
1

Dude Where’s My Stars:
A Novel Topologically Justified Approach to Star

Tracking
Robert Green and Robert Cardona

University at Albany - State University of New York
Jacob Cleveland

University of Nebraska at Omaha
Joseph Ozbolt

Auburn University
Alan Hylton and Robert Short
NASA Glenn Research Center

Michael Robinson
American University, IEEE Member

Abstract—In this paper, we consider two novel approaches to
celestial navigation for spacecraft. Determining attitude without
any prior knowledge using star tracking is known to be a
difficult task, particularly given the computational complexity
and the many potential sources of misinformation. We consider
localization by optimizing matching parameters without explicit
star identification in a computationally tractable manner. This
is achieved using the mathematical tools of topological data
analysis (TDA) and cellular sheaves to study the geometry and
distribution of cataloged stars. A framework is gained that
enhances the statistical approach to noise handling and false star
detection, and heterogeneous sensor fusion. Finally, we discuss
confidence bounds and minimum information requirements for
successful operation.

1. INTRODUCTION
For thousands of years, humankind has utilized star tracking
to measure both time and geographical location. Given a
celestial coordinate system, usage of the stars extends from
navigation at sea to spacecraft attitude determination; this
goal is illustrated in Figure 1. In the modern technological
era, the problem of telling one’s orientation and position from
images of the stars has newfound importance when related to
satellite communication systems. For example, developments
in laser-based communication systems promise huge gains in
data rates; however, they tend to require a much finer pointing
accuracy in order to hit and track their target as compared
to radio frequency due to having a more focused emission
pattern. As such, satellites with laser-based communications
systems require the ability to obtain their attitude with a much
higher degree of accuracy than traditional radio-based com-
munication. For example, in [1], the Mars-to-Earth optical
communications system studied requires a pointing accuracy
on the order of 2-5 microradians, with an estimated update
clock of several hundred Hertz. For contrast, the high-gain
antenna of the Mars Reconnaissance Orbiter (MRO) had a
pointing accuracy requirement of 2.08 milliradians that could
update at 10Hz-10kHz [2] (note that MRO did not use star
trackers, but rather used the Electra radio; one can study its
performance in [3]).

Developments in star tracking technology could have a pro-
found impact on the effectiveness of laser-based communica-
tion systems; in particular, they enable beaconless pointing
and tracking. In this paper, we propose a new approach to
the problem of acquiring one’s attitude from images of the
stars that is structured quite differently from those currently in
use (see [4] or [5]). We use topological approaches to signal
processing as theoretical justification and, with the language
it affords us, give a meaningful discussion of noise in this
setting and mitigation techniques.

(3Hrs,−30◦)

Equat. 0◦

North pole 90◦ Dec.

South pole −90◦

6 Hrs0 Hrs RA12 Hrs18 Hrs

Figure 1. Example pointing on the sphere with Equatorial
Celestial Coordinates.

Star tracking algorithms begin with a star catalog, such as
the Hipparcos Catalogue [6]. Including over 110,000 stars,
the data include position (right ascension and declination, in
the International Celestial Reference System (ICRS) frame,
J2000 equator) and the brightness (or Johnson magnitude)
in the V-band. We note that the lower the brightness, the
brighter the star - our sun has a magnitude of -26.7, and the
Hipparcos catalog has 915 stars with a magnitude less than
4.5. This is depicted in Figure 2. While the catalog does offer
distances, the stars are all assumed to be points at infinity, and
are projected onto the unit sphere.

Assuming a picture of the stars has been taken, it is the goal
of a star tracking algorithm to determine the attitude of the
camera at the time of capture. Image processing, correction,
calibration, centroiding, and so forth are all interesting areas
in their own right. However, in this paper we assume the
stars have been centroided, resulting in a list of points. Hence
the task becomes finding a (hopefully unique!) match in the
catalog. Trying a direct search is not a meaningful approach;
indeed, ignoring noise and lens transforms, distances between
stars and points would be impossible to correlate. Instead,
one might compute angles between stars in the catalog and
in the image, and search for matches as in similar triangles.
This is more effective, but suffers from sensitivity to noise.

If one naively counts the angles, a catalog of n stars gives

Figure 2. Plot of stars in Hipparcos catalog below
magnitude 4.5 on unit sphere.

n!
(n−2)!2! angles - for 110,000 stars, this yields a search space
with 6,049,945,000 entries. If we now consider memory or
computation time, it is clear that this approach will not work.
The number of pairs can be pruned by limited brightness—
indeed, cameras will not be able to capture dim stars with
short exposure times. We can also consider that cameras
have a limited field of view, and limit angles by proximity.
Developments along these lines lead to the more robust
pyramid algorithm, which exploits a polygonal structure [4].

While the pyramid algorithm is touted to work quickly,
follow-on work has been conducted (see [5]) to further
optimize the approach. Ultimately, the same geometrical
ideas are at the core of these approaches, which means that
the room for such optimizations could be found in terms
of implementation, such as on FPGAs, or pre-cooking the
catalog in crafty ways.

If the processed catalog fits in memory, the search space can
be restricted if there is reasonable confidence in the attitude.
However, it might be the case that the satellite is lost in
space, and hence has no orientation knowledge. This is in
many ways the worst case, as the greatest amount of time and
computational resources will be consumed.

The lost in space problem can be formally posed as follows:
Can one develop a system to determine a satellite attitude
based on one photograph of stars, and nothing else? From
a mathematical perspective, this amounts to solving for a set
of rotations contained in the 3D rotation group, SO(3), based
on a set of points S contained in an open set defined on R2
and/or brightnesses of the stars which can be thought of as a
mapβ : S→ R. Common approaches to this problem involve
attempting to identify multiple stars in the image based on a
set on inter-star distances and then determining the location of
the scene center of the camera based on these identifications.
In the next section we pose this as a topological localization
problem and then propose two new algorithms based on this
that do not rely on uniquely identifying stars.

Despite the pyramid algorithm’s success in this case, we
are hopeful that our new algorithms can be useful in taking
star tracking to the next level, particularly in rejection of
noise. Two new approaches are detailed below; in both cases,
we will limit our discussion to the lost in space problem.
The discussion begins with notes designed to ameliorate the
mathematical barrier to entry.

Topological Localization Problems

In the realm of signal processing there have been recent
advancements in using ideas from topology in order to de-
velop new approaches to the field and contextualize existing
toolkits in a different mathematical language in order to
increase depth and capability. This has resulted in advance-
ments in applications related to medical imaging, sonar target
classification, and sensor fusion problems just to name a
few [7]. Topological localization problems are a specific
class of signal processing problems in which, we argue, star
tracking belongs, and that we have worked on developing a
strong foundation in previous publications for which a brief
description is offered herein.

Localization problems generally request the position or ori-
entation of transmitters, receivers, or other objects within an
environment. In topological localization problems, the signal
parameters vary smoothly within the environment. As an
example, consider the problem of locating lightning strikes
such as in [8]. A single lightning strike acts as a transmitter,
and the information from several receivers can be used to
determine where and when the lightning strike could have
occurred. The parameters being estimated, as well as the
input parameters from the receivers, vary smoothly within the
parameter space.

In a similar way, star tracking is a scenario in which the
information from several transmitters is collated into a single
receiver to determine the position and orientation of the
receiver. The parameters involved, including the locations of
the stars within the field of view and the magnitudes of the
detected stars, all vary smoothly within the parameter space.
As such, star tracking locally fits the bill of a topological
localization problem. The only noncontinuous events are
when a star enters or leaves your scene; however, this is dealt
with nicely in our algorithmic design.

Previous work on topological localization problems in signal
processing includes [9], which gives clear lower bounds on
the amount of data needed to specify a solution to a topolog-
ical localization problem. In particular, to specify a unique
location on a sphere (which is a 2-dimensional manifold), we
require at least six data sources. If we are able to consistently
see six stars using our camera, then we should, in theory,
be able to uniquely localize. Since we do not know for
certain that we can always see six stars, we need a means
of disambiguating between different places where a fewer
number of stars can be seen. As such, we require a stronger
method.

Sheaves on Posets and their Assignments

Topological localization problems are described as such be-
cause they can be approached using topological methods.
Since the core idea of localization is comparing the results
of a variety of data points to create a consistent message,
one good tool for modeling topological localization problems
is a sheaf. Sheaves give structure to both the types of data
and relationships between data that we are expecting. This
context makes mathematically explicit the relationships that

3we are relying upon for solving localization problems.

Definition 1. A sheaf on a poset is a functor S : P → C,
where P is a poset and C is some category, which for the
purposes of this paper will be the category of pseudometric
spaces, denoted by Pseud. This is explicitly comprised of the
following data :

• For each element p of the poset, there is an object S(p) in
C, called the stalk on p.

• For every pair p ≤ q in P, there is a function S(p ≤ q) :
S(p)→ S(q), called the restriction function along p ≤ q.

• If p ≤ q ≤ r, then the restrictions are compatible in the
following sense : S(p ≤ r) = S(q ≤ r) ◦ S(p ≤ q).

This particular definition of a sheaf can be recovered
from the classical one (as might be seen in [10] or [11])
by giving the poset P the Alexandrov topology (Alex)
: a basis for this topology consists of the upsets of
the poset, Up := {q ∈ P : p ≤ q}. The sheaf is defined
on this basis by S(Up) := S(p) and restriction maps
S(Uq ⊆ Up) = S(p ≤ q). It is a well known process in
sheaf theory to define a sheaf on a basis and extend it to the
entire space. Explicitly, in our case, if U is an arbitrary open
set in P, define

S(U) :=

{
s ∈
∏
p∈U

S(p) : s(q) = S(p ≤ q)
(
s(p)

)
for all p ∈ U and q ∈ Up

}
,

which is called the set of sections.

Definition 2 ([12, §4, p. 6], [13, p. 668]). Let S : P → Pseud
be a sheaf on a poset valued in the category of pseudometric
spaces, and let U be a (finite) collection of open sets in
P (under the Alexandrov topology). Define an assignment
supported on U to be an element of the product∏

U∈U

S(U).

Given two assignments a, b supported on U we can define
a distance between them, called the assignment pseudomet-
ric, by

D(a, b) :=

√∑
U∈U

dU
(
a(U), b(U)

)2
,

where dU is the pseudometric on S(U), giving the set of
assignments supported on U the structure of a pseudometric
itself.

Given an assignment a supported on U, the distance

dU
(
S(U ⊆ V)

(
a(V)

)
, a(U)

)
,

where U ⊆ V ∈ U, is called the critical threshold,
which gives us a value to how different the sections in the
assignment are from each other.

Definition 3. The consistency radius of an assignment a
supported on all open sets is defined to be

cS(a, T) :=

√∑
V∈T

∑
U⊆V∈T

dU
(
S(U ⊆ V)

(
a(V)

)
, a(U)

)2
,

where T is the set of all open sets in the Alexandrov topology.
This measures how far an assignment is from being a global
section.
Definition 4. The consistency radius of an assignment a
supported on U is defined to be

cS(a,U) := inf
{
cS(b, T) : b ∈

∏
V∈T

S(V)

such that b(U) = a(U) whenever U ∈ U
}
,

Definition 5. If a is an assignment supported on U, for any
arbitrary open set, the local consistency radius on U is

cU(a,U) :=√ ∑
V2⊆U∈U

∑
V1⊆V2∈U

dU
(
S(V1 ⊆ V2)

(
a(V2)

)
, a(V1)

)2
.

For ε > 0, an ε-consistent collection consists of every
connected open set U such that

1. cU(a,U) < ε, and

2. there does not exist another connected open V such that
cU(a, V) < ε, and U ⊆ V .

Our Approach

The approach to the lost in space problem that we propose
involves comparing the visible stars in the field of view to
a table of what should be seen at specific locations on the
sphere. This pointing on the sphere can be seen as depicted
in Figure 3. An entry in this table would correspond to a
vector of boresight angles or the angle between the boresight
and the stars from the scene center. This vector is quotiented
over the rotations of the free group so it is ordered from
the smallest boresight angle to the largest (in a well-defined
way, vector entries are re-ordered from least to greatest in the
angle coordinate). An example field of view and associated
field of view can be found in Figure 1. Note that there
is no labeling of the stars, and the ordering is allowed to
freely permute due to results from topological localization
via signals of opportunity. We can think of each of these
vectors as a unique identifier for the location on the sphere.
The norm of a vector in the table and a vector acquired
from pointing can be thought of as a measure of consistency
between the two view points. It is worth noting that this
method is free of any attempt to identify individual stars or
constellations and instead tries to match the scene center to a
point on the sphere directly. These ideas will be formalized
in the following sheafy method which affords us a strong
mathematical framework to describe this type of optimization
problem.

2. METHOD 1
Algorithm

The first method pre-computes a table against which to make
comparisons. Each entry contains a list of ordered pairs

Figure 3. Fibonacci sample example with 1000 Points.

(αi, βi) where αi is the boresight angle of the i-th star in the
field of view, and βi is the respective apparent magnitude,
and each list represents the ‘signature’ for pointing at the
center used for computing the list. One such field of view
can be seen in Figure 4. Every field of view consists only
of stars within a certain angle of the boresight and above
a certain magnitude, and for simplicity, we opt for circular
fields of view rather than rectangular. Each list is sorted
from smallest to biggest αi. The magnitudes are not strictly
necessary; however, they give added fidelity, and since they
are already used to pare down the original catalog, it makes
sense to leverage that information. The scene centers are
generated by sampling points on the sphere according to the
Fibonacci Sphere Sampling which gives us approximately
evenly spaced points on surface of the unit sphere [14]. An
example output of this method of sampling can be seen in
Figure 3. At each point, we compute the list described above
and insert it in the table.

The star’s celestial coordinates and magnitudes can be taken
from any standard star catalog. We demonstrated their so-
lution using the Hipparcos catalog, but any catalog will do
[6]. An example plot with the star locations we used with
threshold magnitude 4.5 can be seen in Figure 2.

To determine the attitude of a random point µ on the sphere,
such as that seen in Figure 1, which represents an observation
made perhaps by the naked eye or more likely a camera, we
first compute the signature associated to the field of view
about that point. This list is sorted according to angles as
well. Then we search over the pre-computed table, calculat-
ing the vector norm between our random list and each entry
in the table, and optimizing over that norm. Because some
scenes will have more stars than others, not every list has the
same length. To get around this, we truncate the longer list to
match the lengths so that the norm can be computed. This is
valid since the last entries in a list correspond to stars which
are the furthest from the scene center, so we drop them as
they will be the first stars to drop off when the scene center
is slightly perturbed. We then say that our approximate right
ascension and declination for our random point is that of the
sample point. Using the Fibonacci sample, an example for
this portion of the method was created and can be seen in
Figure 5. The vertical axis is right ascension in hours and

4

3
Hrs

20◦

 (5◦, 4.2)
(7.5◦, 3)

(10.2◦, 2.3)
(17.2◦, 3.6)


Figure 4. Example field of view with four stars. Includes

vector of angles with corresponding brightness values.

the horizontal axis is declination in degrees. The values at
each point is the vector norm described above and is color
coded according to the chart on the right of the figure, which
corresponds to the norm-difference. Hence the dimmer the
color, the smaller the distance - the relative amount of each
color shows heuristically how easy it is for the algorithm to
converge. Then, by optimizing for the dimmest value, the
estimate is found. Note the apparent lack of density on the
left and right, corresponding to the poles of the sphere, which
is a consequence of the fact that mapping the sphere to the
plane tends to spread out the poles, as is the case with the
famous Mercator projection. However, this indicates that we
are properly sampling the sphere. The green dot near the
center, representing the guess of the algorithm, is very close
to the red star underneath, representing the actual randomly
generated coordinates.

Now that we have a guess for the equatorial coordinates, we
compute the roll, or the angle our scene is rotated about its
center. To do this, we consider two sets of stars: those as
seen in the original catalog, and those as seen in the current
random scene. If they already overlap, then we are done.
Otherwise, one is a rotated version of the other, and this angle
of rotation is what we would like to compute. To this end,
we fix the star in the original catalog view closest to 0◦, i.e.
closest in angle to a ray pointing right, away from the center
of the view. For each star in the random scene, we rotate
the entire list of stars until the star lines up with the fixed
star. We then take the distance between each star and its
nearest neighbor, summing these distances. Then repeating
this process with different stars fixed, and minimizing over all
sums of ’error’, we arrive at the rotation needed to best line
up the two sets of stars. Thus, we have estimated the right
ascension, declination, and roll. This system is justifiable
since it is safe to assume that for wherever we are looking,
with the appropriate roll, all the stars will come close to
lining up, meaning we need not consider every possible pair

5

Figure 5. Example output plot of Method 1 Using the Fibonacci Sample.
The dark-to-bright colors represent close-to-far distances respectively.

of aligned stars in both the observed scene and the one from
the table.

Notice that this method only requires the table to be computed
once, and then can be used for an arbitrary number of pointing
calculations. However, the accuracy is then determined by
how fine a sampling one uses, which is in turn determined by
how much memory one has to store the table for the given
sampling. Thus, it is relatively computationally inexpensive,
with the trade-off of being relatively memory intensive.

We would like to take a brief paragraph to note how different
parts of the algorithm relate to the mathematical context
described earlier in the paper. First, notice that the observable
features, namely distance about scene center for each star,
changes continuously as the scene center changes. This is the
necessary condition for problems of topological localization.
The other thing to note here is that we have a way of
measuring the confidence of a match of an observation to the
different known observed views in the table. This confidence
measure does not necessarily translate to a physical quantity
of distance but is related in the sense that the further you
are, the larger your consistency radius will be. Taking linear
combinations of psuedometrics used for consistency radius
will produce a new consistency radius that will still work;
however, how these combinations are weighted remains an
open question. For instance, how should one weight the
matching of the brightness of stars visible to their position
in the sky? In an application, this would largely depend on
the abilities of the sensors to differentiate between different
brightnesses (dynamic range) or positions with low error.

Scene Sheaf

The above method can be encoded into a sheaf and described
using the language of sheaf assignments and consistency
radius. Recall that each scene consists of a list of stars visible,
where each star has a magnitude as well as an angle to the
center, called the boresight angle.

The general idea is that we begin by taking a picture with
our camera in some direction, which we can think about
as a point on the sphere S2 that we do not yet know, but
want to discover. This picture yields a list of stars for
us (possibly including errors/false stars), from which their
boresight angles and magnitudes can be determined (e.g., by
centroiding). The picture also has an associated angle of
rotation, or roll, which if we knew the scene center already,
we would need to rotate our picture to match up with the data
in the catalog at that scene center, on the nose.

Sheaf Construction—We want to describe a sheaf that encodes
these data and their relationships. Once we have this set
up, we can describe the method above using the language of
consistency radius.

We assume that a given scene can see m ≤ n stars. Each
star we can think of as a sensor, which tells us the boresight
angle and the magnitude. The scene sheaf needs to be able to
handle the fact that we can have n stars, but also distinguish
between a scene that has m ≤ n stars by telling us which
stars are “active” or “inactive.” To do this, we formally give
the star a distance of infinity away from the scene center.

Define Pn to be the rank-four poset in Equation 1.

Pn :=

x1 · · · xn y1 · · · yn

d r a

c

m

(1)

We define the scene sheaf S on stalks as follows :

• S(m) := S2× [0, 2π), which corresponds to a scene center
and roll for the scene,
• S(c) := S2, which corresponds to a choice of scene
center on the sphere; that is, a choice of right ascension and
declination,
• S(d) :=

(
([0, π] t {∞}) × R

)n
/ ∼, representing a list of

boresight angles and magnitudes, sorted by angle from least
to greatest, by lexicographical order, for the m stars seen in
the given scene, where ∼ is the equivalence relation given by
the action of Σn on the list,
• S(xi) :=

(
[0, π] t {∞}

)
× R, which represents the i-

th closest angle from the scene center of a given observed
star, under the lexicographic ordering; that is, if two stars
are the same distance away from the center, the smaller one
corresponds to the smaller magnitude of the star,
• S(r) := [0, 2π), which corresponds to a choice of scene
angle rotation,
• S(a) :=

(
[0, 2π) t {∞}

)n
/ ∼, which represents a list of

angles of each star relative to the scene center, where the∞
would correspond to a star that is “inactive,” and
• S(yi) := [0, 2π) t {∞}, which corresponds to the angle of
the i-th closest star to the origin in terms of radians.

We give each of these stalks the pseudometric structures
induced by the products. The restriction maps are defined
as follows :

• The restriction from c to d is defined by taking a point p ∈
S2 and mapping it to the sorted list of angles and magnitudes
of stars in the given field of view, filtered by some brightness:

S(c ≤ d)(p) =
(
(θ1, b1), (θ2, b2), . . . ,

(θk, bk), (∞, 0), . . . , (∞, 0)).
• The restrictions from d to xi are given by

S(d ≤ xi)
(
(θ1, b1), (θ2, b2), . . . , (θn, bn)

)
= (θi, bi).

This should be well defined since given any orbit of the
equivalence class, we can choose as a representative the
sorted list from smallest to largest via lexicographic order.
• The restriction fromm to c is given by

S(m ≤ c)(p, γ) := p,

which forgets the roll angle, leaving only the scene center
point.
• The restriction fromm to r is given by

S(m ≤ r)(p, γ) := γ,

which forgets the scene center point, leaving only the roll
angle of the scene.

• The restriction fromm to a is given by

S(m ≤ a)(p, γ) := (α1 + γ, . . . , αk + γ,∞, . . . ,∞),

which corresponds to the list of angles of the stars in the scene
given at point p ∈ S2, defined by the star chart, rotated by a
given angle γ modulo 2π (unless it is∞).
• The restrictions from a to yi are given by choosing the i-th
smallest angle of rotation:

S(a ≤ yi)(α1, . . . , αn) := αi.

In order to be able to describe some sections of the sheaf,
it is important to understand some of the key open sets in
Alex(Pn,≤), such as,

• Um, which corresponds to the entire space,
• Uc = {c, d, x1, . . . , xn}, which corresponds to the data
of the scene center location on the sphere, and the boresight
angles and magnitudes of the stars in that scene,
• Ud = {d, x1, . . . , xn}, which corresponds to a list of stars
sorted by boresight angle,
• Ur = {r}, which corresponds to the roll angle,
• Ua = {a, y1, . . . , yn}, which corresponds to an sorted list
of star angles adjusted by the roll angle, and
• given Γ ⊆ {x1, . . . , xn}, the open set UΓ :=

⋃
x∈Γ

Ux

corresponds a the boresight angles and magnitudes of a list
of stars.

With this we can describe some of the local sections :

• For 1 ≤ i ≤ n, a section on Uxi is simply an element of
the stalk S(xi) = S(Uxi), and this corresponds to a boresight
angle and magnitude.
• Given any subset Γ of {x1, . . . , xn}, a section on UΓ
corresponds to a choice of boresight angle and magnitude for
each xi in the list. Note that this can never extend to a section
on Ud, Uc, or Um if the list is not sorted to begin with.
• A section onUd corresponds to a sorted list s(x1), . . . , s(xn).
• A section on Uc corresponds to a point on the sphere and
the associated list of stars seen in that scene in terms of their
boresight angles and magnitudes.
• A section on Ur is simply an element of the stalk S(r) =
S(Ur), and this corresponds to a choice of roll angle.
• Given any subset Γ of {y1, . . . , yn}, a section on UΓ
corresponds to a choice of rotation angle for each star in the
list. Note that this can never extend to a section onUa orUm
if the angles are not sorted from smallest to greatest to begin
with.
• A section on Ua corresponds to a sorted list of rotation
angles from smallest to greatest of stars.
• Sections on unions of these sets correspond to joining of
the information above described.

7• A section on Um corresponds to a point on the sphere and
a choice of roll angle.

We think of the xi’s and yj’s as sensors so that when we take
a picture, those variables are populated with the real-life data.
The consistency radius attempts to find a point on the sphere
together with a roll angle in an attempt to most closely agree
with the observed data.

First Pass—Our first attempt at minimizing the consistency
radius focuses on finding a candidate point on the sphere
whose associated data in the star chart most closely matches
our observed data (the picture). This first pass does not care
about what the roll angle is. We construct an assignment
a on the open sets U := {Uxj : j ∈ Γm} ∪ {Ur}, where
Γm ⊆ {1, . . . , n} with |Γm| = m which is defined by making
a choice of boresight angle and magnitude for each star in Γm
both of which come from the observation, and fixing the roll
angle to be zero. In particular the consistency radius of an
assignment supported on U is

cS(a,U) := inf
{
cS(b, T)

∣∣ b ∈∏
V∈T

S(V)
∣∣

b(U) = a(U) for all U ∈ U
}
.

The first part of the algorithm described in the previous
section gives us a way of finding a choice of scene center
p such that its associated data in the star chart most closely
approximates the observation. In particular, we are taking
a finite uniform sampling of the sphere and approximating
the infimum by testing the points in the sampling since the
infimum over all points on the sphere.

Lemma: There exists a fine enough sampling of the sphere
of k samples such that the consistency radius of any scene
center to the closest table entry will be less than ε and is
geographically less than δ away. (There are measure zero
exceptions which are trivial for our case.)

The associated assignment b arises from choosing the scene
center to be what the algorithm found, and choosing the roll
angle γ := 0, we complete the assignment by defining every
other open set to be induced by the choice (p, γ).

Second Pass—Now that we have a candidate scene center,
we construct another assignment b which contains the data
of the observed stars : their boresight angles, magnitudes
and rotation angles, together with the candidate scene center
point. In particular, b is constructed on the open sets U :=
{Uxj , Uyj

: j ∈ Γm} ∪ {Uc}, where Γm ⊆ {1, . . . , n} with
|Γm| = m. The value of the assignment on Uc corresponds
to the candidate scene center found above, the values on
the Uxj ’s correspond to the boresight angle and magnitude
values of the observed stars, and the values on the Uyj

’s
correspond to the rotation angles of the stars. Approximating
the consistency radius of this assignment using the second
part of the algorithm, as described in the previous section,
corresponds to finding a choice of roll angle that minimizes
the consistency radius, once it is completed to the entire
space. The assignment arising from this part of the algorithm
results in an improved consistency radius.

Noise Robustness— This method is robust with respect to
noise in a few ways. Firstly, it does not require the observed
data points to match up with the star chart exactly, but allows
for small perturbations. Secondly, false star detection could

be described using the consistency radius as follows. We
take a picture with our camera and see m + 1 stars but the
consistency radius on this assignment is particularly high. We
then sequentially remove one star, and adjusting the support-
ing set accordingly, starting with the star furthest away from
the scene center, moving towards the closest. The one which
gives us the largest drop suggests that it corresponds to a false
star observation.

The theoretical ideal would be to construct an assignment
supported on

U := {Ux1 , . . . , Uxn , Uy1
, . . . , Uun

}

encoding the boresight angle, magnitude, and rotation angle
of all the stars in the observation.

3. METHOD 2
Algorithm

This method is based on the fact that points given by the
intersection of all circles of one radii x with all circles of
another radii y, where x is the distance from the original
boresight to the nearest star in the view, and y is the distance
to the next nearest star in the view, for x 6= y, are all possible
candidates for where the boresight could be located. Only
intersections between circles of distinct radii are considered.
Observe that this gives a finite set of points to check. Check-
ing consists of matching the same angle list vector as method
1 (sans magnitudes), except we drop the two smallest angles,
since we already used that information (they were x and
y). We minimize the norm between the angle list for every
intersection point and the angle list for our original scene.
The roll calculation is exactly the same calculation utilized in
method 1.

The illustration in Figure 6 shows an example with four stars,
where the blue circles all have radius from the top left star
to the original center, while the orange circles all have radius
from the top center star to the original center. Note that this
illustration shows how center candidates are found based on a
view of four stars, but the center could actually be all the way
on the other side of the sphere. Armed with only these two
radii, we go around the only sphere, repeating this process of
centering both a blue and an orange circle about every star,
and taking the intersection points. We only showed the result
of this process for four stars on the sphere. Like mentioned
above, we then minimize the norm between the original scene
angle list and the angle list corresponding to each intersection
point in black, to select the best fit center. Because we
know the equatorial coordinates of the intersections, we can
be arbitrarily accurate with our attitude approximation. An
example output sample of intersection can be seen in Figure
7.

The main difference between these methods is that method 2
requires a new table per sample, whereas method 1 generates
the whole table prior to operation. This means method
2 could be relatively computationally expensive, because
solving for the intersection points is difficult and does not
scale well. However, the memory usage is much improved,
as it depends on the biggest set of intersection points which
was typically less than 1/10th that of method 1’s table size.
The number of intersection points determines the size of the
table required to find a solution. In addition, the tables could
be stored in volatile memory because they are not useful for
new pointings. The accuracy can be made arbitrarily accurate

Figure 6. Circle Method example.

because the intersections represent the optimal sampling, to
where the sampling could not be better given the nearest star
distances. The accuracy is, however, limited on how well-
determined the nearest star distances are.

We make a couple of notes about why the algorithm above
works as described. Firstly we take the intersection of the
circles created with the two smallest radii for many reasons.
The smallest ones are chosen since they will have the least
number of intersections to search through and are also less
likely to be dropped from the scene by subtle perturbations
to the scene center. The reason why we need to intersect
two circles is the fact that two circles on a sphere with
different centers have at most two intersections. We do not
consider intersections of three stars since if one perturbs the
location of the center of one of three circles that intersect
in the same place ever so slightly, you can wind up with
no places where all three circles intersect and thus would
need to consider the collection of near intersections—a much
more complicated problem. Another important note is that
the locations of these intersections vary continuously with
respect to moving either individual star along the circles. This
means that the method’s response to noise is continuous—an
important feature to justify approaching this method from the
perspective of topological localization.

Sphere Sheaf

The language of sheaves and consistency can help describe
this method in an interesting way. The idea is that we take
a look at our observed scene and take the two closest stars
to the scene center. We then look at a sampling from the
sphere, and for each sample point, we look at the two closest
stars to that sample point’s scene center, comparing them to
our observed ones. The language of ε-consistent collections
gives us a list of candidate scene center points so that the
difference between the observed data and the candidate data
is less than some ε.

In constructing the sheaf, we write Ŝ2 to signify a finite
sampling of points on the sphere. We consider a poset
constructed as follows: P := Ŝ2 → >, where for every
p ∈ Ŝ2, we have p ≤ >. We then define the sheaf in the

Figure 7. An example Circle Method result. Shows
application of circle method for a randomly sampled

pointing, where each dot is a possible boresight according to
the characteristics of the original view. This is the set of

coordinates the method searches through and selects from.

following way:

• S(>) := [0, 2π)2 corresponds to the closest two stars to
the scene center in our observation ordered from closest to
furthest.
• For p ∈ Ŝ2, we define S(p) := [0, 2π)2, which corresponds
to the closest two stars in the star chart to the point p on the
sphere.

The restriction maps are simply defined to be the projections

S(p ≤ >)(θ1, θ2) := (θ1, θ2).

Construct an assignment a supported on the upsets of the
poset

U := {U>} ∪
⋃
p∈Ŝ2

{Up}

by defining a(U>) to be the two closest stars in the observed
scene, and for each sample of the sphere, defining a(Up) to
be the two closest stars in the scene specified by the point,
obtained from the star chart, together with the identity map.
The ε-consistent collections correspond to the points on the
sphere that are ε-close to our observation. Technically, the
ε-consistent collections are comprised of upsets where the
minimal element is one of the sampled points being ε-close
to the observation. This tells us the points on the sphere that
have its two closest stars about the same distance away from
it as our observation, which are candidate points to our scene
center.

We can then feed these candidate scene centers into modified
assignments used in the consistency radius calculations of
the previous method, minimizing the number of calculations
substantially.

9Stars
746 914 1616 2834

Method 1 Avg (s) 103.14 128.05 216.89 426.42
σ 4.73 7.11 7.79 48.85

Method 2 Avg (s) 35.80 27.68 207.24 553.44
σ 40.10 18.63 178.04 332.69

Table 1. Timing characteristics for several configurations

Jmax 4.33 4.5 5 5.5 6 6.5 7
Stars 746 914 1616 2834 5018 8827 15449

Table 2. Stars visible given J < Jmax

4. SUMMARY OF RESULTS
The approaches as described amount to minimizing the con-
sistency radius for an assignment to the top of the partial
order by comparing it to known existing sections of the sheaf.
These known sections could be acquired in multiple ways,
and we will propose two that have trade-offs in terms of
accuracy and usage of computer resources. We brought the
algorithms described through the non-linear transfer function
from theory to reality, by implementing them in Python. After
we recall some of their basics, we discuss sample runs of
each.

Return to the Methods

The first method involves a precomputation of a table of
vectors of star distances from points evenly spaced on the
sphere. This method has limited fidelity in terms of the size
of the table which would take up memory on board a space
craft. However, it does boast a relatively faster computation
time, so there is a trade off between memory usage, fidelity,
and computational time.

The second method involves creating two circles around each
star with the radius equal to the distance of the two closest
stars to the scene center. Whenever a circle of radius a
intersects a circle of radius b, we have a potential location
where the scene center might be located. We then create a
table of other known star distances for each of these points
and compare it to our original view from our camera.

Implementation Results

The implementations were designed to be very literal in-
terpretations, with an emphasis for clarity. Therefore, no
optimizations were considered. We did look for

• overall function (whether the algorithm worked),
• trends in memory utilization, and
• trends in completion time.

As mentioned, the implementations were not optimized for
performance. However, some observations were made. We
simply considered completion time for various configura-
tions, with each ran ten times. The results are below in
Table 1. The Johnson magnitude was used as the filter
criterion. The numbers for a maximum J value, recalling
that brightness decreases as J increases, are given in Table
2. In all trial runs, a random star image is generated, and
then its attitude is determined. As expected, the first method
is sensitive to the sampling, whereas the second method is
more sensitive to density. While the second method was
typically quicker for smaller catalogs, as the size increased its

complexity surpassed the first. Also, the standard deviation
was on the order of the average time to completion, whereas
the first method’s standard deviation was at least an order of
magnitude smaller than the average.

We also considered memory consumption for both methods,
across a wider selection of catalog sizes. Once the catalog
computations and preprocessing were completed, the mem-
ory consumption did not vary with time until the process was
completed. We remark that in the second method, many of the
star pairs it tries are unreasonable, and pre-filtering (perhaps
by decomposing the universe with an octree) would greatly
reduce the table size, and thus, processing time. Recall that
the pyramid algorithm does this. In Figure 8, we see the
trends for various catalog sizes. The observations for the
various methods are shown, as well as sample regressions.

As suggested, the lookup time is certainly correlated to the
table size. Hence, it is reasonable by inspection of Figure 8
that the second method finishes earlier than the first for small
star catalogs, but without proper pre-filtering becomes less
tractable. In all cases, the algorithm was able to detect the
random attitude within any degree of accuracy asked of it; the
value of J < 4.33 was found to be the most sparse sampling
of the catalog that provided sufficient information.

The catalog used had 119,614 stars. The five brightest stars
have J < 0, while there are 17 with J < 1. As shown in
Table 2, there are over 5,000 stars with J < 6. It is natural
to want more stars in order to have more information—after
all, robustness to error is important, and a real star that is not
in the catalog, if seen, is misleading. This question of “if
seen,” however, is an important one. If the algorithm needs to
operate quickly, say completing 10 times per second, then the
physical camera needs to return frames at least that quickly;
given how dim most stars are, they become unlikely to
register. In fact, star trackers may opt to de-focus the camera
in order to smear stars across multiple pixels—centroiding
can yield subpixel accuracy [15]. In order to operate in this
manner, the stars must be bright enough, the exposure must
be bright enough, the dark current must be low enough, and
so on. These requirements might be untenable, meaning that
a larger star catalog is not necessarily useful. We hasten to
add that if direct translations to other languages (e.g. C) are
made, the memory usage (and thus time requirements) will
scale similarly.

In order to optimize the catalog and preprocessing, we can
re-appeal to the mathematics; in particular, sheaves. Sheaves
can be used for optimization, particularly in understanding
what extent of preprocessing is needed to achieve desired
accuracies, the level of which is likely not constant over
all directions in the sphere. Other restrictions, such as the
maximum angular or spatial separation of stars based on the
camera’s field of view, could be taken into account.

5. CONCLUSION/FUTURE WORK
Two new perspectives were introduced to utilize the stars for
celestial navigation, and initial implementations were created
in Python. As the intention of these implementations was
to serve as clear proofs of concept, there is much room for
optimization and specialization.

Two very different manifestations of the mathematical tools
introduced to star tracking in this paper were detailed. Be-
yond performance optimization, these tools open the doors to

Figure 8. Plots of memory consumption for both methods.

further capabilities and exciting future work:

• The sheaf approach allows robustness to noise, in particular
considering false stars and optical aberrations. This needs to
be explored further.
• Sheaves offer a natural language for sensor fusion, and
hence can integrate two cameras separated by a fixed angle.
Moreover, sheaves also can be used for optimization—for
example, given a star catalog, one might be able to find the
optimal angle of separation.
• Dynamic camera configuration changes, such as adjusting
the shutter speed to allow more or less light (stars) in, in case
too few stars were visible.
• Adjusting the search space (either the Hipparcos catalog or
a pre-computed derivative of it), perhaps based on brightness.
• A more fleshed out discussion of these specific approaches
robustness to noise and perhaps a practical demonstration
may be in order.
• The language and approach that the sheaves give could
be useful for analyzing traditional star tracking algorithms
and put all of them on equal footing with strong language
to discuss exotic types of noise such as false star detection.
• Allow for the field of view angle to not be constant,
comparable to zooming in and out.
• Re-implement the methods in a lower level language for
operation on an embedded system to optimize and verify
operation of program.
• Accumulate changes in equatorial coordinates to estimate
trajectory, like a visual accelerometer.
• This paper only discusses new approaches to the lost in
space problem, but this style of thinking could be adapted
to arrive at methods for the tracking problem as well.

This new area remains under development, and we intend to
push the Python code written through an open-source release
to become reference implementations. It is the hope that these
new methods will inspire localization solutions using tools
that might otherwise not be considered.

REFERENCES
[1] A. J. Swank, E. Aretskin-Hariton, D. K. Le,

O. Sands, and A. Wroblewski, “Beaconless pointing
for deep-space optical communication,” 2016. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2016-
5708

[2] J. Taylor, D. K. Lee, and S. Shambayati, “Mars
reconnaissance orbiter,” pp. 193–250, 2016. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119169079.ch6

[3] E. G. Lightsey, A. Mogensen, C. Duncan, and
T. Ely, “Tracking loop performance of the electra
uhf transceiver,” 2012. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2006-6567

[4] D. Mortari, M. Samaan, C. Bruccoleri, and J. Junkins,
“The pyramid star identification technique,” Annual of
Navigation, vol. 51, pp. 171–183, 2004.

[5] J. Jiang, G. J. Zhang, X. Wei, and X. Li, “Rapid star
tracking algorithm for star sensor,” IEEE Aerospace and
Electronic Systems Magazine, vol. 24, no. 9, pp. 23–33,
2009.

[6] M. A. C. Perryman, L. Lindegren, J. Kovalevsky,
E. Hog, U. Bastian, P. L. Bernacca, M. Creze, F. Donati,
M. Grenon, M. Grewing, F. van Leeuwen, H. van der
Marel, F. Mignard, C. A. Murray, R. S. Le Poole,
H. Schrijver, C. Turon, F. Arenou, M. Froeschle, and
C. S. Petersen, “The Hipparcos Catalogue.” Astronomy
and Astrophysics, vol. 500, pp. 501–504, Jul. 1997.

[7] M. Robinson, Topological Signal Processing.
Springer-Verlag Berlin Heidelberg, 2014.

[8] R. L. Dowden, R. H. Holzworth, C. J. Rodger, J. Licht-
enberger, N. R. Thomson, A. R. Jacobson, E. Lay, J. B.
Brundell, T. J. Lyons, Z. Kawasaki et al., “World-wide
lightning location using vlf propagation in the earth-
ionosphere waveguide,” IEEE Antennas and Propaga-
tion Magazine, vol. 50, no. 5, pp. 40–60, 2008.

[9] M. Robinson and R. Ghrist, “Topological localization

https://arc.aiaa.org/doi/abs/10.2514/6.2016-5708
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5708
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119169079.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119169079.ch6
https://arc.aiaa.org/doi/abs/10.2514/6.2006-6567
https://arc.aiaa.org/doi/abs/10.2514/6.2006-6567

11via signals of opportunity,” IEEE Transactions on Sig-
nal Processing, vol. 60, no. 5, pp. 2362–2373, 2012.

[10] G. E. Bredon, Sheaf theory, 2nd ed., ser. Graduate Texts
in Mathematics. Springer-Verlag, 1997, vol. 170.

[11] R. G. Swan, The Theory of Sheaves. University of
Chicago Press, 1964.

[12] M. Robinson, “Assignments to sheaves of pseudomet-
ric spaces,” arXiv e-prints, p. arXiv:1805.08927, May
2018.

[13] M. Robinson, “Hunting for foxes with sheaves,” Notices
of the American Mathematical Society, vol. 66, pp. 661–
676, 5 2019.

[14] A. Gonzalez, “Measurement of areas on a sphere using
fibonacci and latitude-longitude lattices,” 2009.

[15] Y. Liao, E. Liu, J. Zhong, and H. Zhang, “Processing
centroids of smearing star image of star sensor,”
Mathematical Problems in Engineering, vol. 2014,
p. 534698, Apr 2014. [Online]. Available: https:
//doi.org/10.1155/2014/534698

https://doi.org/10.1155/2014/534698
https://doi.org/10.1155/2014/534698

	Introduction
	Method 1
	Method 2
	Summary of Results
	Conclusion/Future Work
	References

