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Abstract: Investigation into mesoplasma formation from heavy ion strike in 4H-SiC power
MOSFETs. Simulations involving the time evolution of several parameters have determined
that the formation of a mesoplasma occurs deep within the epi of the device. Various
physical parameters were investigated, and only thermal conductivity impacted
mesoplasma formation.
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Introduction, Motivation & Investigation

• Commercial SiC power devices experience Single-Event Burnout (SEB) at 
half of rated blocking voltage 
Failure from mesoplasma formation at epi/substrate interface
Adding a buffer layer improves SEB but still fails to reach rated blocking voltage

• Failure mechanism for buffer structure is not well understood

Simulated peak temperature of 1200 V rated buffer 
layer MOSFETInvestigation

• Transient electro-thermal simulations performed
• Mesoplasma formation and thermal runaway identified as SEB mechanism
• Time Evolution of SEB Phenomenon explained
• Impact of key physical parameters explored
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• Current filament can grow into mesoplasma
• Filament begins to be unstable at the 

intrinsic temperature (Ti)
 Intrinsic carrier density equal to doping 

concentration

Mesoplasma Formation and Thermal Runaway
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Transient Electro-thermal Simulations
• Sentaurus used for full 3-D transient electro-

thermal simulations
• Modeled 1200 V buffer layer MOSFET
• Accurate simulation requires temperature-

dependent models
• Ion strike at center of P+ region under source 

contact
• Failure declared at 3000 K (decomposition 

temperature of SiC)

Parameter
Temperature Range (K)

Equations
Min Max

Thermal Conductivity 300 2300 𝜅𝜅 = �611
𝑇𝑇 − 115

Lattice Heat Capacity 300 2700 𝐶𝐶𝐿𝐿 = 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇2 + 𝑐𝑐𝑐𝑐𝑑𝑑𝑇𝑇3

Bandgap 300 700 𝐸𝐸𝑔𝑔 𝑇𝑇 = 𝐸𝐸𝑔𝑔 0 − �𝛼𝛼𝑇𝑇2
𝑇𝑇+𝛽𝛽

Impact Ionization 300 473 𝛼𝛼 𝐹𝐹 = 𝑎𝑎�1 + 𝑐𝑐(𝑇𝑇 −

3-D model of MOSFET

Strike Location



Time Evolution of SEB Phenomenon
• High e-h density from heavy ion strike (> 1x1020 cm-3)
• Clustering of e-h pairs at 3.8 μm due to thermally generated carriers

Significant localized heating at this location due to Joule heating
3000 K is reached by 240 ps

Reverse-biased at 925 V



Key Physical Parameters
• Determination of physical parameter that controls mesoplasma 

formation
Mobility, lifetime, saturation velocity, and thermal conductivity

• Thermal conductivity is the only parameter that had significant
impact on mesoplasma formation
SEB occurrence increased to more than 1200 V when thermal conductivity 

kept at room temperature value
12x higher than its value at 2500 K

Simulated peak temperature of 1200 V rated buffer layer MOSFET with thermal conductivity at room temperature value



Summary
• Investigated failure mechanism for 1200 V buffer layer MOSFET

Time evolution of several key parameters

• Thermal destruction of the device due to mesoplasma formation
Thermally generated carriers deep within the epi (~4 μm from source)
Contrast to commercial device failure from mesoplasma at epi/substrate 

• Identified thermal conductivity as the most important physical parameter
SiC room temperature thermal conductivity value suppresses the mesoplasma 

formation
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