of the contour at a given cumulative probability.  
For example, the ensemble member Rmed values are found at a cumulative probability of 0.5 and vary between 
0.51% and 1.18%. The shaded green contour in this region suggests some level of consensus amongst the members 
relative to much greater dispersion at higher confidence levels. The R95% values are found at a cumulative 
probability of 0.975 and can be seen to vary between 1.59% and 5.15%. The ensemble results of Fig 11 provide 
visual evidence of additional uncertainty in REID calculations at the upper 95% CL that are not accounted for by 
any single model or the current NASA PEL. Techniques to combine parameter and model-form uncertainties into a 
single scalable quantity are evolving and will necessarily implement advanced statistical methodologies [Hubin and 
Storvik 2019]. 
 
A qualitative comparison between the anchor model, ensemble members, and ensemble distribution is shown in Fig 
11 and clearly illustrates the spread of Rmed and R95% values within the ensemble. While likelihood metrics have been 
used in other applications of ensemble forecasting to communicate forecast skill and/or degree of certainty of 
member models [Ray and Reich 2018; Kelly et al. 2019], there is a lack of statistically significant data for human 
space radiation health effects data to assess or score model prediction on actual outcome. However, application of 
similar methods may be used to statistically evaluate the level of agreement between models or deviation from the 
ensemble median.  
 
The Jensen-Shannon (JS) divergence [Schutze and Manning 1999] can be used to assess the overall level of 
agreement between two probability distributions and provides a simple metric for simultaneously comparing all of 
the distinct ensemble members to the ensemble median. The JS divergence between two probability density 
functions, f and f0, is calculated as  
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The quantity DKL is the Kullback-Leibler divergence [Kullback 1978], or relative entropy for two distributions. For 
identical distributions, the JS divergence is zero, while larger values of JS indicate growing differences between the 
distributions being compared. Here, the ensemble median is taken as f0, and the JS divergence is calculated for each 
of the ensemble members.  
 
Fig 12 provides the JS divergence values for individual ensemble members compared with the ensemble median. 
The two latency models yield nearly identical REID distributions, and the JS divergence values exhibited the same 
behavior. Therefore, only the NSCR2020 latency model is used in Fig 12. It can be seen that the path formed by 
NSCR2020 sub-model options (red text) produces a REID distribution that is closest to the ensemble median 
(smallest JS value). Also evident in the plot are the large JS divergence values associated with the UNLV2017 
model and ORCRA2017 DDREF model. This perceived disagreement is not surprising based on results in the 
previous section, and it highlights the value of incorporating models based on different formalisms or assumptions 
into the ensemble. Additional independent models are needed to provide further insight into model-form 
uncertainties and strengthen ensemble projections. While these comparative measures confirm intuitively what we 
expect, an unbiased means to quantify the degree of relative agreement between ensemble member distributions will 
become increasingly important as future models employing different approaches are added (Fig 5). 
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Fig 12. Comparison of distinct ensemble member REID distributions to the ensemble median using JS divergence as 

a measure of overall agreement. NSCR2020 (bottom row, bold red text) and two ICRP60 quality paths (green 
text) provide the closest agreement with the ensemble median.  

 
 
IV.II Utilizing ensemble methodologies to inform risk-based decisions  
 
NASA’s current PEL specifies R95% as the quantitative value upon which radiation cancer risk for a given mission is 
deemed acceptable or not. The current single risk model NSCR2020, used to assess astronaut cancer risk, accounts 
for assumed parameter uncertainties. However, model-form uncertainties are not accounted for by NSCR2020, or 
any of the single models of the ensemble, and it is not explicitly considered in the NASA PEL. Figs. 3 and 11 have 
shown that the R95% value is itself uncertain and sensitive to underlying model assumptions, suggesting that a 
broader perspective of the risk landscape is needed to avoid a false sense of accuracy and precision becoming 
embedded in the decision-making process for risk acceptance.  
 
Ensemble-based risk projections offer a broader understanding of uncertainties which can support the focus of 
decision making toward a region with more stability and certainty and shift focus away from a region of sensitivity 
and uncertainty (R95% of a single model). In Fig 13, we show the KDE ensemble distributions obtained at the 50th, 
83.3rd (upper 67% CL) and 97.5th (upper 95% CL) percentiles of Fig 11B. These curves correspond to the KDE 
distributions described in the previous section at the specified percentiles. The width of each distribution can be 
interpreted as an initial measure of model-form uncertainty.  
 
The spread of ensemble member median values, represented by the green distribution, covers a relatively narrow 
REID interval. This level of agreement is expected since the models considered in the ensemble are fundamentally 
similar and anchored to similar experimental and epidemiological data. Of greater interest is that model projections 
at the upper 67% CL become increasingly spread apart, as can be seen by the orange distribution covering a broader 
REID interval. Even greater divergence is seen in the distribution of upper 95% CL values, represented by the red 
distribution, where models are forced to increasingly extrapolate beyond limited biological data sets (See also Kappa 
discussion in Section II.I Challenges in space cancer risk projection).  
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Fig 13. Ensemble distributions of the risk of radiation exposure induced cancer (REID) for the median, upper 67% 

CL, and upper 95% CL. A) Sustained lunar orbital DRM. B) Mars mission DRM (22 month orbital).  
 
 
V. Discussion 
 
Ensemble forecast methodologies provide a means to systematically compare multiple predictive models, sub-
models and uncertainty estimates, as well as the influence models as they are developed. Increased efforts to develop 
alternate models, such as biologically-based models, and implement new epidemiological data sets can improve the 
characterization of model-form uncertainties. Additional independent models cannot significantly reduce 
uncertainties in regions that extrapolate beyond current observations (e.g. upper 95% CL) without a significant 
amount of new and relevant experimental and epidemiological data. However, in the absence of new data, additional 
models can help clarify the limitations of current scientific knowledge and data. Model-form uncertainties at less 
extreme confidence levels, such as the 67th, may benefit from the addition of new independent models but will still 
require new data to be appreciably reduced. On the other hand, improvements in the ensemble median can be 
expected if new independent models are added, resulting in an ensemble risk projection that is more skillful than its 
constitutive terms [Tebaldi and Knutti 2007]. Additional experimental data sets can support the reduction of 
parameter uncertainties and better inform model development in extrapolating beyond available data.  Models that 
account for the known uncertainties not currently represented in risk projections (gray boxes of Fig 5) will also be 
needed to better inform risk-based decision making especially as mission durations increase beyond our current 
experience base.   
 
V.I Addressing model-form uncertainty 
 
The ensemble risk framework described here makes use of available sub-models used to project radiogenic cancer 
risks. Except for the case of radiation quality, the current ensemble results do not yet reflect variations associated 
with fundamental assumptions or theories. For the ER models, the variation in REID was small compared to other 
factors, and is mainly attributed to differing age-dependencies in the parametric representations used by BEIR VII, 
UNSCEAR, and Preston. For the DDREF models, the variation shown is largely attributed to data selection in the 
UNLV2017 model and the use of ensemble methodologies that increased the likelihood of inverse dose-rate effects 
in the ORCRA2017 model. In the case of radiation quality, the UNLV2017 model is based on the same risk cross 
section and initiation/promotion model as NSCR2020. However, the added coupling between DDREF and radiation 
quality in the HZE penumbra region of the track distinguishes the two models and leads to significant consequences 
on REID estimates. The radiation quality model comparisons provide an initial look at addressing model-form 
uncertainty and quantifying the impact of model assumptions on overall risk posture.  With the current models 
largely based on the same data sets, these comparisons are especially beneficial in situations where one assumption 
may be just as valid as another but, as shown, can have large implications at the 95th CL.  
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Additional space-relevant data sets and/or model development will be needed to further quantify model form error in 
risk predictions. For example, NSCR2020 assumes similarities in the spectrum and aggressiveness of tumors arising 
from high- versus low-LET while reported results using various animal models differ in outcome [Edmondson et al. 
2020, Datta et al. 2013, Trani et al. 2010, Alpen et al. 1993].  Likewise, it is assumed that the biological response 
from a mixed field irradiation (particle type and energy), as would be found in space, can be determined by simple 
additivity or by directly adding responses from individual ions and energies.  However, results for Harderian gland 
tumorigenesis [Siranart et al. 2016] and lung cancer tumorigenesis [Luitel et al. 2020] in murine models suggest that 
synergies between particles may exist and that more complex additivity models need to be considered. Emerging 
models for non-targeted effects (NTE), which have a significant influence on low-dose extrapolations expressed 
through RBEs, are being developed and have been shown to significantly impact radiation quality factors [Cucinotta 
and Cacao 2017, Matsuya et al. 2018]. Given the large cohorts and associated costs of low dose studies, a general 
lack of animal data exists across high risk tissues, doses, and particle types from which to resolve NTE model 
parameters [Chappell et al. 2020; Cucinotta et al. 2017].  Collectively, these examples imply that scaling procedures 
used to compute REID impose some level of uncertainty that is not currently accounted for in the present models.  
 
Inclusion of other sub-models relying on fundamentally different approaches can further address model form 
uncertainty. Current models for ER rely mainly on LNT to extrapolate epidemiological data to low dose; however, 
alternate dose response models using multi-model inference techniques have been developed for specific tissues 
[Kaiser and Walsh 2013] and additional epidemiology data sets are being evaluated (discussed next section) that can 
be implemented within the ensemble framework. Other measures and or models of radiation quality can be 
considered in future efforts, including the potential utilization of a radiation effects ratio (RER) [Shuryak et al. 2017] 
in a narrow mission-relevant dose region, mixed-field quality factors, and coupled mixed-field/dose-rate 
multiplicative factors.  Results from on-going research studies at the NSRL and the Colorado State low dose neutron 
facility [Simonsen et al. 2020, Borak et al. 2019] will supply a body of evidence to further inform model-form 
structure and the weighting (other than equal weighting) of various sub-model contributions accounting for mixed-
field quality effects as well as dose-rate effects.   
 
V.II Future ensemble members 
 
While the current number of sub-models and distinct models may be limited, numerous development activities are 
underway that will provide additional data-sets and methods for inclusion, given similar endpoints of REIC or REID 
as shown in Fig 5 (red boxes).  Ideally, model-form error can best be addressed by incorporating additional risk 
projection models that: 1) are independently developed (e.g. international models), 2) utilize different underlying 
epidemiology (i.e. Million Person Study, INWORKS), and/or 3) consider vastly different modeling approaches (e.g. 
biologically-based) and different modeling concepts as described above (e.g. non-targeted effects, RER vs. RBE, 
mixed-field quality factor).   
 
Future ensemble modeling will compare results from ongoing epidemiological investigations conducted by the 
National Council on Radiation Protection (NCRP) including the "One Million U.S. Radiation Worker and Veteran 
Study [Boice, 2012, 2014; Bouville et al. 2015]," and the "Evaluation of Sex-Specific Differences in Lung Cancer 
Radiation Risks and Recommendations for Use in Transfer Models (SC 1-27)."  The Million Person Study is a large-
scale epidemiological investigation of one million U.S. radiation workers and atomic veterans (those exposed to 
ionizing radiation while present in the site of a nuclear explosion during active duty) with a study population 20 
times larger than the adult Japanese study population [Ozasa et al. 2012] and more space-relevant exposure rates and 
individual exposures having cumulative doses >100 mSv [Bouville et al. 2015].  Inclusion of this data set has the 
potential to reduce the uncertainties in the REID by removing the need to adjust for differences between a Japanese 
population and a Western population and by minimizing or reducing the need for a DDREF adjustment [NCRP 
2014]. The "Sex-Specific Differences in Lung Cancer" study will specifically evaluate whether a sex difference 
exists across multiple available exposed populations and provide recommendations as to whether changes should be 
made in the sex-specific lung cancer risk coefficients used when transferring risks from one population to another. 
These studies aim to reduce uncertainties in the projected REID and confidence interval by inclusion of a large US 
population of healthy workers who are more representative of the astronaut corps (e.g., similar with respect to 
health, ethnicity, and lifestyle factors) and consideration of protracted rather than acute exposures compared with the 
1945 Japanese atomic bomb survivors. In summary, narrower probability distributions can presumably be achieved 
by removing the need to adjust for these population differences (transfer function weighting), by utilization of 
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additional epidemiological data in assigning sex-specific risk factors, and by minimizing or reducing the need for a 
DDREF adjustment.   
 
Likewise, sub-models of excess risk, latency, and dose-rate extrapolation can include results from on-going 
international studies including those of the Inter Agency for Research on Cancer (IARC) and the International ICRP. 
The IARC is coordinating epidemiology studies of international workers in the nuclear sector (INWORKS) to 
examine the risks of cancer and non-cancerous diseases linked to chronic ionizing radiaton exposure at low doses  
and low dose-rates in cohorts of French, British, and American workers [Hamra et al. 2015].  The ICRP is currently 
reviewing available data on the estimation of risk at low doses in their Task Group 91, "Radiation Risk Inference at 
Low-dose and Low-dose Rate Exposure for Radiological Protection Purposes." The report will make 
recommendations on alternative approaches of assessing the slope of dose response at high doses and then applying 
a DDREF reduction factor; or by inferring the risk coefficients at low doses using all available information and 
techniques of Bayesian analysis for estimating the best expert judgment.  
 
In addition to the further development and handling of sub-models, available "full" risk models can be included in 
the ensemble such as those models under consideration by ESA and JAXA (given similar endpoints, %REID) 
[Walsh et. al 2019, McKenna-Lawlor 2014]. For example, ESA is promoting the development of a space radiation 
risk model based on European-specific expertise in transport codes, radiobiological modeling, risk assessment, 
and uncertainty analysis for both cancer and non-cancer endpoints in support of exploratory class missions [Walsh et 
al. 2019]. Comparative analyses of models can support the ICRP’s evaluation on how to harmonize international 
models and dose limits for deep space exploration missions [ICRP 2019]. These may be included as distinct models 
in the ensemble for comparison to the anchor model and weighted ensemble result. This is analogous to 
incorporating two of the most well-known models for weather forecasting, namely the U.S. National Weather 
Service’s Global Forecast System and the European Centre for Medium-Range Weather Forecasts, as part of the 
National Hurricane Center’s ensemble of independent models to forecast the cone of hurricane tracks and intensity.  
Methods of ensemble weighting and the development of model entrance and exit criteria into the ensemble will need 
to be developed. Value of Information (VoI) analyses and expected value of perfect information (EVPI) methods 
can be used to guide research to understand the potential value of resolving uncertainty between model projections 
[Li et al. 2019].   
 
V.III Ensemble weighting 
 
A central issue in ensemble modeling is how to weight the projections when they are combined to support decision 
making or action. Bayesian techniques used in weather forecasting have been successfully extended to 
epidemiological applications wherein multiple projections from a single parametric model are combined to compare 
the efficacy of various control actions on disease outbreaks [Lindström et al. 2015, Park et al. 2017]. Probabilistic 
projections of disease have also been scored using a log-likelihood (ignorance) score or mean log scores when 
comparing projected outbreak size to actual size [Kelly et al. 2019, Ray and Reich 2018]. Even a simple average of 
the ensemble member predictions (i.e. the ensemble mean) often produces a more skillful forecast than any 
individual ensemble member, and the variation or spread of the ensemble members can provide a measure of 
forecast uncertainty. Taking the consensus approach a step farther, "corrected" consensus models assign different 
weights to each member model in an attempt to account for bias or systematic errors of individual members. 
 
Although in principle, the ideas of ensemble forecasting applied to weather and disease/immunization applications 
seem reasonable and practical to extend to astronaut risk projection, there are limitations that must be considered. 
Weather applications rely on a wealth of data to validate past performance of ensemble members, assign model 
weights, and set entrance and exit criteria within the ensemble forecast. Even with 20 years of International Space 
Station operational experience, there remains a statistically small number of individuals exposed to space radiation. 
Thus, REID cannot be directly measured or evaluated in the astronaut cohort, making it difficult to apply these same 
ideas in ensemble cancer risk projection. Additional data sets on dose-rate and quality effects, although limited, are 
forthcoming to support weighting of sub-model members; however, the fact that many sub-models rely on similar or 
identical data sets hinders a priori sub-model weight assignment in the ensemble risk projection. While the choice of 
equal weights is subjective, it provides a reasonable starting point for software development.  
 
Additional methods to improve the integration of ensemble member results are currently being considered. One 
method is a direct extension of the current formalism, wherein the equal weights can be replaced with subjectively 
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designated weights assigned to the paths taken within the code (as shown in Fig 10) to account for perceived sub-
model errors and bias. In this approach, individual sub-models in the main categories can be assigned weights based 
on direct comparison to available data, subject matter expert opinion, and other considerations related to maturity 
and reproducibility of the model. In the case of the radiation quality factor models, for example, the ICRP 60 quality 
factor may be given a lower weight since the assigned uncertainties are overly conservative and the model no longer 
fully reflects the state of knowledge and research in the field. However, the assignment of weights to individual sub-
models carries with it a host of questions which are ultimately resolved with perhaps an unwanted degree of 
subjective decision-making.  
 
A second method takes a more statistical approach by considering the region of overlap between multiple predictive 
models from which to infer uncertainty and determine weights objectively. Bayesian model averaging or 
combination [Fragoso et al. 2018] is a possible avenue by which ensemble member weights may actually be 
inferred, instead of specified. A complicating feature of these methods, however, is that the underlying members 
making up the ensemble must be compared against some true, or measured, value(s). Other methods may consider 
using log-likelihood or mean log scoring of probabilistic projections to evaluate likely agreement or deviation from 
NASA’s operational model. Analyses will necessarily focus on evaluating the extent to which models agree and on 
understanding the underlying assumptions driving large uncertainties where models deviate. Alternate approaches 
for ensemble member weighting and combinatorial methods will be a priority of future research efforts.     
 
V.IV Implications for potential updates to crew permissible exposure limits  
 
NASA’s current PEL has been in place since 2003 [NASA 2014] and was deemed both "reasonable" and 
"achievable" given the corps of astronauts and the types of LEO missions that NASA was performing. In 2014, a 
supplementary review found the application of the 95% CL to the 3% REID for cancer prudent and appropriate for 
LEO missions given the currently accounted for uncertainties in knowledge about the biological effects of space 
radiation (Table 1), and the potential implications of additional uncertainties not currently accounted for in NASA’s 
risk model (e.g. gray boxes of Fig 5) [NCRP 2014]. With new missions being planned beyond LEO, NASA 
OCHMO, per established processes [NASA 2016], is reviewing the applicability of the current radiation health 
standard (https://www.nationalacademies.org/our-work/assessment-of-strategies-for-managing-cancer-risks-
associated-with-radiation-exposure-during-crewed-space-missions). Additionally, for consistency in risk 
communication with other spaceflight health risks [NASA 2013], NASA is considering radiation risk reporting of 
likelihood (and consequence) using a measure of central tendency (e.g. Rmed) with the confidence interval presented 
as a measure of precision to ensure a clinical focus. This is in contrast to risk communication solely at the 95th CL 
which may actually provide a false sense of certainty given that the REID at such a high CL is a highly sensitive 
quantity and heavily influenced by subjective assumptions and incomplete biological data. 
 
Here we have more comprehensively characterized risk through ensemble methodologies based upon available 
published models and epidemiology which can be readily implemented within this newly developed framework. 
Parameter uncertainties and now model-form uncertainties are considered to support decision-making when faced 
with these large uncertainties. Several important conclusions can be drawn: 1) as a measure of ensemble model 
central tendency, the distribution of medians (Rmed) is narrow (Fig 13) with underlying models in relative agreement 
(with the caveat that they are largely based on similar assumptions and data); 2) the distribution of upper 67% CL 
values (R67%) includes conservatism to account for uncertainties ascertained by limited experimental and 
epidemiological data with only moderate dependence on underlying model assumptions; and 3) large model-form 
uncertainties exist where the current PEL is defined (R95%) and are largely driven by subjective assumptions lacking 
robust experimental and epidemiological support (Fig 13).  
 
Thus, for risk reporting to flight surgeons and crew, the ensemble median with a range of values defined at the upper 
67% CL and upper 95% CL would align more closely with clinical practices and better communicate the current 
state of knowledge and known uncertainties. For the sustained lunar orbital DRM considered throughout this work, 
the ensemble-based risk projection (for a 35-year-old female) could be reported as a median REID of 0.78%+0.21% 
with an informed upper bound of 1.40%+0.47% and a conservative upper bound of 2.62%+1.18%. Here, "informed" 
and "conservative" upper bounds to refer to the upper 67% CL and upper 95% CL, respectively. For the Mars 
mission DRM, the risk projection would be reported as a median REID of 2.97%+0.79% with an informed upper 
bound of 5.25%+1.72% and a conservative upper bound of 9.62%+4.06%. The understanding of uncertainties is 
required in communicating risk to crew for informed consent and personal clinical management and equally to those 
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responsible for decisions in allowing higher risk to meet National exploration mission objectives. Risk reporting 
solely at the median does not include sufficient information to ensure adequate protection of crew long-term health 
and mission objectives.  
 
Likewise, the ensemble risk projection offers additional information to support revisions to the current PEL in the 
short term, in spite of the limited number of sub-models available. As a notional example, a revised PEL that 
maintains nearly the same level of risk tolerance as the current PEL (Rmed on the order of 1%) could be considered 
such that: "planned career exposures do not exceed a 2% REID for cancer mortality evaluated at a 67% confidence 
level to limit the cumulative effective dose (in units of Sievert) received by an astronaut throughout his or her 
career."  In this example, the confidence level has been adjusted downward from 95% to 67% because of the large 
ensemble model divergence at the upper 95% CL (Fig. 13) and its sensitivity to subjective assumptions (Fig. 3). In 
doing so, the limiting risk value of 3% must likewise be adjusted downward to maintain a similar level of risk 
tolerance as the current PEL.  In both cases, the ensemble prediction of a 3% REID at the 95th CL and a 2% REID at 
the 67th% CL provide an estimated Rmed on the order of 1%; however the 2% REID at 67th CL is a more stable 
quantity amenable to operational implementation. Similarly, higher (or lower) risk acceptance (Rmed) at other CLs 
(presumably less than the 95th) can easily be evaluated using these methodologies to inform PEL updates.  While 
implementation of an ensemble framework with the addition of model-form uncertainties may seem to further 
complicate PEL definition, in an operational setting it is quite the opposite whereby the PEL can now be defined in a 
more stable region of the probability distribution function (where parameter and model-form uncertainties 
converge). Similar to weather and disease prediction, greater confidence in results is gained through implementation 
of ensemble methodologies capturing the state of multiple models rather than reliance on a single model.         
 
Consistent with other spacefaring nations who implement dose-based limits, this methodology can reliably inform a 
dose-based PEL system based on a defined risk posture that NASA deems acceptable.  In the current example (with 
Rmed equal to approximately 1%), a 35-year-old female’s planned career exposure would not exceed a cumulative 
effective dose of 186 mSv to limit cancer mortality to < 2% REID at the 67th CL.  This maintains a relationship 
between risk and dose such that as major advancements in scientific knowledge and our understanding of 
uncertainties evolve, the physical quantity of dose can be modified in NASA Standards. This is in contrast to above 
where %REID remains the defined PEL quantity and exposure (mSv) is operationally controlled through risk 
projections and PMDs. The establishment of the CL at a quantity between >50% to 95% allows for an increased 
exposure limit if substantial reductions in uncertainty are realized with the greatest impact at the highest set CL.  
Thus, a balance would need to be maintained in this region – that is, not setting the CL artificially low such that 
advancements in knowledge (uncertainty reduction) barely influence limits or too great where subjective decisions, 
not anchored by sufficient empirical evidence, dominate.  Analyses such as these can provide insight to help define 
an appropriate CL to adequately account for both parameter and model-form uncertainties. 
 
In reviewing the applicability of the current health standard and available clinical evidence base, the specific 
numerical values (%REID and CL) will need to be specified to reflect NASA’s acceptable risk tolerance for 
missions beyond LEO. Utilizing the methodologies described here will provide a more complete picture of the risk 
landscape for stakeholders and decisions makers should PEL changes be pursued. Establishing a limit at an 
acceptable risk at the central tendency or median value where there is good agreement and then applying a ‘safety 
factor’ to account for uncertainties in a region that is not driven by model bias (e.g. at the 67% CL) provides for a 
more stable assessment. In these examples, central tendency is reported and the PEL is anchored to a region with 
greater certainty based on existing evidence. Additional reporting at the upper 95th captures an indication of 
uncertainty levels due to incomplete biological knowledge consistent with NCRP reports and recommendations. 
Ideally, as research evidence increases fundamental and mechanistic knowledge, uncertainty bands will shrink and 
support ensemble member weighting (versus equal weighting) such as previously discussed with respect to dose-
rate.  Likewise, inclusion of future ensemble sub-models and models will further inform confidence level bands.  
 
VI. Conclusions 
 
Results incorporating multiple risk projection models and underlying sub-models within an ensemble-based 
framework can be directly compared with NASA’s operational model to improve our understanding of uncertainty, 
provide a range of insights from the selection of specific sub-models, and avoid bias arising from the use of a single 
model. Given the current available models and state of knowledge, NSCR2020 is a reasonable estimate of cancer 
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risk projection with a median and 95% CL close to the ‘equal-weighted’ ensemble model prediction described here. 
This general agreement is expected and is largely due to the underlying sub-models based on the similar approaches, 
epidemiology, and experimental data sets. However, in assessing parameter uncertainty and now model-form 
uncertainty jointly, a broad range of values exist in the probability distributions at the upper 95% CL where the 
current PEL is defined, largely due to model extrapolations beyond our state of knowledge. Thus, crew permissible 
mission durations are being defined in a very dynamic portion of the REID probability distribution, essentially 
where the "tail is wagging the dog," while a comparison of the ensemble median and 67th CL provides relatively 
narrow estimates where models are more stable and certain.  The sensitivity of subjective model assumptions 
contributing to uncertainty at the 95% CL can be readily evaluated in an ensemble framework to inform PELs and 
acceptable permissible mission durations for crew. 

Within the developed framework and selection of sub-models, the selection of DDREF sub-models has the greatest 
impact on REID – a factor of 3 from UNLV2017 compared with ORCRA2017 in the current assessment.  Emerging 
data sets from the NSRL will support the weighting of ensemble members and provide additional data sets for sub-
model development.  Inclusion of additional risk projection models that are independently developed (e.g. 
international models), consider vastly different modeling approaches (e.g. biologically-based), utilize different 
underlying epidemiology (i.e. US million person data), and/or different modeling concepts (e.g. non-targeted effects, 
RER vs. RBE, mixed-field quality factor) can improve our understanding of uncertainty in the ensemble forecast. 
Future work will incorporate new models and data sets which meet model entrance criteria and incorporate the 
appropriate rigorous statistical methods to combine and/or weight multiple risk projections. These basic 
methodologies can be extended to other radiogenic risks, such as cardiovascular or late degenerative neurologic 
diseases, within an ensemble framework where models of dose response and quality can be combined using similar 
statistical analyses discussed here.    

In the long term, ensemble modeling can provide crew, flight surgeons, and policy decision-makers additional 
information for informed decisions on risk acceptance for long-duration exploration missions. This will be 
particularly important if current health and medical standards cannot be met or the level of knowledge does not 
permit a standard to be developed. These efforts support a rigorous process to assure that crew are fully informed 
about risks and unknowns as described by the  Institute of Medicine’s’ report,  Health Standards for Long Duration 
and Exploration Spaceflight:  Ethics Principles, Responsibilities, and Decision Framework" [IOM 2014].   
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Appendix A. NSCR2020 Updates 
 
The NSCR2012 model is described in Cucinotta et al. [2013] and was reviewed by the NAS in 2012 [NCR 2012]. In 
this section, we describe updates to NSCR2012 resulting in the current operational version – now identified as 
NSCR2020. The updates were guided by recommendations from the NAS review as well as a rigorous internal 
check of all underlying models and computational methods. These updates have been incrementally included over 
the past decade resulting in the accepted NSCR2020 version.  
 
The model used to described the GCR environment has been updated from Badhwar-O'Neill 2011 [O'Neill et al. 
2011] to Badhwar-O'Neill 2020 [Slaba and Whitman 2020] which accounts for significant new data from the Alpha 
Magnetic Spectrometer (AMS-02) [Aguilar et al. 2015a,b, 2017, 2018a-c] and the Payload for Antimatter Matter 
Exploration and Light-nuclei Astrophysics (PAMELA) [Adriani et al. 2011, 2013, 2017; Martucci et al. 2018]. Solar 
modulation effects are now described using daily integral flux data from the Advanced Composition Explorer 
Cosmic Ray Isotope Spectrometer (ACE/CRIS) [Stone et al. 1998] as well as the updated international sunspot 
number database [Clette et al. 2016]. The average relative error of the BON2020 model compared to all available 
measurements is found to be <1%, and BON2020 is found to be within +15% of 95% of the available measurements 
(26,269 of 27,646 data points). 
   
Interactions between the ambient GCR environment and mass shielding of the vehicle and human tissue are 
described using the HZETRN2020 transport code with significant updates [Slaba et al. 2020]. Pion, muon, and 
electromagnetic contributions to the radiation field are now explicitly coupled to the nucleon and light ion transport 
solutions, thereby replacing the simplified parametric description used in NSCR2012. Fragmentation models for 
light and heavy ions have been updated [Adamczyk et al. 2012, Norbury et al. 2020, Werneth, et al. 2017, Wilson et 
al. 2020] and options to include external model databases from Monte Carlo simulations are also now available 
[Slaba et al. 2020]. The updated transport code was found to be within measurement uncertainty when compared to 
ISS data constrained over the portion of the trajectory approaching free space conditions (cutoff rigidity less than 1 
GV). Verification and validation studies [Matthia et al. 2016, 2017; Slaba et al. 2017, Wilson et al. 2016] have also 
shown that HZETRN2020 agrees with Monte Carlo simulations to the extent they agree with each other.  
 
Computational human phantoms are employed to describe the mass and location of radiosensitive tissue sites 
throughout the body. NSCR2020 utilizes the Male/Female Adult voXel phantoms [Kramer et al. 2003, 2004] which 
were developed from high resolution images obtained from computed tomography (CT) scans of adult cadavers. 
Model tissue masses were calibrated by Kramer and colleagues [2003, 2004] to match ICRP reference values 
[ICRP2001]. Methods for coupling detailed voxel phantoms to HZETRN have been described [Slaba et al. 2010] 
and independently verified with Monte Carlo simulations [Bahadori et al. 2013]. These phantoms replace the 
outdated Computational Anatomical Man/Female [Billings and Yucker 1973, Yucker and Huston 1990, Yucker and 
Reck 1992] utilized in NSCR2012.  
 
The major terms and sub-models needed to evaluate REID were notionally illustrated in Fig 1. The models for low 
LET excess risk and DDREF implemented in NSCR2012 have been retained NSCR2020. As envisioned, 
background population survival probabilities and cancer incidence and mortality rates have been periodically 
updated as new data become available [Arias et al. 2015]. The NSCR2012 model introduced numerical 
approximations into the calculation of dose equivalent to improve computational efficiency (see equations (6.6) and 
(6.6)' of Cucinotta et al. [2013]). We have removed this approximation so that dose equivalent is calculated directly 
using equation (5) but with the summation moved inside the integral to improve computational efficiency in Monte 
Carlo procedures.   
 
Finally, as discussed in sections II.I (Fig 3) and III.II.IV, modifications have been made to the uncertainties and 
conditional sampling functions associated with the radiation quality factor. The NSCR2012 radiation quality factor 
may be written as [Cucinotta et al. 2013] 
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where the Xtr = (Z*/β)2, E is the kinetic energy (MeV/n), L is the LET (keV/μm), and the parameters  Σ0, Σsparse, αγ, κ, 
and m were described previously in section II.II.IV. For probabilistic sampling purposes, Cucinotta et al. [2013] 
introduced the correlation function defined in equation (15) to constrain the range of κ values that could be sampled 
for each m. The new correlation function for κ is defined in equation (12), and we have introduced a correlation 
function for Σ0 in equation (13). These functions better ensure that the magnitude (Qmax) and location (Xmax) of 
maximal Q is held fixed for all ions and sampled m values. As a result, uncertainties in Q are more directly 
attributed to intended parameter uncertainties and minimize the likelihood of unrealistic quality factor functions 
being sampled in probabilistic analyses. The impact of NSCR2012 and NSCR2020 correlation functions on Qmax 
and Xmax are shown in Fig A1. The NSCR2020 constraints hold Xmax and Qmax fixed for each Z and m, whereas the 
constraints from NSCR2012 only held Xmax fixed for Z > 1.  

 

 

 

 
Fig A1. Constrained quality factor functions from NSCR2012 (left panels) and NSCR2020 (right panels) for m = 2, 

3, 4.  Results are shown for Z = 1 (Panel A), Z = 14 (Panel B), and Z = 26 (Panel C).  
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As a result of the parameter constraint analysis, the distribution of Xmax (location of Qmax along the Xtr axis) could 
also be studied. This distribution must be inferred numerically by evaluating the location of maximal Q for each 
Monte Carlo trial in the probabilistic analysis. The calculated Xmax distribution is related to the prescribed κ 
distribution, but is further complicated by the functional forms of Q and P in equation (19).  Results are shown in 
Fig A2 for the NSCR2012 and NSCR2020 models for Z = 1, 14, 26. For NSCR2012, relative uncertainties for κ 
were assigned as normally distributed with a mean of one and a standard deviation of one-third. In NSCR2020, the 
relative uncertainties for κ have the same mean and standard deviation but are now assumed to be log-normally 
distributed. This seemingly minor change to an uncertainty distribution noticeably modifies the left tail of the Xmax 
probability distributions as shown in the figure. Although there are insufficient experimental data to objectively 
guide the selection of the κ probability distribution (which drives the calculated Xmax distribution), the NSCR2012 
result exhibits unrealistic behavior for Z = 1 and Z = 14 and Xmax < 300. The use of a lognormal κ in NSCR2020 
preserves the intended central tendency of the Xmax distribution but removes the unrealistic behavior for smaller Xmax 
values. Likewise, Fig 3 and discussion in section II.I showed that this minor change retains the central tendency of 
probabilistic REID but noticeably reduces the upper 95% CL value.  
 

 
Fig A2. Calculated probability distributions for Xmax (location of Qmax on Xtr axis) using NSCR2012 and NSCR2020 

probability distributions for κ parameter. Results are shown for Z = 1 (Panel A), Z = 14 (Panel B), and Z = 26 
(Panel C).  
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Appendix B. Sub-model Sensitivity Tests

Sensitivity tests have been performed to examine the impact of individual sub-model selection on REID projections 
for each of the four major components of the risk model - latency, excess risk, DDREF, and quality - described in 
Section III.II. Here, we vary a single sub-model within the NSCR2020 calculation while the other three sub-models 
are held fixed.  Using latency as an example, the NSCR2020 sub-models are fixed for excess risk, DDREF, and 
radiation quality while each of the available latency models described in Section III.II.I are evaluated to yield 
distinct REID distributions. Results for the latency and excess risk sensitivity analysis are provided in panels A and 
B of Fig B1, respectively. Results for the DDREF and radiation quality sensitivity analysis are provided in panels A 
and B of Fig B2, respectively. The Rmed and R95% values for the various distributions are explicitly provided in the 
figures.  

Fig B1. Sensitivity results for latency (Panel A) and excess risk (Panel B) sub-model selection. 

Fig B2. Sensitivity results for DDREF (Panel A) and quality factor (Panel B) sub-model selection. 
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Despite some differences in the underlying latency models shown previously in Fig 6, very little impact on 
probabilistic REID is found. Both the Rmed and R95% values associated with the different latency models exhibit small 
variation, with the RadRAT values being slightly lower. This is attributed to RadRAT predicting increased latency 
for solid cancers compared to the NSCR2020 latency model. Slightly larger variation is observed for excess risk 
sub-model selections (panel B of Fig B1). In this case, the RadRAT median value of 1.03% is noticeably larger than 
the NSCR2020 estimate of 0.83%. This shift in the REID distribution can be attributed to the higher median excess 
risk values from RadRAT (Fig 7), especially for lung and leukemia. Although the R95% values show similar trends, 
the overall uncertainties introduced into the REID distributions by the two models are quite different. The fold-
factors for NSCR2020 and RadRAT were found to be 3.6 and 3.1, respectively. This can be attributed mainly to the 
vastly different parameter uncertainty distributions assigned for lung cancer risks (Fig 7).  

In contrast, the DDREF sensitivity results show significant variation across the sub-model options (panel A of Fig 
B2). The RadRAT and NSCR2020 models yield similar REID distributions, as would be expected based on the 
direct DDREF comparisons shown previously (Fig 8). The ORCRA2017 results exhibit a much larger R95% value of 
4.72%, which can be attributed to the inverse dose-rate effects (DDREF < 1) reflected in the DREF mortality data 
used in their ensemble DDREF model. The UNLV2017 model is based mainly on high-energy proton experimental 
data, producing noticeably higher DDREF estimates than the other models, which subsequently reduces calculated 
REID values.  

Likewise, the quality factor sensitivity results show significant variation across the sub-model options (panel B of 
Fig B2). Most noteworthy is the comparison of the UNLV2017 and NSCR2020 results. While both models are 
based on the same initiation-promotion model [Wilson et al. 1993] and Katz biological action cross section [Katz et 
al. 1971], the UNLV2017 includes additional assumptions regarding the relationship between track-structure and 
dose-rate effects, as described in section III.II.IV. Uncertainties for the NSCR2020 model were assigned based on 
comparisons to RBEmax values derived from experimental data, while the UNLV2017 model relied on RBEγ-acute

values. These differing set of assumptions lead to noticeably different Q/DDREF values (Fig 9) for low energy 
protons and heavy ions which clearly lead to distinct risk projections. 
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