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Adjoints of numerical weather prediction models may be employed for Forecast

Sensitivity to Observation (FSO) in order to monitor the contribution of ingested

observation data on short-term forecast skill. However, the calculation of short-term

forecast error is difficult due to the lack of a truly independent dataset for verification.

In an Observing System Simulation Experiment framework, the Nature Run is able to

provide a true and complete verification dataset and allows accurate evaluation of short

term forecast errors. In this work, an OSSE developed at the National Aeronautics and

Space Administration Global Modeling and Assimilation Office is used to explore the

impact of observational data on forecasts in the 6 to 48 hour range. An adjoint of the

Global Earth Observing System model is employed to compare the observation impacts

estimated using both self-analysis verification and the true Nature Run verification.

Self-analysis verification is found to inflate the estimated forecast error growth

during the early forecast period, resulting in overestimations of observation impacts,

particularly in the 6-12 hour forecast range. By 48 hours, the self-analysis verification

estimates of forecast error and observation impacts more closely match the true values.

The fraction of beneficial observations is also overinflated at short forecast times when

self-analysis verification is used. The progression of impacts of an individual observation

or data type depends on the character of the growth of the initial condition error that

each observation affects.
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1. Introduction1

Millions of observations of the atmosphere are ingested by2

data assimilation systems (DAS) every day as a crucial3

element of operational numerical weather prediction (NWP). The4

contributions of these observations to the forecast skill can be5

monitored and assessed by employing one of the many variations6

of what is referred to as forecast sensitivity to observations (FSO).7

One method of FSO uses adjoint models in order to calculate8

the impact that all ingested observations have on a selected error9

norm without the need to run multiple data denial experiments10

(Baker and Daley 2000, Gelaro and Zhu 2009). The Trémolet11

(2008) extension of the Langland and Baker (2004) approach to12

FSO uses pairs of forecasts in order to estimate the observation13

impact on forecast skill. One forecast starts from an analysis14

field, while the second forecast can be thought of as starting from15

the corresponding background field at the same analysis time.16

The difference in the initial states of these two forecasts is due17

solely to the ingestion of information from observations via the18

DAS. As each of the two forecasts integrates forward in time,19

any differences in forecast skill are considered to be the result of20

the injection of information by observations at the initial analysis21

time.22

The impact of a particular data type or individual observation23

is a function of the forecast length, as the error in the background24

field that is corrected by the observation(s) grows and/or decays25

with model integration in time. Background errors may project26

onto structures that peak at the initial time and then rapidly27

decay, structures that grow exponentially before saturation, or28

structures that are overtaken by model error growth, among many29

possibilities. Some of these differences in error structures may30

vary regionally, such as the difference in error growth in the31

tropics where there are fast convective processes and substantial32

model error as compared to the extratropics, where baroclinic33

dynamics may have errors that grow with longer timescales.34

Because adjoint models employ a linearization of the forecast35

model, relatively short-range 24-hour forecasts are often selected36

when using FSO. However, short forecasts present a challenge37

in terms of verifying the forecast error for adjoint calculations,38

particularly when the self-analysis field is selected to serve as the 39

‘true’ state of the atmosphere. 40

Some recent studies have examined the influence of the choice 41

of verification on estimates of FSO. Necker et al. (2018) compared 42

the use of a set of independent radar observations versus subsets 43

of ingested observations for verification with ensemble FSO. They 44

found that biases in the verification fields had strong effects on 45

the estimated observation impacts. Kotsuki et al. (2019) looked 46

at verification methods with ensemble FSO for short forecasts of 47

6 to 12 hours, comparing self-analysis verification to verification 48

with reanalysis and observations. In their study, using self- 49

analysis verification resulted in overinflated fractions of beneficial 50

observations, particularly at 6 hours. 51

The effects of verification on FSO with adjoint models have 52

also been explored in several studies. Daescu (2009) showed 53

the mathematical basis by which uncertainty in the verification 54

field could result in uncertainty in the calculations of observation 55

impacts. A general expression for the error in self-analysis 56

verification is given in Todling (2013) for any length of forecast. 57

Cardinali (2018) used observations as verification and compared 58

the results with self-analysis for 24-hour forecasts. Jung et al. 59

(2013) found high fractions of beneficial observations at 6 hours 60

using self-analysis verification. 61

Observing system simulation experiment (OSSE) frameworks 62

can be very useful for investigating the behavior of data 63

assimilation systems and the evolution of short-term forecast skill. 64

In an OSSE, the real world is replaced with a simulation from a 65

high resolution NWP model; this simulation is called the Nature 66

Run (NR) and is considered to be the ‘truth’. Observational data 67

are simulated using the NR fields for the same data types used in 68

operational NWP, and are ingested into a different NWP model. 69

Because the ‘truth’ is completely known in the form of the NR, 70

the short term forecast error can be explicitly calculated. Kotsuki 71

et al. (2019) suggested the use of an OSSE to determine the 72

cause of exaggeration of observation impacts with self-analysis 73

verification. 74

Such an OSSE system has been developed at the National 75

Aeronautics and Space Administration Global Modeling and 76

Assimilation Office (NASA/GMAO; Errico et al. 2017). The 77

GMAO OSSE framework includes different versions of the Global 78

Prepared using qjrms4.cls



Evaluation of adjoint-based observation impacts 3

Earth Observing System Model (GEOS; Rienecker et al. 2008)79

used to make the NR and the experimental forecasts, as well as the80

Gridpoint Statistical Interpolation (GSI; Kleist et al. (2009)) data81

assimilation system. This OSSE framework has been extensively82

validated to ensure that the performance is robust and gives83

meaningful results (Errico and Privé 2018, Errico et al. 2013).84

An adjoint of the GEOS model is available (Holdaway et al.85

2014) and can be used in the OSSE framework to explore the86

behavior of observation impacts at short forecast times. The first87

aspect of the FSO that is of interest is the evolution of observation88

impact from the 6-hour to the 48-hour forecast. The progression89

of observation impacts on forecasts of increasing length can be90

characterized for various data types and regions. The adjoint also91

allows the evolution of the impacts of individual observations to92

be traced.93

The second aspect of the FSO that will be explored is a94

comparison of the observation impact estimates calculated with95

self-analysis verification versus with the ‘true’ NR verification.96

This is of particular interest as the NR verification is not97

available outside of the OSSE framework. While observation98

impact estimates are expected to have better accuracy for99

short-range forecasts than for long-range forecasts due to100

linearization limitations, self-analysis verification introduces101

undesirable correlations that are larger at short ranges than at102

longer ranges in the forecast. By comparing the two verification103

methods in the OSSE context, the range of forecasts for which the104

adjoint gives useful results with self-analysis verification can be105

estimated.106

Details of the OSSE framework used in these experiments and107

of the adjoint operator are described in Section 2. The evolution108

of observation impacts at different forecast lengths is explored in109

Section 3, and the comparison of verification methods in Section110

4. Some overall conclusions are discussed in Section 5.111

2. Method112

A numerical weather prediction OSSE framework has been113

developed at the National Aeronautics and Space Administration114

Global Modeling and Assimilation Office (NASA/GMAO), and115

is used for all experiments here. In addition to the standard116

validation techniques (Errico et al. 2013, Privé et al. 2013b),117

validation of the adjoint tool and early forecast error has been 118

performed and is described in Section 2.2. 119

2.1. Experiment Framework 120

The GMAO OSSE framework uses a Nature Run developed in- 121

house and commonly referred to as the “G5NR” (Gelaro et al. 122

2014). The G5NR is a free run of the 2012 version of the Global 123

Earth Observing System Model, at approximately 7-km horizontal 124

resolution with 72 vertical levels, for a two year integration. 125

The G5NR uses archived boundary conditions for sea surface 126

temperatures and sea ice from the 2005-2007 time period, and 127

thus has date-stamps that refer to this time range. However, there 128

is no expectation of synoptic agreement between these dates in the 129

G5NR and the same dates in the real world. 130

Simulated or “synthetic” observations are generated for most of 131

the data types that were operationally ingested at NASA/GMAO 132

in 2015. These simulated observations are meant to mimic real 133

observations. For some conventional data types such as surface 134

observations and aircraft observations, the locations and times of 135

real observations from 2015 are used to interpolate the G5NR 136

fields at the same spatiotemporal locations to create the synthetic 137

data. For rawinsondes, the launch times are taken from real data 138

archives but the rawinsondes drift using the G5NR wind fields. 139

Atmospheric motion vectors are treated differently than other 140

data types, with the synthetic data completely dependent on the 141

distributions of clouds and water vapor in the G5NR for congruity 142

(Errico et al. (2020)). 143

Radiance data including AMSU-A, AIRS, HIRS-4, SSMIS, 144

IASI, CrIS, and MHS are generated using the locations and times 145

of real data, employing the Community Radiance Transfer Model 146

(CRTM; Han et al. 2006) with the G5NR fields to generate the 147

synthetic observations. These simulated radiance observations are 148

affected by the G5NR cloud field to produce observation locations 149

so that the selection of cloud free observations by the DAS is 150

consistent with the NR synoptic state. GPS-RO data are created 151

using real locations of GPS-RO, using the G5NR fields with 152

the Radio Occultation Meteorology Satellite Application Facility 153

software (Culverwell et al. 2015). Full details of the observation 154

simulation process are described in Errico et al. (2017). 155
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The synthetic observations when generated do not have156

the same error characteristics as real observations. Simulated157

errors are added to the synthetic observations to match certain158

statistical characteristics of real data. For example, during the159

calibration process, the statistics of observation counts ingested160

into the data assimilation system (DAS) and the variances161

of observation innovations are matched as closely as possible162

between the synthetic data and real data. Additionally, the163

magnitude of correlated and uncorrelated errors added to the164

synthetic observations are adjusted in an iterative process until165

these statistics are as close as possible to those of real data.166

Uncorrelated random errors are added to all synthetic data types;167

horizontally correlated errors are added to AMVs, AMSU-A,168

HIRS-4, SSMIS, and MHS; channel-correlated errors are added to169

AIRS, IASI, and CrIS; and vertically correlated errors are added170

to rawinsonde, AMV, and GPS-RO observations. Biases are not171

added to the synthetic observations, as the only biases that are172

understood are those that are removed by the bias correction173

scheme used in the DAS. However, the GSI bias correction174

routines are allowed to act upon the radiance data, with bias175

coefficients that were spun up for several weeks of the OSSE176

assimilation prior to the start of the experiments.177

The synthetic observations are ingested by the GSI in its three-178

dimensional variational data assimilation form using the First179

Guess at Appropriate Time approach (FGAT; Lawless 2010 and180

Massart et al. 2010). The GEOS model version 5.17 at C360181

resolution on the cube-sphere (approximately 25 km horizontal182

resolution) is employed for forecasts. This version of the GEOS183

model is approximately five years more recent than that used to184

generate the G5NR, and includes some substantial differences185

in model physics, including the switch from single moment to186

two moment microphysics (Barahona et al. 2014). These changes187

result in some model bias between the G5NR and the forecast188

model, but with less model error than would be expected in the189

real world. This framework can be considered a “fraternal twin”190

OSSE.191

The OSSE model run and data assimilation begin on 10 June192

2006 in the NR timeline, with a spinup period of 20 days. The193

OSSE is cycled through 31 August 2006, treating the period of 1194

July to 31 August as the experimental timeframe.195

The GEOS adjoint model has a moist component that accounts 196

for convective processes (Holdaway et al. 2014). For all FSO 197

calculations in these experiments, the total wet energy (e) norm 198

is used (Ehrendorfer and Errico 1995), as defined by 199

e =
1

A

∑
i,j,k

1

2

[
u
′2
i,j,k + v

′2
i,j,k +

cp
T0
T
′2
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RT
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p0

)′2
+ ε

L2

cpT0
q
′2
i,j,k

]
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where u
′

and v
′

are the zonal and meridional wind errors, T
′

is 200

the temperature error, q
′

is the specific humidity error, A is the 201

area and σk is the fractional mass in the kth model layer for the 202

column of air at the i, jth horizontal gridpoint, L is the latent heat 203

of condensation, cp is the constant specific heat capacity of air, 204

T0 = 270.0K and p0 = 1000.0hPa, R is the gas constant of dry air, 205

and ε is an assigned weighting of the humidity term, here chosen to 206

be 0.3. This norm is calculated for the layers between the surface 207

and 0.7 hPa. 208

The FSO experiments explored in this work involve energy 209

norms calculated for different forecast lengths. A single run of 210

the OSSE and cycling DAS is used throughout the comparisons 211

that follow, with pairs of forecasts initiated at 1800 and 0000 UTC 212

each day. FSO is calculated for 6, 12, 24, and 48-hour forecasts. In 213

each case, two sets of FSO results are obtained, one by verifying 214

the corresponding forecasts with the NR fields (Section 3), and 215

another by self-verifying (Section 4) as is typically done in real 216

operational NWP settings. 217

2.2. Validation 218

Validation is important when working in an OSSE framework, 219

considering that all aspects of the OSSE are simulated, but 220

we use the results of that simulation to infer what occurs in 221

reality. In these experiments, validation of the adjoint estimates 222

of observation impact is critical, as is validation of the analysis 223

error and forecast error growth, since the observation impacts 224

are the primary metric of interest. The real data case used for 225

validation employs the same GEOS model version, starting on 11 226

June 2015 with 20 days of spinup, and validation period of 1 July 227

2015 to 31 August 2015. This time period is chosen to coincide 228

with the period used as the basis for the generation of synthetic 229
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observations for the OSSE. Although the synoptics of the real data230

case differ from those in the OSSE, the global observing network231

is as similar as possible.232

Figure 1 shows the daily mean adjoint estimate of observation233

impact on 24-hour forecast skill with self-analysis verification234

for the real data case and OSSE case. For most data types,235

the estimated observation impact is considerably smaller (40-236

60%) for the OSSE than for the real data, with the exception of237

rawinsonde humidity and AMVs. This result of smaller impact238

is common to NWP OSSEs (Privé et al. 2013b), and generally239

thought to be caused by insufficient model error in the OSSE.240

While there are differences between the model version used for241

the NR and that used for the forecasts, there is less model bias242

and smaller variance of model error than is expected in the real243

atmosphere. Lack of model bias could contribute significantly to244

the smaller magnitudes of observation impacts seen in the OSSE,245

and will be discussed further in Section 5. However, the overall246

relative ranking of observation types by impact in the OSSE is247

similar to real data.248

The analysis increment is selected to validate the amount of249

“work” done by the observations during data assimilation. The250

zonal mean root temporal mean square (RMS) of the analysis251

increments (A-B, where A is the analysis state and B is the252

prior background state) for temperature and zonal wind are shown253

for the Real and OSSE cases in Figure 2. The RMS of the254

analysis increments are approximately 30% lower in the OSSE as255

compared to Real. The spatial structure of the analysis increment256

is similar in both cases. This agrees with the adjoint estimates of257

observation impact having smaller magnitude in the OSSE. These258

results imply that there is insufficient forecast error growth in the259

OSSE, as the magnitude of the analysis increment should balance260

the growth of errors between cycle times (6 hours) if the statistics261

of the analysis error are generally stable in time.262

Note that it would be possible to increase somewhat the error in263

the OSSE during the initial forecast period by adding correlated264

errors with greater magnitude to the synthetic observations.265

However, this would cause the temporal variance of observation266

minus background to be greater in the OSSE as compared to real267

data, and would likely be artificially compensating for insufficient268

model error, at least in part. The magnitude of the errors needed269

to alter the adjoint impact estimates would actually be quite large 270

(Privé et al. 2013a). Instead, we have preferred here to match the 271

observation innovation statistics while keeping in mind that the 272

OSSE adjoint shows smaller impacts when interpreting the results. 273

The short term forecast error growth can be used to inform 274

expectations of the OSSE performance for adjoint estimates of 275

observation impact on forecast skill. Figure 3 shows the short term 276

global root mean square error (RMSE) for temperature (Fig. 3a) 277

at 506 hPa and zonal wind (Fig. 3b) at 226 hPa over the 48 hour 278

forecast period (these are internal model η levels). Three sets of 279

RMSEs are shown: the Real case using self-analysis verification 280

(heavy solid line); the OSSE case using self-analysis verification 281

(thin solid line); and the OSSE case using the NR as verification 282

(dashed line), i.e. the true error. As expected, the self-analysis 283

verification forecast error for the OSSE severely underestimates 284

the true forecast error at short forecast times but approaches 285

the NR-verified error at longer forecast times. The self-analysis 286

verified forecast error in the OSSE is approximately 20-25% 287

lower than the forecast error for the Real case. However, the 288

functional form of the RMS forecast error growth in the OSSE 289

case is similar to that in the Real case. While there are substantial 290

differences between the Real and OSSE case, the consistency of 291

these differences over the range of forecast lengths is encouraging 292

that the OSSE adjoint results are applicable to the real world with 293

suitable adjustments to the magnitudes of observation impact. 294

3. Evolution of Adjoint Impacts 295

The adjoint tool relies on a linearization of the forward 296

numerical weather prediction model to estimate the evolution of 297

perturbations. This linearization is expected to diverge from the 298

behavior of the full forward model as the forecast time increases. 299

The observation impact totalled for all data types captured by the 300

adjoint tool at each forecast length (open circles) is compared 301

to the nonlinear net impact as the solid black circles in Figure 302

4a. This nonlinear net impact is the difference in error between 303

the pairs of forecasts initialized six hours apart. The magnitude 304

of the nonlinear impact increases nearly linearly with forecast 305

length over the first 48 hours, where negative impacts indicate a 306

decrease in forecast errors due to the ingestion of observational 307

information. The adjoint estimate of observation impact also 308
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increases in magnitude with forecast length, but with a slower309

rate of increase and smaller magnitude overall. The fraction of the310

nonlinear impact captured by the adjoint tool (squares in Figure311

4b) decreases from approximately 90% at the 6 hour forecast to312

64% at 48 hours when NR-verified.313

As the magnitude of the observation impact grows over the314

first two days of the forecast length, it is expected that the net315

observation impact must eventually decrease and approach zero.316

This is because the forecast error will asymptote toward a steady317

magnitude as all forecast skill is lost and errors saturate, generally318

sometime after the two week forecast length. As long as the319

forecast remains bounded by a realistic climatology, the RMS320

forecast error will be bounded by the RMS difference between321

pairs of randomly chosen synoptic states. A schematic of the322

growth and saturation of this type of error is illustrated by the323

solid line in Figure 5a, with the corresponding observation impact324

in 5b. This observation impact behavior is expected to occur for325

initial condition errors that project onto growing structures that326

see peak growth after the initial forecast period and then decay or327

reach a saturated state. However, the majority of initial condition328

errors project onto structures that decay, remain constant, or are329

swamped by model errors during the early forecast period (Errico330

et al. 2001). The observation impacts that are associated with331

these fast timescale error structures will therefore have the greatest332

magnitude at the initial forecast time and decrease in magnitude333

as the forecast progresses (dashed line in Figure 5). However,334

due to the linear nature of the adjoint model, the adjoint estimate335

is expected to grow unbounded as time increases (Legras and336

Vautard 1996).337

The normalized adjoint estimates of observation impact for338

each of the different forecast lengths (6, 12, 24, and 48339

hours) are shown in Figure 6 for three regions: the northern340

hemisphere extratropics from 70◦N to 20◦N (NHEX), the341

southern hemisphere extratropics from 70◦S to 20◦S (SHEX),342

and the Tropics from 20◦N to 20◦S. The impacts for each data343

type are normalized by the 24-hour forecast impact for that type;344

this normalization is used to make the progression of impacts at345

different forecast lengths clear for data types having small net346

impacts. Each observation impact for a data type is made up of347

thousands or millions of observations over a two-month period,348

with each individual observation impact potentially projecting 349

onto a multitude of error structures. The net impact behavior 350

of each data type in Figure 6 is a sum of millions of growing 351

and decaying error structures with different magnitudes and 352

timescales, and each line in Figure 3 is a sum of many different 353

lines from Figure 5a. 354

A variety of observation impacts are displayed by the different 355

data types. The extratropical regions are qualitatively similar in 356

terms of observation impact progression with forecast length 357

for most data types. For global AMSU-A, extratropical ATMS, 358

IASI, SSMIS, rawinsonde temperatures, and AMVs, and NHEX 359

AIRS and aircraft and rawinsonde winds, the observation impact 360

magnitude monotonically increases with forecast length. For 361

MHS, GPS-RO, aircraft temperatures in the extratropics, and 362

aircraft and rawinsonde winds and temperatures in the SHEX 363

region, the observation impacts are nearly constant with forecast 364

length. Rawinsonde humidity impacts in the extratropics diminish 365

in magnitude with increasing forecast length. 366

The behavior of observation impacts in the Tropics differs 367

substantially from that seen in the extratropics. For most data 368

types, the peak observation impact occurs prior to 48 hours, with 369

some data types having the greatest impact at the 6 hr forecast 370

(AMVs, surface observations, aircraft winds, and rawinsondes). 371

Notably, AMSU-A is the only data type in the Tropical region with 372

monotonically increasing impacts with longer forecast times. 373

The nature of error growth in the Tropics is expected to differ 374

from that in the extratropics due to the disparate dynamical and 375

physics regimes in these regions. In the Tropics, convective and 376

physical processes with short timescales can lead to rapid growth 377

and then saturation of some types of errors. The humidity field in 378

particular undergoes fast adjustment. Many observation impacts 379

in the Tropics are influenced by processes that are most dominant 380

at the initial time when the model physics act to revert the 381

initial state toward the preferred model climatology or as noisy 382

convective processes that similarly obliterate the information 383

added by observations. For data types that have a peak impact 384

magnitude in the 6-hr to 24-hour forecast length range, the error 385

structures have a short timescale of error growth and saturation, as 386

represented by the dash dot line in Figure 5 with the peak impact 387

close to the initial time. 388
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Error growth in the extratropics is less dominated by the389

types of short timescale convective and physical processes that390

are prevalent in the Tropics, and longer timescale error growth391

associated with large-scale baroclinic and barotropic dynamics392

plays a greater role. As a result, the progression of observation393

impacts for some data types follows the solid or dash-dot lines in394

the schematic Figure 5, with impacts that have peak magnitude for395

longer forecast times.396

In addition to the magnitude of observation impacts, the397

adjoint tool permits the estimation of the fraction of observations398

that beneficially (or detrimentally) affect the forecast skill. Past399

calculations of this quantity by various means (Gelaro et al. 2010,400

Lorenc and Marriott 2014, Hotta et al. 2017, and Necker et al.401

2018) have placed this fraction at slightly higher than 50% for402

the 24 hour forecast timeframe. Jung et al. (2013) and Kotsuki403

et al. (2019) found higher fractions of beneficial observations,404

as much as 60-70%, for 6 hour forecasts. The expectation is405

that as the forecast length increases and the error growth reaches406

saturation, the fraction of beneficial observations will approach407

0.50 as any individual observation may be considered to randomly408

perturb the long-term forecast field. Ehrendorfer (2007) has shown409

analytically that as observations tend toward uselessness, the410

fraction of beneficial observations approaches 0.5.411

The fraction of beneficial observations as a function of forecast412

length with NR verification is shown in Figure 7 for the NHEX,413

SHEX, and Tropics regions. Some data types such as rawinsonde414

humidities, SSMIS, AMVs and GPS-RO in the Tropics, and MHS415

in the extratropics demonstrate the anticipated behavior with the416

largest fraction of beneficial observations at the 6-hour forecast,417

decreasing toward 0.50 with increasing forecast length. The418

largest fraction of beneficial impacts are seen for rawinsondes,419

particularly humidity observations, for forecasts at 6 and 12 hours.420

These largest fractions are on the order of 55-60%, but decrease421

to 50-55% by the 24 hour forecast.422

Beyond the combined statistics of impacts for particular data423

types and regions, the adjoint allows the impact of each individual424

observation to be calculated and traced from the early forecast425

to the multi-day forecast. A question may be posed as to what the426

expectation should be for an observation that has a large beneficial427

(detrimental) impact at a very short forecast time - does this428

observation impact continue to maintain a large contribution as 429

the forecast integrates forward through the first few days, or could 430

the impact tend toward zero or even switch to being detrimental 431

(beneficial)? 432

Because of the many types of error growth that may affect 433

the forecast, the influence of observations should be treated 434

statistically. An example of the probabilistic nature of the 435

evolution of impacts of individual observations is illustrated in 436

Figure 8 for AMSU-A NOAA-19 observations in July 2006. 437

The most beneficial and detrimental observations impacting the 438

6 hr forecast error norm are traced through the 48 hour forecast 439

period. A 2.5σ threshold (where σ is standard deviation) is used 440

to determine which observations occupy the most beneficial and 441

detrimental tails of the distribution of observation impacts. As the 442

forecast progresses, an increasing number of observations switch 443

from beneficial to detrimental, and vice versa. Similar results are 444

found with other data types (not shown). 445

The mean per-observation impact can be calculated as one 446

method of characterizing the behavior of a select subset of 447

observations. In Figure 9, the evolution of per-observation 448

impacts of several subsets of observations are traced through 449

the lengthening forecast period for forecasts initiated at 0000 450

UTC for the month of July. The net per-observation impact 451

of all data for several data types (dash dot lines in Figure 9) 452

is slightly negative (beneficial), and remains so as the forecast 453

extends. The distribution of impacts for all observations has a very 454

sharp peak near the mean per-observation impact (not shown). 455

For those observations that are in either the greatly beneficial or 456

detrimental tails of the distribution of observation impacts at the 457

6 hr forecast time (solid lines in Figure 9), the per-observation 458

impact remains substantial throughout the forecast period, even 459

though the corresponding distributions in Figure 8 show that some 460

observations in the two tails have impacts that change sign at 461

longer forecast times. 462

Because error growth is often nonlinear, some observations 463

that have the most beneficial or detrimental impacts on the 464

48 hour forecast may have minimal or even opposite sign 465

impacts at earlier forecast times. The dashed lines in Figure 9 466

follow the per-observation impact of those observations which 467

occupy the tails of the distribution of impacts for the 48 hour 468
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forecast. The progression of impacts for both beneficial and469

detrimental observations follow an exponential growth pattern,470

with impacts near zero at short forecast times. Comparing the471

sets of observations for the tails of the 6 hr and 48 hour impact472

distributions, approximately 14-27% of the observations that are473

in the beneficial (detrimental) tail at the 48 hr forecast impact474

distribution also occupy the beneficial (detrimental) tail of the 6475

hour forecast impact distribution. Similarly, approximately 30-476

40% of the observations with the greatest beneficial impact477

on the 48 hour forecast skill had detrimental impact on the 6478

hour forecast skill. This is a result that should be taken into479

consideration for approaches that try to selectively eliminate480

observations deemed detrimental based on a particular measure481

of impact assessment (Chen and Kalnay 2019).482

4. Verification Methods483

Figure 10 shows the RMS forecast error as a function of forecast484

length for both the self-analysis (solid) and NR (dashed) verified485

calculations. The thin lines are for forecasts starting at 0000 UTC,486

with the thick lines for forecasts starting at 1800 UTC the prior487

day, so that the difference beween 1800 UTC and 0000 UTC488

lines is the impact of the added observations ingested into the489

0000 UTC initial time forecast. The forecast RMSE with self-490

verification approaches the larger magnitude RMSE with NR491

verification as the forecast length increases. The NR verification492

RMSE increases nearly linearly with forecast length, while the493

self-analysis verification RMSE has a greater rate of increase494

during the initial forecast period. The slope of the forecast RMSE495

growth is shallower for the NR verification. This indicates that the496

difference between pairs of 1800 UTC and 0000 UTC forecasts497

RMSE at any particular verification time is greater for the self-498

analysis verification calculation than for the NR verification499

method. These differences between pairs are plotted in Figure 4a,500

where the total observation impact estimated using self-analysis501

(solid stars) is 50-75% larger than the NR verification estimate502

(solid circles) at short forecast times, with the greatest difference503

at 12 hours.504

The adjoint estimation of observation impact (open circles505

and open stars in Figure 4) is not as strongly affected by the506

choice of verification as is the calculation of the nonlinear507

observation impact (solid circles and stars). The adjoint estimation 508

of observation impacts are approximately 20-30% larger in 509

magnitude for the self-analysis case, with smaller differences 510

between the two verification methods for longer forecast periods. 511

The larger impacts with self-analysis verification are a direct 512

result of the larger forecast error difference between the pairs 513

of forecasts as demonstrated in Figure 10. The error difference 514

between the two forecasts includes both the true error growth (ie 515

the difference between the dashed lines in Figure 10) and also the 516

illusory error growth that is actually the decrease in correlation 517

of the self-analysis verification with longer forecasts. The self- 518

analysis estimate of forecast error is most incorrect at the analysis 519

time, with substantially inflated error growth rates during the 520

initial forecast period. 521

The net adjoint impact in the OSSE case can be compared 522

in Figure 1 for self-analysis (grey bars) and NR (white bars) 523

verification for the 24 hour forecast. For radiance types, the self- 524

analysis verification impacts are of similar or greater magnitude 525

for all instruments except for MHS. For conventional types, 526

the self-analysis verificaiton impacts are similar or greater for 527

all types except for rawinsonde humidities. Wind observations 528

in particular tend to have considerably greater impact for self- 529

analysis verification than for NR verification. 530

The normalized adjoint estimated observation impacts calcu- 531

lated using self-analysis verification are shown in Figure 11, 532

where the normalization is against the 24 hour impact for each 533

data type. Figure 11 may be compared with the impacts calculated 534

using the NR verification in Figure 6. For most data types, 535

the progression of observation impact with forecast length is 536

similar for both choices of verification. There are however a 537

few data types with quite different magnitudes or behavior, in 538

particular rawinsonde winds and aircraft winds in the NHEX 539

region, AIRS, HIRS4, and GPSRO in the extratropics and CrIS in 540

the SHEX region. With NR verification, these observations have 541

small beneficial impacts for short forecast lengths and increasing 542

magnitude observation impacts for longer forecasts. However 543

for self-analysis verfication, the short term forecast impacts are 544

overestimated, with decreasing or steady magnitude of impact for 545

longer forecasts. Rawinsonde temperatures and CrIS in the NHEX 546

region show a less pronounced version of this behavior, with some 547
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inflation of observation impact magnitude for short forecasts with548

self-analysis verification.549

This discrepancy in the magnitude of the adjoint estimation550

of observation impact only for certain data types and regions551

raises several questions. Aircraft and rawinsonde winds both552

demonstrate inflation of short term forecast impacts with self-553

analysis verification, however AMVs are not as prone to554

the overestimation of observation impacts. Rawinsonde and to555

a certain extent, aircraft are heavily weighted by the DAS556

and have relatively large per-observation contribution to the557

analysis increment, especially as there are few wind observations558

compared to temperature and radiance data. These two data559

types may also be expected to have impacts that are retained for560

more analysis cycles than many other types, as there are many561

fewer rawinsondes at 0600 UTC than at 0000 UTC, and aircraft562

observations also have a strong diurnal cycle in local observation563

count. Therefore the analysis state during the 0600 UTC cycle564

will have fewer corrections from new rawinsonde and aircraft data565

in the regions that were populated by observations at 0000 UTC,566

and the information from the 0000 UTC observations may persist567

longer, resulting in a more correlated estimate of forecast with568

the analysis for these particular observation types at short forecast569

times. Data types that have more frequent observations will have570

new information added to the next analysis cycle at 0600 UTC,571

and the self-analysis verification will be less correlated for short572

forecasts.573

Unlike conventional rawinsonde and aircraft observations,574

radiance observations do not have a large diurnal cycle in575

availability. However, the HIRS4 and CrIS data types have small576

net impact (Figure 1) which is fairly noisy, as evidenced by577

the wide whiskers in Figures 6 and 11, particularly for longer578

forecasts. GPS-RO also lacks a diurnal cycle; however there is579

a known bias between the operator used to generate the synthetic580

GPSRO observations (ROPP) and the operator used to ingest the581

observations into the DAS, with a substantial bias in bending angle582

occurring in the upper troposphere. Necker et al. (2018) found that583

biased observations can have large impact on estimations of FSO,584

which may contribute to the overinflation of GPSRO impacts for585

short forecasts.586

The fraction of observations with beneficial impact calculated 587

using self-analysis verification is shown in Figure 12. Compared 588

to the NR verification in Figure 7, the short term forecast 589

percentages are higher for all data types, with the 6-hour forecast 590

percentages for conventional data types being particularly large, 591

as high as 70% for rawinsonde winds in the Tropics. Jung et al. 592

(2013) found percentages of beneficial observations of 60-70% for 593

6-hour forecast impacts using self-analysis verification, although 594

their fractions of beneficial impacts for the 24-hour forecast 595

timeframe only decreased to 60-66%, while the fractions found 596

here at 24 hours are in the range of 50-55%. Kotsuki et al. (2019) 597

found fraction of beneficial observations near 59% with self- 598

analysis at 6 hr, and 56% at 12 hours. 599

As in Section 3, the impacts of select subsets of observations 600

can be traced to different forecast times. This is of particular 601

interest as it pertains to the Proactive Quality Control (PQC; Chen 602

and Kalnay 2019) method in which the 10% most detrimental 603

observations as determined by a 6-hr ensemble forecast are 604

omitted in an attempt to improve the analysis quality and 605

forecast skill. Self-analysis is used with PQC to determine 606

which observations have the worst impacts. While the adjoint 607

operates differently from the PQC methods, the self-analysis 608

incestuousness issue can still be evaluated here. 609

Figure 13 compares the behaviors of several different subsets 610

of observations from the 0000 UTC cycle time for four data types 611

for the month of July. The subset of detrimental observations 612

having 6 hr forecast impacts that are 0.5σ greater than the mean 613

is approximately 10% of the total dataset. The progression of per- 614

observation impacts for the 10% most detrimental 6 hr forecast 615

observations as calculated using the NR fields for verification is 616

shown with the heavy solid line, and this subset of observations 617

will be referred to as DETNR. A similar progression of per- 618

observation impact is shown for the 10% of most detrimental 619

observations as determined using the self-analysis as verification 620

is shown by the thin dashed line, and this subset of observations 621

will be referred to at DETANA. Approximately 35-45% of the 622

same observations are in both DETNR and DETANA. 623

The estimated impacts of DETANA using the NR for forecast 624

error verification (thin solid line) and self-analysis for verification 625

(dashed line) are fairly close for AMSU-A and AIRS, with largest 626
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discrepancy for MHS. At short forecast times, the DETANA627

observation subset is clearly less detrimental than the DETNR628

subset, but at longer forecast times, these subsets have net impacts629

that become more similar in magnitude, even though many of the630

observations in the DETANA subset are incorrectly assigned. The631

dash-dot lines in Figure 13 show the NR-verified per-observation632

impacts of the observations that are in both DETNR and DETANA633

(heavy dash-dot) and the observations that are in DETANA but634

not DETNR (thin dash-dot). The observations in DETANA that635

are also in DETNR have net impact that is strongly detrimental at636

the short forecast time and becomes more detrimental with longer637

forecast times. This implies that the self-analysis verification has638

some skill at identifying the detrimental observations with the639

greatest magnitude impacts. However, the observations that are640

in DETANA but not DETNR actually have net per-observation641

impact that is beneficial at short forecast times, becoming weakly642

detrimental at longer forecast times. This illustrates the difficulty643

in identifying observation impacts at short forecast times when644

relying on self-analysis verification.645

5. Conclusions646

Observation impacts on forecast skill are dependent upon the647

forecast error evolution during the forward model integration.648

FSO allows for studying the impact on forecast error resulting649

from small changes in initial conditions due to the the ingestion650

of observations, regardless of model errors. Uncertainties in651

the observations also impact the data assimilation cycle and652

thus the verifications typically used to evaluate forecast errors.653

When self-analysis verification is used, the incestuousness of the654

verification method distorts both the estimates of forecast error655

and the forecast error growth rate in a way that is nonlinear656

with forecast length. At the 6-hour forecast, the self-analysis657

verification grossly underestimates the total forecast error, but658

overestimates the forecast error growth, particularly during the659

first 6-12 hours of the forecast period. As the forecast lengthens660

to 48 hours, the distortion of the forecast error estimate by self-661

analysis verification is minimal, and the forecast error growth rate662

is only slightly overestimated.663

It is not clear that an optimal forecast length for calculation664

of FSO exists for an operational setting where only self-analysis665

verification is available. At the 12-24 hour forecast length 666

range, the FSO estimate of observation impact with self-analysis 667

verification (open stars in Figure 4) is actually quite close to 668

the true nonlinear observation impact verified with the NR (solid 669

black circles), even more so than the FSO estimate using NR 670

verification. However, this apparent veracity is more of a “lucky 671

guess” achieved for the wrong reasons and not because the FSO 672

with self-analysis verification is more accurate. 673

There are some regional variations in the progression of 674

observation impact with forecast time that reflect the different 675

types of model error and physical and dynamical processes that 676

lead to forecast error growth. In the extratropics, many observation 677

types show observation impacts that increase in magnitude with 678

longer forecast lengths. This might be expected with errors related 679

to baroclinic processes that have intrinsic timescales of several 680

days. In contrast, in the Tropics, there are many observation 681

impacts that do not substantially increase with forecast length, 682

and may even decrease. These errors may have short timescales of 683

growth, such as due to convective or other physical processes, and 684

model errors may grow rapidly and erase the useful information 685

added by observations. 686

Moisture-based data such as in-situ humidity observations and 687

the microwave humidity sounder (MHS) show similar behaviors 688

globally. These data have initially large magnitude observation 689

impacts and high percentages of beneficial observations, both of 690

which decrease with longer forecast times. This combination of 691

traits is strongly suggestive of large background errors in the 692

humidity field due to fast acting model errors. Large background 693

errors present the opportunity for the observations to perform a 694

substantial amount of “work” in correcting the analysis field. The 695

rapid decrease in impacts with forecast time indicates that these 696

initial improvements are not maintained into the forecast beyond 697

the first day of integration, presumably because of types of error 698

growth that cannot be corrected by the observations (i.e., model 699

error). 700

One of the major omissions from the OSSE framework is 701

the lack of realistic model error and observation biases. Necker 702

et al. (2018) and Kotsuki et al. (2019) have found that biases can 703

have large effects when calculating FSO. The GMAO OSSE is 704

not completely devoid of biases - there are some model biases 705
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that result from differences in model physics between the G5NR706

and the forecast model. There are also some observation biases707

that are introduced through the observation operators, such as708

known biases between the ROPP operator used for simulating709

GPSRO bending angles and the GSI operator used to ingest the710

observations. The bias correction is also allowed to act, even711

though the observations do not have explicitly added biases. Thus,712

the bias correction may attempt to “correct” what it sees as713

observation errors but what are in fact model biases. It is likely714

that some of the difference between the magnitude of the Real715

versus OSSE FSO calculations is due to the lack of biases in the716

OSSE.717

When considering the NR as verification, biases in the718

observations and biases in the model error will both tend to719

decrease the beneficial impact of observations. Observation bias720

will tend to introduce analysis errors, unless the biases are721

removed by bias correction. Model biases will tend to remove722

useful information from assimilated observations and shorten the723

timescale on which observations provide positive impacts.724

The situation is more complex with self-analysis verification, as725

biases that result in analysis bias can affect the calculation of FSO.726

When an observation bias is ingested by the DAS but is corrected727

by other data types, the analysis field may be minimally impacted,728

and the bias will cause a decrease in the beneficial impact of729

that observation, as with NR verification. Alternatively, when730

observation biases reinforce existing analysis biases, observations731

may be seen as having more beneficial impact due to the bias.732

If the model has a bias that is not corrected by observations,733

so that the analysis field is similarly biased, then the unbiased734

observations may be seen as having a less beneficial impact735

when self-analysis verification is used. When bias correction is736

implemented where the model is assumed to be unbiased and737

all biases are assigned to observations, a model bias will be738

present in the analysis field and the observations themselves will739

be adjusted to include a similar bias, and the beneficial impact740

of these adjusted observations might be overinflated with self-741

analysis verification.742

The impact of any individual observation will follow a743

progression as the forecast integrates forward in time that depends744

upon the growth and decay of the background state errors that745

are adjusted by ingestion of the observation by the DAS. In 746

a sampling of observations tested here, less than a third of 747

the observations that have the strongest beneficial impacts on 748

the 6 hour forecast maintained that strong impact to the 48 749

hour forecast time. This progression of observation impacts is 750

further complicated in an operational setting where only self- 751

analysis verification is available. The identification of particular 752

observations with strongly beneficial or detrimental impacts is 753

particularly challenging for short forecast lengths, where the 754

incestuousness of self-analysis verification interferes with the 755

accurate estimation of observation impacts. 756

There are two concerns for methods such as PQC which 757

rely on identifying detrimental observations in 6-hour forecasts. 758

First, there is the question of whether observations which are 759

detrimental at 6 hours are representative of the observations 760

that are detrimental at longer forecasts. Our results show that 761

while the net impact of the most detrimental observations at 762

6 hours remains detrimental up to 48 hours, many of these 763

individual observations have beneficial impacts particularly at 764

and beyond 24 hours. Also, only a fraction of the observations 765

with the most detrimental impact at 48 hours have detrimental 766

impact at 6 hours. Second, there is a concern for accurately 767

identifying the most detrimental observations at 6 hours given 768

the lack of available independent verification data. When using 769

self-analysis verification, the success rate at accurately selecting 770

the most detrimental observations at 6 hrs is approximately 40%. 771

For a method such as PQC to have a chance to work, it is 772

fundamental for errors to be defined with respect to verification 773

fields independent from the data assimilation cycle. 774
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Figure 1. Global net FSO estimated observation impact on total wet error energy (Equation (1)) at the 24 hour forecast for select data types (J kg−1), mean over two
month period. Black, Real case with self-analysis verification; grey, OSSE case with self-analysis verification; white, OSSE case with NR verification. Negative values
indicate a reduction in the 24-hour forecast error, note scale and reverse direction of abscissa. Whiskers indicate 95% confidence intervals.
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Figure 2. Zonal mean temporal root mean square of analysis minus background fields (A-B) for July and August. a, b) temperature (K); c, d) zonal wind (m s−1); a,c)
real data (2015); b, d) OSSE (2006).

Prepared using qjrms4.cls



16 N.C. Privé, et. al.
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Figure 3. Areal mean of the root-temporal mean-square forecast error for July and August as a function of forecast length. Heavy solid line, real data with self-analysis
verification; thin solid line, OSSE with self-analysis verification; thin dashed line, OSSE with NR verification. a) temperature on the 506 hPa model surface (K); b) zonal
wind on the 226 hPa surface (m s−1).
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Figure 4. Total observation impact calculated as a function of forecast length for the nonlinear difference between forecast pairs (filled shapes) and the adjoint estimate
of the total impact (open shapes). Circles, NR verification; stars, self-analysis verification. b) Fraction of the nonlinear observation impact captured by the adjoint as a
function of forecast length.
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Figure 5. Schematic illustration of the evolution of forecast errors and observation impacts with forecast length. The lines represent cases with different rates of growth
and saturation of error. The dashed line indicates the most rapid error growth and saturation, the solid line represents more gradual error growth; and the dash-dot line
represents an intermediate rate of error growth. a) The growth of the error norm associated with errors having different timescales of saturation; b) the observation impacts
that project onto these corresponding errors, drawn with negative impacts for consistency with other figures.
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Figure 6. Normalized adjoint estimated observation impact on total wet energy norm per cycle for select data types relative to 24-hour observation impacts, mean over
two month period, for forecasts of length 6, 12, 24, and 48 hours. NR verification. a) NHEX region; b) SHEX region; c) Tropics region. Whiskers indicate 95th percentile
confidence interval.
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Figure 7. Fraction of observations with negative beneficial impact on total wet energy for select data types, mean over two month period, for forecasts of length 6, 12, 24,
and 48 hours, using NR verification. a) NHEX region; b) SHEX region; c) Tropics region. Whiskers indicate errorbars for 95th percentile confidence interval.
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Figure 8. Histogram of counts of observations (ordinate, log scale) according to their observation impacts (abscissa, NR verification) for AMSU-A NOAA-19 observations,
cumulative for 0000 UTC observations from 2 July to 30 July, NR verification. Negative (positive) tail of the distribution at 06 hours selected for observation impacts less
(greater) than 2.5 standard deviations from the mean. Left, negative (beneficial) tail at 06 hr forecast; right, positive (detrimental) tail at 06 hr forecast. a, b) 06 hr forecast;
c, d) 12 hour forecast; e, f) 24 hour forecast; g, h) 48 hour forecast.
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Figure 9. Per-observation impacts for subsets of observations as a function of forecast time, NR verification, cumulative dataset for the month of 0000 UTC forecasts
in July. a) AMSU-A NOAA-19; b) AIRS AQUA; c) IASI metop-a; MHS metop-a. Heavy lines: negative (positive, thin lines) tail of the distribution at 06 hours selected
for observation impacts less (greater) than 2.5 standard deviations from the mean; similar calculations are made for the negative (positive) tail of the 48 hour forecast
observation impacts, dashed lines. Set of all observations, heavy dash dot line.
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Figure 10. Areal mean of the RMSE forecast error for July and August as a function of forecast length. Solid lines, self-analysis verified forecast starting from 0000 UTC
(thin) and 1800 UTC (thick). Dashed lines, NR verified forecast starting from 0000 UTC (thin) and 1800 UTC (thick). a) temperature on the 506 hPa model surface (K);
b) zonal wind on the 226 hPa surface (m s−1).
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Figure 11. Normalized adjoint estimated observation impact on total wet energy per cycle for select data types (J kg−1), mean over two month period, for forecasts of
length 6, 12, 24, and 48 hours, using self-analysis verification, normalized by 24 hour forecast impacts. a) NHEX region; b) SHEX region; c) Tropics. Error bars indicate
95% confidence intervals.
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Figure 12. Fraction of observations with negative (beneficial) impact on total wet energy for select data types, mean over two month period, for forecasts of length 6,
12, 24, and 48 hours, using self-analysis verification. Note different abscissa scales between panels and in comparison to Figure 7. a) NHEX region; b) SHEX region; c)
Tropics region. Error bars indicate 95% confidence intervals.
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Figure 13. Per-observation impacts for subsets of observations as a function of forecast time for several data types, cumulative dataset for 0000 UTC forecasts for the
month of July. Solid heavy line, 10% most detrimental observations determined with NR verification at 6 hrs (DETNR) and verified with the NR for longer forecasts; thin
solid line, 10% most detrimental observations at 6 hr as verified with self-analysis (DETANA) with impacts calculated with NR verification; thin dashed line, DETANA
with impacts verified by self-analysis. Thin dash-dot line, incorrectly assigned members of DETANA with NR verified impacts; heavy dash dot line, correctly assigned
members of DETANA with NR verified impacts. a) AMSU-A NOAA-19; b) AIRS AQUA; c) IASI metop-a; d) MHS metop-a.
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