Mesoplasma Formation and Thermal Destruction in 4H-SiC Power MOSFET Devices under Heavy Ion Bombardment

Joseph A. McPherson¹, Collin W. Hitchcock², T. Paul Chow², Wei Ji^{1*}, Andrew A. Woodworth³

¹Rensselaer Polytechnic Institute, Troy, New York, United States, Department of Mechanical, Aerospace, and Nuclear Engineering

²Rensselaer Polytechnic Institute, Troy, New York, United States, Department of Electrical, Computer, and Systems Engineering

³NASA Glenn Research Center, Cleveland, Ohio, United States

*jiw2@rpi.edu

Abstract: Investigation into mesoplasma formation from heavy ion strike in 4H-SiC power MOSFETs. Simulations involving the time evolution of several parameters have determined that the formation of a mesoplasma occurs deep within the epi of the device. Various physical parameters were investigated, and only thermal conductivity impacted mesoplasma formation.

Conference Information: Virtual Conference - December 1st through 4th

Introduction, Motivation & Investigation

- Commercial SiC power devices experience Single-Event Burnout (SEB) at half of rated blocking voltage
 - > Failure from mesoplasma formation at epi/substrate interface
 - > Adding a buffer layer improves SEB but still fails to reach rated blocking voltage
- Failure mechanism for buffer structure is not well understood

Simulated peak temperature of 1200 V rated buffer layer MOSFET

Investigation

- Transient electro-thermal simulations performed
- Mesoplasma formation and thermal runaway identified as SEB mechanism
- Time Evolution of SEB Phenomenon explained
- Impact of key physical parameters explored

Mesoplasma Formation and Thermal Runaway

- Current filament can grow into mesoplasma
- Filament begins to be unstable at the intrinsic temperature (T_i)
 - ➤ Intrinsic carrier density equal to doping concentration

$$n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g(T)}{2kT}\right)$$

 $n_i(T_i) = \text{Doping Concentration}$

Transient Electro-thermal Simulations

- Sentaurus used for full 3-D transient electrothermal simulations
- Modeled 1200 V buffer layer MOSFET
- Accurate simulation requires temperaturedependent models
- Ion strike at center of P⁺ region under source contact
- Failure declared at 3000 K (decomposition temperature of SiC)

Parameter	Temperature Range (K)		Equations
	Min	Max	Equations
Thermal Conductivity	300	2300	$\kappa = \frac{611}{(T-115)}$
Lattice Heat Capacity	300	2700	$C_L = cv + cv_b T + cv_c T^2 + cv_d T^3$
Bandgap	300	700	$E_g(T) = E_g(0) - \frac{\alpha T^2}{(T+\beta)}$
Impact Ionization	300	473	$\alpha(F) = a(1 + c(T -$

Time Evolution of SEB Phenomenon

- High e-h density from heavy ion strike (> 1x10²⁰ cm⁻³)
- Clustering of e-h pairs at 3.8 μm due to thermally generated carriers
 - > Significant localized heating at this location due to Joule heating
 - > 3000 K is reached by 240 ps

Initial

20 ps

50 ps -100 ps

150 ps

Reverse-biased at 925 V

 $\times 10^6$

Key Physical Parameters

- Determination of physical parameter that controls mesoplasma formation
 - > Mobility, lifetime, saturation velocity, and thermal conductivity
- Thermal conductivity is the *only* parameter that had *significant* impact on mesoplasma formation
 - ➤ SEB occurrence increased to more than 1200 V when thermal conductivity kept at room temperature value
 - > 12x higher than its value at 2500 K

Summary

- Investigated failure mechanism for 1200 V buffer layer MOSFET
 - > Time evolution of several key parameters
- Thermal destruction of the device due to mesoplasma formation
 - \triangleright Thermally generated carriers deep within the epi (\sim 4 μ m from source)
 - > Contrast to commercial device failure from mesoplasma at epi/substrate
- Identified thermal conductivity as the most important physical parameter
 - ➤ SiC room temperature thermal conductivity value suppresses the mesoplasma formation

References

- S. K. Ghandhi, Semiconductor Power Devices: Physics of Operation and Fabrication Technology. New York: Wiley, 1977
- J. McPherson, C. Hitchcock, T. P. Chow, W. Ji, and A. Woodworth, "Mechanisms of Heavy Ion-Induced Single Event Burnout in 4H-SiC Power MOSFETs," *Mater. Sci. Forum*, vol. 1004, pp. 889–896, 2020
- O. Nilsson *et al.*, "Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300-2300 K)," *High Temp.-High Press.*, vol. 29 no. 1, pp. 73–79, Jan. 1997
- M. Lades, "Modeling and simulation of wide bandgap semiconductor devices: 4H/6H-SiC," PhD Thesis, Technische Universität München, Universitätsbibliothek, 2000
- Y. S. Touloukian and E. H. Buyco, "Specific Heat: Nonmetallic Solids," in *Thermophysical Properties of Matter*, IFI/Plenum, 1970, pp. 448–450
- H. Niwa, J. Suda, and T. Kimoto, "Temperature Dependence of Impact Ionization Coefficients in 4H-SiC," *Mater. Sci. Forum*, vol. 778–780, pp. 461–466, 2014

This work was supported by an Early Stage Innovations grant (NNX17AD05G) from NASA's Space Technology Research Grants Program