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Abstract—Safe operations of autonomous unmanned aerial ve-
hicles (UAVs) in low-altitude airspace with beyond visual line-
of-sight (BVLOS) flights demand robust risk monitoring of
airspace as well as of people and property on ground. One of
the safety critical factors for UAV flights is the risk of collision
with static and dynamic obstacles in proximity to its flight path.
This paper presents a detailed formulation of risk likelihood
of obstacle collision incorporating the effects of off-nominal
conditions introduced by component failures, degraded con-
trollability and environmental disturbances such as wind gusts.
The deviation in the planned trajectory caused due to wind
is computed utilizing a point-mass 3D kinematic simulation
model of the vehicle. Likelihood of risk for the flight plan is
then analyzed based on generating the probability of collision
for each point in the trajectory. The proposed risk factor is
demonstrated on real flight data from experimental flights of
an octocopter at NASA Langley Research Center in presence of
simulated obstacles and wind conditions. Effect of varying wind
conditions, distance from obstacles, level of controllability and
obstacle measurement noise on the risk factor is demonstrated.
The proposed approach enables risk-informed decision making
for timely mitigation of current and future unsafe events in
autonomous systems.
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1. INTRODUCTION
Emergence of unmanned aerial vehicles (UAVs) as a viable
vehicle for commercial operations in urban airspace comes
with crucial technical and safety challenges. With a variety
of vehicles potentially operating in this space in addition to
variations in weather, system health degradation and evolving
operational concepts, there is a clear need for robust and
system-wide risk monitoring of the airspace. At the vehicle
level, risk assessment for routine operations beyond visual
line of sight within these complex and evolving environments
will identify relevant factors leading to potentially hazardous
conditions and therefore aid in mitigation of such situations
of high consequence.

As UAVs are considered for operations outside of research
facilities, new and clear risks must be evaluated for safety and
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mission assurance. Safety monitoring frameworks similar to
the ones developed for manned aircraft [1], [2] may enhance
unmanned traffic management with in-time monitoring and
prediction tools for low-altitude operating vehicles. NASA’s
Aeronautics Research Mission Directorate (ARMD) strategic
plan directs the development of advanced in-time safety
assurance tools that can monitor, assess and mitigate risks
for UAV operations [3]. Under that initiative, several studies
have been directed to prediction of future trajectory [4],
[5], estimation of remaining battery life [6], estimation of
vibrational anomalies [7] as well as assessment of risk to
population on ground in the event of a crash [8]. A vital step
towards safety assessment of the unmanned airspace is the
formulation and development of methods for UAV-obstacle
collision risk during off-nominal conditions. While static
obstacles, such as buildings, trees, utility poles etc., may be
mapped and thus easier to avoid, a variety of factors including
weather conditions, the presence of wind and/or gusts or
reduced control capability can create a higher risk of collision
with these objects.

Clothier and Walker provide a concise exploration of the
challenges associated with the application of risk assess-
ment and management towards the achieving and “acceptable
level” of risk in UAV operations [9]. Weibel, Roland, and
Hansman performed a preliminary hazard analysis for both
ground impact and midair collisions using risk models for
a range of UAV classifications and capabilities, and found
that risk varied significantly based on population density,
the mass of the vehicle, and the cruise speed [10]. Weinert
et. al. used a monte-carlo driven risk assessment of UAV
operations to evaluate the safety of small UAV well-clear
definitions, determining that for small UAVs a smaller well-
clear definition compared with TCAS alerting criteria is
tolerable [11]. Primatesta, Guglieri, and Rizzo approached
the risk assessment for a given trajectory with a risk-map
wherein each cell the 2D space has a risk-cost as defined
by the subsequent three probabilities, loss of control and
ground impact, impact with a person, and fatal injury to an
impacted person [12]. Belkhouche also derives a model for
UAV collision risk assessment accounting for uncertainties
utilizing a Monte Carlo method [13]. Lee, Meyn, and Kim,
utilized actual traffic data collected over a one-year period
for their traffic model and probabilistic approach to safety
assessment [14]. Hu similarly created a probabilistic risk-
based approach to defining a safety bound, using both a
Monte Carlo simulation for uncertainty quantification, and a
reinforcement learning algorithm for collision avoidance and
trajectory planning [15].

While literature features other examples of risk assessment
for UAVs, this paper details the formulation of risk likeli-
hood caused by deviation in its planned trajectory towards
an obstacle. The risk matrix framework is described in
section 2 followed by definition for probability of collision
in terms of wind speed, direction, controllability and obstacle
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measurement noise. Finally, the risk assessment framework
is applied to a real UAV flight data for a region augmented
with simulated obstacles.

2. RISK OF OBSTACLE COLLISION
FRAMEWORK

In a previous study, Ancel et al. defined the non-participant
casualty risk in terms of expected casualties on the ground
in the event of an unpowered descent of an UAV under off-
nominal conditions [16]. The authors employed a modified
version of the risk matrix highlighted within the FAA’s Safety
Management System Manual [17] to establish and visualize
real time UAS flight risks. As part of the obstacle collision
risk estimation, a similar risk matrix (Fig.1) was used to
represent and track associated risks. The rows in the matrix
represent likelihood of UAS collision with buildings based
on off-nominal condition such as presence of wind, vehicle
controllability, vehicle size, and obstacle noise whereas the
columns provide severity categories which is considered to
be probability of causing one or more casualties on the
ground or within buildings. The final risk associated with
an event is computed as the product of its likelihood and
severity and categorized as low (green), medium (yellow)
and high (red) risk events. However, at the time of writing,
the FAA does not provide specific guidance on likelihood
and severity definitions for unmanned aircraft flight operation
risk over populated areas, thus, the acceptable thresholds for
severity (minimal, minor, major, catastrophic) and likelihood
(frequent, probable, remote, and improbable) were chosen
arbitrarily here for the purposes of concept evaluation and
demonstration [8].

Figure 1: Notional risk matrix adopted from [16].

Riskobs = Pcoll−obs × Pcasualty (1)

The UAV’s risk of collision with obstacles under off-nominal
conditions was given in Eq. (1), expressed by the product
of likelihood of such a collision and the expected severity of
the outcomes. For unmanned operations, the severity can be
defined as the casualty risk to non-participants in the event
of a collision with buildings or the ground [8]. Using Eq.
(2), the casualty area expression can be modified to include
controlled decent into terrain (due to a vertical trajectory
deviation) where the impact angle, γ, can be obtained from
the aircraft trajectory within the aircraft system parameters.

Ac = π(Rp +Ruav)
2 + 2(Rp +Ruav)

Hp

tan γ
(2)

For the cases where the aircraft collides with a building
face, the impact angle would depend on the approach angle

with respect to the building, however, the aircraft can be
assumed to follow a straight trajectory to the ground where
γ = 90°. Alternatively, based on the aircraft kinetic energy
and building roof/facade material, it is possible to estimate
casualty values within the buildings by the use of penetration
models as described in [16]. Finally, by modifying the Ac
expression, the probability of having n or more casualties in
a populated area can be computed, as defined in [8].

The other component of risk is the risk likelihood which
is proposed in this paper as a function of probability of
trajectory deviation caused by wind ptraj−dev , area of the
vehicle exposed to the obstacle when subjected to collision
Aexp and probability that the point of collision represents an
obstacle pobst.

Pcoll−obs = ptraj−dev Aexp pobst (3)

The primary critical parameter in the risk likelihood formula-
tion is the probability of trajectory deviation ptraj−dev which
depends on a number of factors such as proximity of UAV
from the obstacle, local wind field magnitude and direction
as well as the state-of-health of the propeller unit. Effects
of each of these factors on the risk likelihood is formulated
in section 3 and results are demonstrated in section 4 of this
paper.

3. FACTORS AFFECTING PROBABILITY OF
COLLISION WITH OBSTACLE

Effect of wind

A 3-dimensional kinematic point-mass model is used to in-
corporate the effect of wind on trajectory deviation by the
UAV [18], [19]. The vehicle state is described by the UAV
airspeed V , heading (χ) determined by the directional path
from one waypoint to another and flight path angle (γ). The
3D coordinates of each waypoint is defined by its longitude
(θ), latitude (φ), and altitude (h). The vehicle velocity ~VUAV
given heading (χ) and flight path angle (γ) is given by Eq.
(4), where î, ĵ and k̂ represents the unit vectors in the ground
reference frame.

~VUAV = V cos γ cosχî+ V cos γ sinχĵ + V sin γk̂ (4)

Figure 2: UAV coordinate system [18].

Considering wind velocity vector as ~Vwind and obtaining
vehicle’s cruise speed ~VUAV from Eq. (4), the total vehicle
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velocity is given by ~Vtotal.

~Vwind = Uî+ V ĵ +Wĵ (5)
~Vtotal = ~VUAV + ~Vwind (6)

The flight path angle (γ) is defined in the angle between
the direction at which the vehicle’s nose is pointing and the
course over ground, as shown in Figure 2. If γ = 0 under no-
wind condition, any non-zero value of γ during a UAV flight
is caused by the vertical component of the instantaneous wind
speed. Therefore the induced flight angle γwind after deviated
vertically by wind is described by equation (7).

γwind = arctan
W

V cos γ + U
(7)

Similarly, the horizontal deviation of the vehicle changes its
heading (χ) and is caused by the horizontal components of the
wind. Given the estimated time from detection of disturbance
on the vehicle to its recovery to original trajectory is denoted
by tcontrol, the new position of the UAV deviated by wind
(θdev, φdev, hdev) at every position in the original reference
trajectory (θref , φref , href ) is given by Eqs. (8)-(10).

θdev = tcontrol
|~Vtotal| sinχ
R cosφref

+ θref (8)

φdev = tcontrol
|~Vtotal| cosχ

R
+ φref (9)

hdev = tcontrol |~Vtotal| sin γwind + href (10)

Collision with an obstacle occurs when the deviated position
of the UAV (θdev, φdev, hdev) hits or lies within the boundary
of an obstacle. In practical applications, the wind velocity
is measured or estimated at every point on the trajectory
and be associated with stochasticity depending on the sensor
characteristics and estimation process. Assuming Gaussian
distribution of the wind field velocity is interpreted in terms
of ns samples associated with probabilities, each deviated po-
sition in the trajectory is computed for ns samples, according
to Eqs. (8)-(10). The samples which are deviated and hit or
lie within the boundary of any obstacle after tcontrol seconds
are identified as the collided samples ndev and the probability
of obstacle collision ptraj−dev is defined in Eq. (3).

ptraj−dev =
ndev
ns

(11)

Effect of controllability

As denoted in Eqs. (8)-(10), the shift in the position of
the UAV during its flight is dependent on the control time
tcontrol which in turn is dependent on the UAV controller
characteristics, vehicle type and state-of-health of its ma-
neuver components. In case of a healthy rotorcraft vehicle,
the control time can be assumed to be 1 sec. If a motor
degradation is identified, the maneuverability of the UAV
is affected which increases the time taken by the vehicle to
recover from a sudden deviation. Hence value to tcontrol ≥ 1
results in higher risk of obstacle collision.

Effect of obstacle noise

In Eq. (3), pobst is computed based on the error associated
with obstacle measurements. For fixed obstacles such as

trees and buildings, the obstacle locations and sizes are
typically obtained from navigation sensors such as GNSS,
IMU, LiDAR and cameras [20] which may be associated
with intrinsic measurement noise. If the error or noise in the
navigation measurements is assumed to adhere to a normal
distribution with mean µ and variance of σ2, the pobst can
be defined as the cumulative distribution function, denoted in
Eq. (12) which then feeds into Eq. (3) for computation of
the probability of collision. Here x is the position at which
collision with the obstacle takes place, as shown in figure 3.

pobst =
1

2
[1 + erf(

x− µ
σobs
√
2
)] (12)

Figure 3: Schematic of pobst calculation.

4. RISK ASSESSMENT RESULTS
The probability of obstacle collision is computed for an
experimental UAV flight conducted at the NASA Langley
Research Center. Figure 4 (b) shows the flight plan exe-
cuted with a DJI S1000 Octocopter in autonomous mode.
The vehicle, as depicted in figure 4 (a), was equipped with
Pixhawk autopilot hardware (http://pixhawk.org/ ) and com-
manded with Ardupilot software (http://ardupilot.org/ ) to fly
through pre-defined 9 waypoints in almost 7 minutes.

Figure 4b shows the vehicle location ”unrolled in time”,
calculated by the autopilot using GPS locations and its inertial
measurement unit. The geospatial coordinates (latitude, lon-
gitude, and altitude) have been converted into a local, Earth-
fixed reference frame with origin at the take-off location, x-
axis pointing East, y-axis pointing North, and z-axis pointing
upwards, forming a East-North-Up (ENU) reference frame.
The z-axis represents altitude of the flight relative to its
starting location which was from the top of a building. The
UAV landed on the ground at certain times during the flight
which are hence represented by the negative z-values.

For implementing the proposed risk assessment approach, the
above flight data was used in a playback mode with simulated
obstacles denoted by the red boxes in figure 5a where the
arrows state the vehicle direction. At first,the flight trajectory
is generated from the waypoint locations and commanded
ETAs, using a modified B-spline algorithm presented in an
earlier study [4]. The corresponding planned velocity profile
of the UAV is computed under no-wind conditions, as repre-
sented in figure 5b.

A simulated wind profile is added to the above trajectory.
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Figure 4: Example of DJIS1000 octocopter (4a) test flight in
autonomous mode: the observed position is compared against
the flight plan in a East-North-Up reference frame (4b).

Probability of the obstacle collision is computed under dif-
ferent wind conditions by varying wind speed magnitude
|Vwind| and direction. Direction of the wind field is defined
in terms of two angles as shown in figure 6: (i) γwind:
angle between wind velocity vector and the x-y plane and
(ii) χwind: angle between wind velocity vector and the x-
plane. Fixing the wind speed parameters at |Vwind| =
N (10, 2)ms−1, χwind = −120° and γwind = 2°, the cor-
responding normalized risk of obstacle collision is plotted in
figure 7. Depending on the intensity and direction of the wind
acting at each point on the trajectory and the surrounding
obstacle location, the deviated positions may or may not lead
to a collision and hence the probability of collision varies
accordingly. The risk likelihood is normalized such that the
final value lies between 0 and 1. As shown in the legend,
risk is zero for most of the trajectory. It is only a smaller
section of the flight plan that lies in close proximity to one
of the obstacles where the risk increases to approximately
0.7. It should be noted that although another section of the
trajectory lies close to the other obstacle, the risk is zero in
that section on account of the wind direction. In the presence
of a stationary wind field, the probability of collision with
an obstacle is not only dependent on the distance of the
obstacle from the flight plan, but also on the wind direction
that decides if the deviated position of the vehicle hits an
obstacle or not.

The effect of wind on risk likelihood is evaluated in figure
8 where the UAV with the assumption of healthy maneu-
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Figure 5: (a) Flight plan in 3D with simulated obstacles as
red boxes (b) Velocity profile of the planned flight under no-
wind condition.

Figure 6: Wind coordinates in 3D representation.

verability conditions is subjected to three different winds
of magnitude of 2ms−1, 5ms−1 and 8ms−1 . The wind
direction is fixed at χwind = −120° and γwind = −5°.
As observed, risk of obstacle collision increases with wind
magnitude, as expected.

4



Figure 7: Probability of obstacle collision in presence of
wind with |Vwind| = N (8, 2)m/s, χwind = −120° and
γwind = 2°.

Figure 8: Effect of wind on Probability of obstacle collision.
Wind 1: |Vwind| = N (2, 2)m/s, ; Wind 2: |Vwind| =
N (5, 2)m/s; Wind 3: |Vwind| = N (8, 2)m/s.

Finally, effect of distance from the obstacle, wind speed and
wind direction on the risk of obstacle collision are shown in
figure 9. Figure 9 (a) denotes that for a fixed wind magnitude
of |Vwind| = N (5, 2)m/s and direction χwind = 70° and
γwind = −5°, the risk of obstacle collision risk reduces with
increase in the distance from the obstacle. This plot enables
to identify the minimum ’safe’ distance of the trajectory from
obstacle at 7.3m that is associated with a risk of 0.1. Hence
by fixing the flight trajectory at a safe distance of 7.3m
away from the obstacle, the risk was calculated for increasing
magnitude of wind as shown in figure 9 (b). As observed,
the risk increases with increasing wind magnitude and a risk
of 0.1 is achieved at |Vwind| = N (4.8, 2)m/s. Finally,
risk was calculated for varying wind direction χ from 5° to
120° in order to demonstrate its its effect on safety. In this
section of the flight trajectory, the UAV flew at χ = 150°,
hence χ = 60° represents a cross-wind which causes highest
probability of trajectory deviation and hence maximum risk
likelihood. Such parametric studies aids in computing the
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Figure 9: (a) Pcoll−obs with varying distance from obstacle
at |Vwind| = N (5, 2)m/s ,χwind = 70° and γwind =
−5°. (b)Pcoll−obs with varying wind speed at χwind = 70°,
γwind = −5° and 7.3m away from obstacle (c) Pcoll−obs
with varying wind direction χwind at |Vwind| = N (8, 2)m/s,
γwind = −5° and 7.3m away from obstacle.

safe thresholds while planning a flight as well as resolving in-
time contingencies when exposed to off-nominal conditions
during a flight.

Another important factor that affects collision risk for a UAV
is its controllability or maneuverability conditions. If the
controllability is compromised due to a degraded motor or
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any other propeller unit, the control time increases which
is then reflected in the increased risk likelihood. Figure
10 denotes two risk plots for the same UAV subjected to
the same simulated wind but at different control times: (a)
tcontrol = 1sec and (b) tcontrol = 2sec . The UAV with
degraded controllability experiences higher risk likelihood in
its planned trajectory as well as for a greater section of the
trajectory, as denoted in figure 10 (b).

Figure 10: Effect of controllability on Probability of obstacle
collision with wind at |Vwind| = N (5, 2)m/s, χwind = 60°
and γwind = −5° (a) tcontrol = 1sec and (b) tcontrol = 2sec.

Finally, effect of obstacle measurement noise is shown in
Figure 11 where the risk likelihood is plotted for two cases
of noise variance associated with the obstacle measurements
(a) σobs = 0.05 and (b) σobs = 1.5. The distance of the
obstacle from the trajectory as well as wind conditions and
vehicle controllability are kept constant for the two cases at
dis = 7.3m, |Vwind| = N (7, 2)m/s, χwind = 60° and
γwind = −5° . The probability that the collision point
represents an obstacle is computed according to equation (12)
which then feeds into Eq.(3). It is observed that increase of
measurement noise increases likelihood for the same section
of the trajectory.

Figure 11: Effect of obstacle measurement noise on Prob-
ability of obstacle collision (a) max(Pcoll−obs) = 0.3 with
σobs = 0.05 and (b) max(Pcoll−obs) = 1.5 with σobs = 1.2.

The relationship between obstacle measurement noise and
risk likelihood is further depicted in Figure 12. It should
be noted that even when σobs is close to zero, the risk
likelihood is 0.48 since the wind magnitude ((7, 2)m/s) is
high enough to generate a high probability of collision even
without obstacle measurement noise.

5. CONCLUSION
In this paper, the risk of obstacle collision has been defined
for an autonomous UAV. The probability of collision with an
obstacle is formulated as a function of multiple parameters
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Figure 12: Pcoll−obs with varying obstacle measurement
noise (σobs) at |Vwind| = N (5, 2)m/s ,χwind = 70°,
γwind = −5° and 7.3m away from obstacle.

including the probability of trajectory deviation towards ob-
stacles, the area of exposure and obstacle measurement noise.
The effect of wind speed magnitude, direction and vehicle
controllability is incorporated in the definition of probability
of trajectory deviation towards obstacles. Moreover, effect of
these individual parameters on the overall risk likelihood is
demonstrated on a real UAV flight augmented in a simulated
environment. Further, safety requirements in terms of min-
imum distance from obstacle and maximum wind tolerance
are obtained from subsequent parametric studies of the risk
likelihood. Although a stationary wind field is assumed, the
approach remains valid for wind gusts or urban canyon effects
around obstacles in which case the wind velocity magnitude
and direction should be different at different positions in the
trajectory.

In future, Bayesian network will be implemented to iden-
tify the most frequent off-nominal conditions a UAV may
be exposed to. Next, degraded controllability caused by
the identified off-nominal conditions will be modeled and
incorporated in the computation of the probability of obstacle
collision instead of using an empirical value for control time.
Besides, wind effect will be incorporated into the vehicle
dynamic model in order to generate more precise values of
trajectory deviation caused by wind. Effect of uncertainty in
vehicle navigation measurements will be incorporated further
in order to compute the risk of obstacle collision in real time.
Finally, the risk formulation will be used to examine safe
distance requirements for a UAV flight flying through urban
canyons and variable wind conditions.
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