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Abstract
While machine learning and spacecraft autonomy continue to gain research interest, significant work re-

mains to be done in efficiently applying modern machine learning techniques to problems in spaceflight. This
study presents a framework for deriving a discrete neural spacecraft attitude controller using reinforcement
learning, a paradigm of machine learning, without the need for high-performance computing. The developed
attitude controller is an approximately time-optimal solution to a highly constrained control problem, able to
achieve well above industry-standard pointing accuracies. Control examples are also presented of the agent
performing large-angle spacecraft slews in the developed simulation environment and future extensions of
this work are discussed.
Keywords: Reinforcement learning, artificial intelligence, attitude control, satellite, intelligent systems

1. Introduction

High-performance spacecraft autonomy is essen-
tial to the future of space exploration [1, 2]. As hu-
manity sends an increasing number of spacecraft on
deep-space missions, with long communication times
and limited bandwidth, the ability for the spacecraft
to process data on-board and to make autonomous
decisions becomes near critical. Modern artifical in-
telligence (AI) and machine learning (ML) is cur-
rently a highly-active research area that has proven
to be a promising avenue for achieving advanced au-
tonomy. An important component of autonomous de-
cision making and control is the ability to understand
long-term temporal dependencies in an environment,
and recent AI/ML research results show systems that
exhibit long-term planning and awareness [3]. While
spacecraft attitude control has been performed au-
tonomously for decades, many methods of traditional
feedback control do not exhibit any long-term tem-
poral understanding of the control problem. The
relative simplicity of the spacecraft attitude control
problem make it well suited to be used as a basis
for studying how recent progress in AI/ML research
might be harnessed to produce systems that may out-
perform traditional methods in situations where long-
term planning and situational awareness is required.

Reinforcement learning (RL) is a general frame-
work of modeling behavior by learning from a reward
signal, received from interacting with the environ-
ment. In machine learning, this involves an agent
taking actions in respective states to maximize fu-
ture expected reward. RL is one of today’s primary
AI/ML research areas, gaining large amounts of re-
search interest by outperforming humans in various
games, especially those that require long-term strat-
egy [4–6].

Another desirable quality for spacecraft autonomy
is the ability for the system to perform online learn-
ing, improving its performance over time. An exam-
ple of the desirability of online learning would be a
spacecraft tuning its attitude controller in-situ for ef-
ficiency after capturing a large asteroid. Although
current RL algorithms require considerable amounts
of environment exploration and are highly resource
intensive, recent research results in distributed re-
inforcement learning show a significant decrease in
time required to train extremely effective agents [7–
9]. With spacecraft being launched in groups and
an increasing number of constellations, distributed
RL may be able to utilize the multitude of data and
experience generated by spacecraft, such as perform-
ing variants of online learning. However, implement-
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ing distributed RL requires a clear, working frame-
work of the problem being solved. Formulating a
real-world problem into the format modern RL al-
gorithms require is nontrivial, as most RL advance-
ments are benchmarked on tasks with well-developed
state representations and reward functions [10–12].
RL frameworks require careful consideration of how
to represent the problem to the agent, and how to
reward the agent to incentivize the desired behavior.
Building upon the framework and agent presented in
[13], this study helps relieve the boundary on future
distributed RL work by presenting an efficient single-
agent RL framework for spacecraft attitude control,
a task that all spacecraft must perform effectively.

The results of related RL applications to space-
craft control and decision making have been en-
couraging [14–18]. Closely related concurrent work
includes the use of Proximal Policy Optimization
(PPO), the algorithm used in this work, for continu-
ous spacecraft attitude control, that is shown to out-
perform a quaternion rate feedback controller [19].
Other work includes Deep Q Networks for discrete
control [20], predictive attitude control using optimal
control datasets [21], and approximate dynamic pro-
gramming [22]. This work builds upon [13], which
used Twin Delayed Deep Deterministic Policy Gradi-
ent (TD3) to train a neural attitude controller that
can successfully adapt to perturbations unseen dur-
ing training. In [13], a relatively simple reward struc-
ture was used with the highly capable RL algorithm,
TD3, in continuous control. The agent trained in [13]
was shown to be robust to external disturbances that
were not seen during training. However, converting
the attitude control problem to low-dimension dis-
crete control results in a highly constrained control
problem, and the simple rewards in [13] used with
PPO do not yield acceptable results. PPO is a ben-
eficial algorithm due to its built-in learning stability
and relative computational simplicity [23]. In this
work, we expand and modify the reward structure
from [13] to achieve desirable results with PPO in
the discrete control scenario.

To utilize the state-of-the-art advancements in
distributed RL, the simulation, state vector, reward
functions, and single-agent RL algorithms must be
developed, which is the purpose of this study. The
task of orienting a spacecraft to a desired attitude
using only discrete torques about each of the prin-
cipal body-frame axes is considered. In this analy-
sis, attitude sensor models, such as star trackers or
inertial guidance units, were not used for the atti-
tude representation. This work will introduce and

explore the simulation techniques, state representa-
tions, reward functions, policy and value network ar-
chitectures, and algorithm hyperparameters used to
achieve industry-standard pointing accuracy control
in large-angle spacecraft slew maneuvers using highly
constrained discrete control.

2. Methods

2.1. Reinforcement Learning Formalism

RL is a generalized learning framework, whose
origination comes from the biomimicry of how hu-
mans and animals learn by interacting with the en-
vironment, simply learning from interaction. With
the onset of high-performnace computing, computa-
tional reinforcement learning is now seen as a promis-
ing method for machine learning and artificial intel-
ligence. Computational reinforcement learning is, at
its core, learning how to map situations (states) to
actions [24]. This state-action process is often formu-
lated as a Markov Decision Process (MDP). MDPs
are discrete-time processes that are defined by the
tuple (S,A, p, r), where S is the environment’s state
space, A is the agent’s action space, p(st+1|st, at) is
the state-action transition function, and r(st, at) is
the state-action reward function. At each discrete
timestep t, the agent selects an action from the pol-
icy π(at|st) that maps the state space S to the action
space A. This action transitions the environment to
the next state st+1 and yields a reward rt according
to functions p and r, respectively. The MDP models
the RL implementations of today very well. The RL
agent samples actions in the action space to maximize
the reward returned from the environment.

Many of today’s most successful RL algorithms,
such as the popular actor-critic family of algorithms,
make use of some value function, here the state-value
function V (st) [23, 25, 26]. The state-value function
maps the current state to the value of the current
state. A commonly used state-value function is the
expected value of return, Rt, shown in Equation (1).

V (st) = Ê [Rt(st)] (1)

Return, or the sum of discounted future rewards, can
be written as

Rt(st) =

T∑
k=0

γtrt+k (2)

where return at state st is denoted as Rt(st), and
the time horizon denoted as T . The discount factor
γ ∈ (0, 1] is a hyperparameter that is tuned during
training. The discount factor numerically controls
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the amount of future rewards taken into account by
the agent. The state-value function of Equation (1),
used in [25], is also employed in the following exper-
iments.

As discussed above, computational “learning” is
learning the policy and value functions. Since these
functions are not known, they must be approximated.
The use of deep neural networks as heavy-duty non-
linear function approximators has had a significant
impact on reinforcement learning. RL is frequently
referred to as “deep reinforcement learning” when
deep neural networks are used, as in this study. Neu-
ral networks are bio-inspired data processing systems
consisting of multiple layers of interconnected neu-
rons, which are iteratively optimized to approximate
the mapping from data inputs to outputs [27]. An ex-
ample neural network diagram is shown in Figure 1.

Fig. 1. An example fully connected feed-forward neu-
ral network. The grey circles represent neurons,
the arrows represent the flow of data points. The
input would be a vector, such as a state vector.
The two hidden layers, labeled HL 1 and HL 2,
are proportional to the neural network architec-
tures used in this study.

In the following experiments, a variant of Proxi-
mal Policy Optimization (PPO) is used [23]. To rep-
resent the policy and value functions, fully-connected
feed-forward ANNs (often called multilayer percep-
trons, or MLPs) are used. In the PPO-clip family of
algorithms, a “clip” is performed to the loss function
to limit the magnitude of policy updates, which im-
proves stability of convergence during training [23].
PPO is based on the Trust Region Policy Optimiza-
tion (TRPO) algorithms, which make use of a loss
function of a policy ratio and advantage product,
shown in Eq. (3):

L(θ) = Ê

[
πθ(at|st)
πθold(at|st)

Ât

]
(3)

where θ denotes the new policy network parameters
following and update from training, Ât is some advan-
tage estimator, and θold denotes the policy network
parameters prior to the training update [28]. How-
ever, when loss L(θ) is large, the policy ratio is large;
that is, the policy network receives a large update,
which could lead to instability in the convergence to
an optimal policy. PPO edits this loss function to
including a “clipping parameter” ε, shown in Equa-
tion (4):

LCLIP (θ) = Ê

[
min

( πθ(at|st)
πθold(at|st)

Ât,

clip
( πθ(at|st)
πθold(at|st)

, 1− ε, 1 + ε
)
Ât

)]
(4)

where 1 ± ε can be thought of as a maximum mag-
nitude policy update. The clipping parameter ε typ-
ically takes values in the range of (0.1, 0.3) to help
limit large, destructive policy updates. In this imple-
mentation of PPO, Eq. (4) is used as the loss function
for the policy network. For this policy network loss
function, an entropy bonus term cS[πθ](st) is added,
where c is a hyperparameter c ∈ [0.0001, 0.001], which
ensures sufficient exploration of the action space [23].
Typical mean squared error (MSE) is used as the loss
function for the value network. Separate loss func-
tions for the value and policy functions are used due
to the networks not sharing any parameters. If pa-
rameters were shared, the loss functions would have
to be combined to update the parameters appropri-
ately. An advantage estimator Ât is used as the dif-
ference between the value return Rt(st) of Eq. (2) and
the current value network prediction V θt (st) shown in
Eq. (5).

Ât = Rt(st)− V θt (st) (5)

The agent then interacts with the environment
(here, the simulated environment) for a number of
episodes M to return a minibatch dataset of states,
actions, rewards, and associated values. The work-
flow of this on-policy minibatch building is shown in
Figure 2. This minibatch is then passed to a train-
ing loop where batches are sampled for N epochs to
update the value and policy networks using backprop-
agation and an optimizer such as RMSProp or Adam
[29, 30]. The Adam optimizer is used in this study.
The formulation of algorithms such as PPO rely on
this segmented training iteration in the environment,
commonly referred to as episodes. Converting real-
world problems and tasks, such as spacecraft atti-
tude control, into these starting-and-ending episodes
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Fig. 2. Diagram of agent-environment interaction
used to build minibatches of experience used in
agent training.

requires care and thought. As detailed above, the
success of the RL implementation and its associated
training time is dependent upon, among others: state
representation, reward function, policy and value rep-
resentation, episode termination, and action space.
The exploration and proper representation of these
dependencies for training a spacecraft attitude con-
troller is the main purpose of the following experi-
ments and analysis.

2.2. Simulation of Spacecraft Attitude

Reinforcement learning is resource intensive, re-
quiring many interactions with the environment to
generate data for the agent. Because generating real-
world data can be costly and impractical, simulations
are used to train an agent before possible deployment
onto a real-world system. For the agent to perform
adequately on a real-world system, the simulation
environment should be randomized and adequately
represent the real-world [31, 32]. We use the same
rotational inertia tensor as [13], which is a model of
the Lockheed Martin Corporation LM50 satellite bus.
The LM50 bus is depicted in Figure 3. The tabulated
pointing accuracies for the LM50 system were used to
validate our controller’s performance and feasibility
relative to industry standards.

By modeling the spacecraft as a rigid body, space-
craft attitude control and rotation can be simulated
by integrating Euler’s rotational equations of motion

~M = I ~̇ω + ω×I~ω (6)

and the skew-symmetric cross-product matrix is

Fig. 3. Simulation rendering of the LM50 spacecraft
model, with body-fixed principal axes labeled [13].

given by

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (7)

where I is the rotational inertia tensor of the space-
craft with respect to the center of mass (in units of

kg-m2), ~M is the external moment (or torque) vector
on the spacecraft directly controlled by the agent, and
~ω is the angular rotation vector about the body-fixed
principal axes [33]. The subscripts 1, 2, and 3 denote
the body-fixed principal axes x, y, and z, respectively.

The spacecraft attitude is using unit quaternions,
or Euler parameters. Specifically, we use the error
quaternion, which relates the current body-fixed ref-
erence frame of the spacecraft to the desired refer-
ence frame. The error quaternion qe is propagated
through time by integrating the quaternion kinemat-
ics relation

qe =

[
ê sin (φ/2)
cos (φ/2)

]
=

[
~q
qs

]
(8)

q̇e =
1

2
Ω(~ω)qe (9)

where the augmented skew-symmetric matrix Ω(~ω)
is written as the 4× 4 block matrix

Ω(~ω) =

[
−ω× ~ω
−~ωT 0

]
(10)

and φ is the rotation angle about the unit rotation
axis vector ê. The relationship between the current
spacecraft body frame and the desired frame is visu-
alized below in Figure 4 [34, 35].

Eq. (6) and Eq. (9) are integrated at each timestep

with a given moment vector ~M to find the space-
craft body-frame angular velocity ~ω and attitude er-
ror quaternion qe at the next timestep. All numerical
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Fig. 4. The relation of the spacecraft body-fixed
frame, denoted as subscript B, to some desired ref-
erence frame, denoted as subscript des, about axis
of rotation ê and angle of rotation φ [13].

integrations are done using fourth-order Runge-Kutta
method [36, 37]. After each integration, the error
quaternion is normalized trivially (qe = qe/ ||qe||) to
preserve unit magnitude [35, 37].

2.3. RL Problem Setup

The MDP formulation requires RL simulation en-
vironments to be broken into discrete intervals, called
episodes. Formulating a real-world problem into
episode format requires careful consideration of the
task at hand and the desired agent performance. The
goal is to produce an attitude controller (agent) that
can perform large-angle slews and stabilize the space-
craft about the desired orientation within industry-
standard pointing accuracy. In this work, we define
a large-angle slew to be a goal orientation that is an
angular error of φ ∈ [30◦, 150◦] from the initial orien-
tation.

The state vector numerically represents the prob-
lem to the agent, acting as the input to the policy and
value functions. The state vector, one of the main
determinants of agent performance, should fully rep-
resent the problem or process in which the agent is
acting. The state vector st in this implementation is
given as

st =
{
qe, q̇e, ~ω

}
(11)

where the goal state vector is when the spacecraft
is stabilized at rest about the desired orientation,

qe = [0, 0, 0, 1] and q̇e = ~ω = ~0. We observed
two small implementation details that improve agent
training. First, the components of the state vector
should be normalized to the order of 1. This is due
to the initialization of weights in today’s Python neu-
ral network libraries, such as PyTorch or Tensorflow.
When the policy or value functions, represented here
as neural networks, receive inputs differing in orders
of magnitude, the neural networks can often map to
maximum or minimum output values, crippling agent
learning. Second, the state vector should be built
using relative representations of the state whenever
possible. Examples include using the difference in po-
sition or the error quaternion, in contrast to absolute
position or some arbitrary attitude reference frame.
These relative values seem to make the function ap-
proximation (i.e. the learning) much more successful.

At episode initialization, the initial error quater-
nion qe is selected from the Lie 3D rotation group
SO(3). To ensure a uniform distribution of sam-
pled orientations, we sample a random unit vec-
tor for the axis of rotation in spherical coordinates
from a uniform distribution and and convert the vec-
tor to Cartesian coordinates. The rotation angle
φ ∈ [30◦, 150◦] is also sampled from a uniform distri-
bution. This axis of rotation ê and rotation angle φ,
now in axis-angle representation, are then converted
to our initial error quaternion using Eq. (8). The
spacecraft is initialized at rest (q̇e = ~ω = ~0), with no
perturbation or gravitational torques.

The control problem is discretized by only al-
lowing the agent to control near-impulsive torques
on any of the three principle axes in the spacecraft
body frame to three magnitudes: 0.5 Nm, 0.05 Nm,
or 0.005 Nm. These magnitudes were selected to
be within typical reaction wheel maximum torque
bounds for the size of the modeled spacecraft [38].
The lower magnitude torque values give the agent
additional control authority for stabilizing about the
desired attitude. The agent, in our results, frequently
selects torques from all three of the above magnitudes
in a given episode. A summary of possible agent ac-
tions (moment vectors) is given in Table 1. Note that
the agent can only choose one body-fixed axis about
which to enact external moment at each timestep,
resulting in a highly constrained control problem.

Additionally, a variant of ”frameskipping” is im-
plemented in this study, as in [13]. RL algorithms
and advancements are commonly benchmarked and
compared by playing Atari games, the popular arcade
games [25, 39, 40]. Atari games run at a frequency of
60 frames per second, where the agent could submit
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Table 1. Possible agent actions at each timestep.

Action ~MT (Nm)

0 [0, 0, 0]
1, 2 [±0.5, 0, 0]
3, 4 [0, ±0.5, 0]
5, 6 [0, 0, ±0.5]
7, 8 [±0.05, 0, 0]
9, 10 [0, ±0.05, 0]
11, 12 [0, 0, ±0.05]
13, 14 [±0.005, 0, 0]
15, 16 [0, ±0.005, 0]
17, 18 [0, 0, ±0.005]

an action at any of these timesteps. In contrast, a
frameskip restricts the agent to select an action at a
set interval of frames, with the agent-selected action
taken until the next action frame. Implementing a
frameskip has been shown to greatly improve the per-
formance of trained agents on the Atari games [41].
The variant of frameskipping used here is that the
agent selects an action (moment) to rotate the space-
craft once every 20 timesteps. The agent-selected
angular impulse is applied over the next timestep,
and free rotation dynamics are propagated for the
following 20 timesteps. We found the 20 frameskip
value during training to be a reasonable value for the
given moment command magnitudes, training time,
and control fidelity. The frameskip value (i.e. control
frequency) can be decreased during agent implemen-
tation, which will generally increase agent control ac-
curacy [13]. The integration fidelity used during the
simulation is ∆t = 1/240s, similar to that of popular
physics engines such as Bullet [42]. Using a frameskip
value of 20 and an integration fidelity of ∆t = 1/240s
gives an agent control frequency of 240/21 ≈ 11.43
Hz.

The simulation episode is ended after the agent se-
lects 500 actions (corresponding to real-time of 43.75
seconds) or when the spacecraft angular velocity mag-
nitude exceeds 0.5 rad/s. We implement the neural
networks using PyTorch [43]. The hardware used to
run train the agents, including Numba acceleration,
is left the same as in [13]. This includes all neural
network computation done on an NVIDIA RTX 2070
Super GPU.

2.4. Agent Training

For agent training, the policy and value functions
were represented as feedforward neural networks with
architectures and activation functions given in Ap-

pendix A, Table 3. Feedforward neural networks,
often called multilayer perceptrons (MLPs), are a
paradigm of artificial neural networks in which the
data is processed in one direction (forward) without
any recurrence. The hyperparameters used in this ex-
periment are also tabulated in Appendix A: Tables 4.
The learning rates used and reported are the same for
both policy and value networks. Important hyperpa-
rameters in this work include the entropy coefficient
c and the learning rate. We found that high entropy
coefficients (such as 0.001 or 0.01) caused learning in-
stability. We also found that, for the given network
architecture, annealing to low learning rates during
training was critical for agent success. This is likely
due to the numerical fidelity needed in tuning the
weights and biases for adequate approximation of the
policy function.

The number of layers and neurons of each layer
for both policy and value were chosen to be consis-
tent with the architectures used in [13]. The primary
agent training differences in this study versus [13] are
the use of discrete control instead of continuous con-
trol, different training algorithms, and a different re-
ward function. The policy network output layer em-
ploys the log softmax function, which converts the
logits output by the last hidden layer to the action
probabilities respective to the current state. This is
much like a typical neural network classification prob-
lem, where the policy network “classifies” states to
the desired action.

The reward function is likely the most important
driver of applied RL performance. The reward is used
to formulate the optimization objective for the pol-
icy and value functions, thereby directly influencing
all aspects of the agent’s performance. The reward
must numerically correspond to desired agent behav-
ior. Here, the goal for the agent is to slew the space-
craft to the desired orientation and stabilize about
that orientation until the end of the episode. This
can be formulated as the minimization of the angular
error φ to zero, as shown in intermediate reward ra

ra =

exp
(

−φ
0.14·2π

)
qs,t > qs,t−1

exp
(

−φ
0.14·2π

)
− 1 otherwise

(12)

where qs,t is the scalar part of the error quaternion
at the current timestep and qs,t−1 is the scalar part
of the error quaternion at the previous timestep. The
scalar constant of 0.14 in the denominator of the ar-
gument is a horizontal scaling factor, chosen so the
function returns a magnitude of about 0.001 when
φ = 180◦. Equation (12) is a crucial extension to
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the binary shaped reward in [13]. Our implementa-
tion of discrete PPO failed to maximize the reward
in [13] successfully. We hypothesize the failure of this
agent’s maximization of the reward in [13] to be pri-
marily due how exploration is performed in PPO. Ex-
ploration in PPO is driven by an entropy term in the
loss function, which decreases as the logit distribu-
tion narrows. It is likely that the distribution was
narrowed when the agent settled in a local extremum,
by maximizing the shaped reward before experienc-
ing the terminal reward. This caused the exploration
entropy term to decrease, which limited agent ex-
ploration near the goal orientation. On-policy al-
gorithms such as PPO discard previous experience,
which can cause the agent to “forget” desirable be-
havior when important experience is discarded. Com-
bining these effects, the agent failed to achieve desir-
able behavior with simple rewards as in [13]. A con-
tinuous reward such as Equation (12) provides much
more information to the agent about desirable behav-
ior, allowing on-policy algorithms like PPO to render
desirable agent behavior. With an additional bonus
if the agent is within the goal criteria (φ ≤ 0.25◦),
the reward given to the agent rt can be written as

rt =

{
ra + 9 if φ ≤ 0.25◦

ra otherwise
(13)

where ra is the intermediate reward shown in Equa-
tion (12). Simplified, the entire reward formulation
can be stated as a negative exponential function,
with an added bonus if the agent is within our spec-
ified goal criterion of φ ≤ 0.25◦. This reward func-
tion incentivizes the agent to decrease the error an-
gle φ as much as possible over consecutive timesteps,
thereby agent behavior should approximate time op-
timality. A further extension of this framework could
include an additional penalty for selecting the high-
magnitude torques. We find that the negative expo-
nential function gives better agent performance than
other functions (such as linear) in reward [17, 44]. We
formulate the bonus given in Equation (13) to incen-
tivize the agent to minimize the angular error even
when inside the goal angular tolerance. The magni-
tude of the bonus in Equation (13) was chosen to set
the rewards inside the goal about an order of magni-
tude higher than those in Equation (12). We found
this order-of-magnitude difference to be crucial for
successful training of the agent.

A terminal reward of +50 is given if the space-
craft terminal state satisifies φ ≤ 0.25◦, 0 otherwise.
A reward of -50 is given if the magnitude of the space-
craft angular velocity exceeds 0.5 rad/s. The agent

learns to avoid this behavior due to the large negative
reward magnitude.

2.5. Training Results

We trained an agent for 4,340 epochs, ending
training when episode reward plateaued near a value
of 2500. On the hardware described above, this
training run equated to a wall-clock time of about
1 day, 20 hours (with Numba acceleration). Agent
statistics are shown in Table 2 for 5,000 simulated
episodes, with the agent control frequency set at 40
Hz (frameskip of 5 frames) for statistics calculation.
The “closest state” is defined as the state when the
error angle φ is minimum over the episode. “Termi-
nal state” is defined as the state at the final timestep
of the simulated episode.

In the statistics of Table 2, the agent shows excel-
lent success in the simulation environment given the
success criteria, as the agent reaches and maintains
the desired attitude in all 5,000 evaluation episodes.
Comparing the results in Table 2 to those shown in
previous work [13], the maximum value of angular er-
ror are decreased by two orders of magnitude. These
results emphasize that a continuous reward function,
such as Equation (13), is crucial in deriving an agent
that can achieve pointing accuracies beyond the mar-
gin required. The statistics in [13] show agent perfor-
mance that is barely within the goal angular error tol-
erance, as the episode return is approximately maxi-
mized anywhere inside the given error tolerance. It is
desirable to utilize the capabilities of RL to produce
an attitude controller that can reach much higher lev-
els of angular accuracy than those simply stated in
system requirements, as this agent does. The reward
structure in Equations (12) and (13) are shown to be
highly effective for this task.

To further compare with work in [13] and demon-
strate agent control, we consider three slew maneu-
vers, tabulated in Appendix B, Table 5. These ma-
neuvers are each a 100◦ slew about an axis of rotation
with equal magnitude components, with the rotation
axis being placed in a different octant for each test.
The agent’s orientation, angular error, and angular
velocity histories for the three tests are shown in Ap-
pendix B, Figures 5-7. In each test, the agent shows
successful performance by constantly decreasing an-
gular error at each timestep, and stabilizing about the
goal orientation for the remainder of the episode. The
agent pointing accuracies in all agent tests are order
of magnitudes better than the set minimum toler-
ance. The reward formulation in this work allows the
derivation of controllers that utilize the strengths and
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Table 2. Agent statistics for 5,000 simulated episodes.

Closest State Terminal State

φ (◦) ||~ω|| (rad/s) φ (◦) ||~ω|| (rad/s)

Mean 0.000380 0.001976 0.001954 0.001752
Std. dev. 0.000233 0.001316 0.000705 0.001088

Min 0.000007 0.000066 0.000137 0.000106
Q1 0.000203 0.001387 0.001456 0.001215
Q2 0.000335 0.001868 0.001923 0.001649
Q3 0.000518 0.002371 0.002433 0.002155

Max 0.001980 0.019339 0.004558 0.018723

temporal understanding that a reinforcement learn-
ing agent may have over traditional control methods.

3. Conclusions and Future Work

This work presents a reinforcement learning
framework for deriving a discrete neural spacecraft
attitude controller. Most importantly, we show a re-
ward function and algorithm combination that gives
a high degree of pointing accuracy in the developed
simulation environment. The reward function used
allows the agent to improve pointing accuracy beyond
the set minimum accuracy, which could help increase
the utility of using reinforcement learning over tradi-
tional control methodologies. In the presence of ex-
ternal disturbances or other performance constraints,
the ability for the controller to understand long-term
process dependencies inherent to reinforcement learn-
ing may increase control efficiency and effectiveness.
Immediate future work includes using the frameworks
presented to implement variations of distributed rein-
forcement learning. We plan to study how distributed
reinforcement learning might be used for both online
learning and agents learning from data generated by
constellations or swarms of satellites.
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M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, et al., “Deepmind
lab,” arXiv preprint arXiv:1612.03801, 2016.

[13] J. Elkins, R. Sood, and C. Rumpf, “Adap-
tive continuous control of spacecraft attitude
using deep reinforcement learning,” in 2020
AAS/AIAA Astrodynamics Specialist Confer-
ence, pp. 20–475, 2020.
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Appendix A: Hyperparameters

Table 3. Architectures and activation functions for the policy and value networks used. We used the same
as in the original TD3 paper for comparison to previous work [13, 45].

Policy/Actor Network Value/Critic Network

# of Neurons Activation Function # of Neurons Activation Function

Hidden Layer 1 400 ReLU 400 ReLU
Hidden Layer 2 300 ReLU 300 ReLU
Output Layer 19 (# actions) LogSoftmax 1 None

Table 4. PPO hyperparameters used for training the agent shown. Arrow indicates linear annealing.

Hyperparameter Value

Discount (γ) 0.99
Batch size 128

Minibatch size 30
Learning rate 3× 10−4 → 1× 10−5

Clipping parameter (ε) 0.2
Entropy coeff. (c) 0.0001
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Appendix B: Agent Control Examples

Table 5. The slew maneuvers selected as control examples.

Test Axis of Rotation Angle (◦) Quaternion

1 [0.57735, 0.57735, 0.57735] 100 [0.44228, 0.44228, 0.44228, 0.64279]
2 [0.57735, -0.57735, 0.57735] 100 [0.44228, -0.44228, 0.44228, 0.64279]
3 [-0.57735, -0.57735, 0.57735] 100 [-0.44228, -0.44228, 0.44228, 0.64279]

Fig. 5. Agent control history for control example
1, tabulated in Table 5.

Fig. 6. Agent control history for control example
2, tabulated in Table 5.
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Fig. 7. Agent control history for control example 3, tabulated in Table 5.
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