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Abstract 

In an era of rapid global change, our ability to understand and predict Earth's natural systems is
lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to
informing  models  with  observations  have  reduced  our  capacity  to  fully  exploit  the  growing
volume  and  variety  of  available  data.  Here,  we  take  a  critical  look  at  the  information
infrastructure  that  connects  ecosystem  modeling  and  measurement  efforts,  and  propose  a
roadmap to community cyberinfrastructure development that can reduce the divisions between
empirical research and modeling and accelerate the pace of discovery. A new era of data-model
integration  requires  investment  in  accessible,  scalable,  transparent  tools  that  integrate  the
expertise of  the whole  community,   including both modelers  and empiricists.  This  roadmap
focuses on five key opportunities for community tools: the underlying foundations of community
cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and
data assimilation and ecological forecasting. This community-driven approach is key to meeting
the pressing needs of science and society in the 21st century.
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Introduction 

Kindled  by  rapid  environmental  change,  the  scientific  community  is  deeply  invested  in
understanding  and  predicting  nature’s  dynamics  (Dietze  et  al.  2018;  Rineau  et  al.,  2019;
Hanson  and  Walker,  2020).  Thankfully,  recent  decades  have  seen  an  explosion  of
environmental data globally that is being delivered to us faster than ever before (LaDeau et al.
2017;  Farley  et  al.,  2018;  Reichstein  et  al.  2019;  Schimel  et  al.,  2019).  Process-based
ecosystem models play a critical role in translating data into mechanistic understanding, as they
provide  us  with  the  ability  to  synthesize  and  reformulate  knowledge  across  organizational,
spatial, and temporal scales, and to generate testable predictions from alternative hypotheses
(Fisher et al., 2014; Medlyn et al., 2015; Hanson and Walker, 2020). Despite having more data
than ever before, we have not seen comparable progress in our capacity to forecast natural
systems with process-based models (Lovenduski and Bonan, 2017; Bonan and Doney, 2018;
Dietze et  al.,  2018).  For example,  model projections out  to the year 2100 do not  agree on
whether terrestrial ecosystems will be a carbon sink or source in response to climate change,
and  these  discrepancies  have  not  changed  despite  years  of  apparent  model  improvement
(Friedlingstein et al., 2006, 2014; Arora et al., 2020). Perhaps this is not unexpected: adding
model complexity without being informed by data does not equate to improved predictions, new
processes (e.g. nutrients) may increase realism but may undo previous calibrated performance
unless calibration is renewed easily. Overall, it is not a simple task to evaluate multiple model
ensembles, making conclusions about forecast capacity complicated (Lovenduski and Bonan,
2017; Herger et al., 2019). A new strategy is needed to approach challenges in advancing our
ecological  understanding,  reducing  uncertainties  and  integrating  the  disparate  science
communities of global change biology (Bonan and Doney, 2018; Dietze et al., 2018). The goal
of this paper is to better characterize the bottlenecks that have obstructed the rates at which
new information has been integrated into  ecosystem models,  and to lay  out  a  roadmap to
overcome  these  bottlenecks.  While  many  of  the  examples  here  are  focused  on  terrestrial
ecosystem  models,  the  principles  highlighted  are  general  across  different  systems  and
processes.

A more predictive global change science needs to be based on ecosystem models that capture
important processes rather than merely reproducing patterns (Medlyn et al., 2015; Lovenduski
and  Bonan,  2017;  Bonan  and  Doney,  2018).  Modeling  efforts  should  be  geared  towards
generating hypotheses that are testable against data (Hanson and Walker, 2020). Most current
modeling  activities,  however,  are  more  likely  to  be  informed  by  high-volume  high-level
observational  data  (e.g.,  landscape  level  biogeochemical  fluxes)  than  experimental
manipulations  (Wieder  et  al.,  2019) or  studies  focused  on  low-level  process  details  (e.g.,
interactions between non-structural carbohydrate reserves, drought, and mortality; Keenan et
al.,  2013).  This  is  in  direct  contrast  with the incredibly  diverse range of  data generated by
ecology  as  a  discipline  (Hanson  and  Walker,  2020).  Until  modeling  tools  become  more
accessible, new communities of model users who can expand model-based interpretation and
hypothesis  testing  beyond  its  limited  scope  will  be  curbed  by  informatics  bottlenecks  that
impede wider representation.
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More importantly, current approaches in confronting models with data frequently fail to actively
engage  the  non-modeler  community,  who  often  possess  a  more  detailed  understanding  of
processes and study systems (Jeltsch et al. 2013; Seidl, 2017). This bottleneck not only impacts
the  pace  and  the  quantity,  but  also  the  quality  of  modeling  efforts.  The  division  between
empirical and modeling research is further exacerbated by the current “uniqueness of models”;
that is, each model comes with an idiosyncratic learning curve due to the lack of standards
around  model  interfaces  and  operation.  To  restore  the  balance,  we  need  to  concurrently
increase modeling literacy and lower the technical barrier for modeling activities (Seidl, 2017).
This barrier, overall, hinders efforts to replicate findings, extend analyses to other models and
locations, and routinely confront model-based hypotheses with data (Gil et al., 2016).

We  argue  that  a  major  step  towards  reducing  these  model-data  bottlenecks  lies  in  the
development and support of community-wide cyberinfrastructure: a computational environment
where  we  can  effortlessly  operate  on  data,  simulate  natural  phenomena,  perform  model
evaluation, and interpret results (Dietze et al., 2013; Gil et al., 2016; Eyring et al., 2019; also see
Appendix A for a glossary of terms). While the general idea is not new, their application has
been limited in ecology. However, there are several converging initiatives that make it timely to
reinvigorate efforts (see Appendix C and D for example initiatives and their overview, and the
box for “How to support and sustain community cyberinfrastructure?”). 

In  the  following  sections,  we  present  a  roadmap  to  the  key  features  of  a  community
cyberinfrastructure,  and  discuss  specific  challenges  and  solutions  for  model-data  activities.
These activities include but are not limited to: i) obtaining and processing data (data ingest), ii)
estimating model parameters through statistical comparisons between models and real-world
observations (calibration), iii) evaluating and comparing performance skills through standardized
and  repeatable  multi-model  tests  (evaluation  and  benchmarking),  and  iv)  combining  model
predictions with multiple observations to update our understanding of the state of the system
(data assimilation). We provide specific recommendations for the measurement community, the
modeler and developer community, and the broader community throughout each section (Fig 1
and Appendix B).

FAIR Cyberinfrastructure essentials 

There should be few things more repeatable in science than running a deterministic model. In
practice, running a process-based simulation model is often fraught with roadblocks to any new
user  or  developer  (Dietze  et  al.,  2013).  Tackling  this  at  the individual  model  level  leads to
redundant  efforts  across-models  and  inhibits  economies  of  scale  that  could  be  gained  by
sharing informatics tools  across communities (for  examples of  shared ecological  informatics
infrastructure please see Appendix C). Besides, the larger community of users associated with
common infrastructure will  foster innovation and create an incentive for developers to make
better, more sophisticated algorithms that have gone through more extensive testing (Gil et al.,
2016). The revolutionary success of the open source and free programming language R (R
Core team, 2020) aptly exemplifies the importance of community involvement in developing and
sharing standard tools for a massive reduction in redundant efforts, as well as having access to
a much larger community support (Boettiger et al., 2015; Lai et al., 2019).
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Here  we  briefly  highlight  the  FAIR  (findable,  accessible,  interoperable,  and  reusable)
cyberinfrastructure essentials to facilitate a catalogue of model-data activities (for more details
on FAIR principles for research software and data, please see Gil et al., 2016; Culina et al.,
2018; Hasselbring et al., 2020 and the references therein):

- Findability refers to the ease with which permanent records of the key metadata about each
model-data activity and computational output can be found (Hasselbring et al, 2020). Recording
the full,  transparent history of an analysis to enable findability is known as provenance. For
large model-data workflows executing multiple models or experiments, we recommend [R1; R
for recommendation] model developers utilize open community provenance databases, which
assign unique and persistent identifiers to each model-data activity (LeBauer et al., 2013; Gil et
al.,  2016).  Such  identifiers  could  be  used  in  publications,  pointing  readers  to  the  full
computational output and the metadata required to repeat a model run (Fer et al., 2018). [R2]
The workflow and provenance system themselves should also be version controlled (e.g. using
GitHub) to ensure a fully reproducible record (Piccolo and Frampton, 2016).  [R3] Then, any
changes to their code need to be automatically tested to ensure expected behaviour by tools for
continuous  integration  (e.g  Travis  CI,  travis-ci.com;  Github  Actions,
github.com/features/actions).

- Accessibility in modeling goes beyond obtaining the model code. A broader technical barrier
exists in  terms of  the abilities  required to effectively  deploy  simulation  models  and perform
complex analyses.  [R4] A well-defined automated workflow that coordinates individual  tasks
(Fig 1) should be set up by the developers to (1) reduce barriers to entry, (2) ensure replication
is possible, and (3) reduce costs of manual operation. The process of focusing on the design of
this workflow, which is also known as abstraction, requires standardizing and generalizing the
important  tasks  involved,  and  devising  how  they  are  related  to  one  another.  Leveraging
systemized approaches (e.g.  tidyverse in  R,  or  pandas in  Python)  throughout  the  workflow
design promotes consistency, creates predictable expectations and fosters knowledge transfer
across projects. Abstraction further facilitates presenting the user with a [R5] more intuitive and
accessible  interface  that  handles  everything  from  running  ecosystem  models  in  place  to
submitting complex analyses to remote high-performance computing resources under the hood.

-  Interoperability is critical to building cyberinfrastructure that works seamlessly across many
models, but this requires predictable file formats for model inputs, outputs, and data constraints
used by the community. While reducing the proliferation of both data and model formats would
alleviate this in the long term, in the short-term [R6] using standard data pipelines can remedy
the redundant efforts put into building custom tools. For example, consider the common problem
of managing the data streams in and out of the models with two cases where i) every developer
team works independently (Fig 2, top panel), ii) a common pipeline with internal standards is
used (Fig 2, bottom panel). Not only is the latter approach much more scalable, but these tools
can be made more reliable and sophisticated as less code will be written and tested by more
people.  [R7] We recommend the ecological community leverage existing standard formats as
the internal standards, such as the Climate and Forecast (CF) convention (Eaton et al., 2017),
and the use of ontologies to provide harmonized vocabularies and semantic frameworks (e.g.
Stucky et al., 2018).
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-  Reusability of community models and tools builds on interoperability but also requires  [R8]
individual tasks involved be isolated and modularized in the workflow (Fig 1). Modularity would
allow (1) internal modifications to their implementation without altering the overall behavior of
the system; (2) independent reuse of tools outside of specific systems; and (3) users to swap in/
out  alternative algorithms/tools  and customize their  workflow.  Community cyberinfrastructure
should further be available to users without having to deal with obscure system requirements
and dependencies. Similar to what programming language R has achieved, more standardized
installation procedures and fewer configuration steps significantly reduce user time for setup
and  increase  adoption,  reusability  and  reproducibility.  Fortunately,  modern  virtualization
technologies  offer  a  number  of  tools  that  allow  users  to  run  packaged  software,  called
containers,  complete  with  all  its  dependencies  (Piccolo  and  Frampton,  2016).  [R9] We
recommend developer communities adopt recent light-weight containerization systems (such as
e.g., Docker - www.docker.com; Singularity - singularity.lbl.gov) that are easy to install, set up,
upgrade, and scale up with new locations to run the models. Containerization allows existing
infrastructures to be run reliably across a variety of computing resources, including cloud-based
virtual services (Farley et al., 2018; Hasselbring et al., 2020).

Data ingest opportunities 

Data play a critical role in modeling activities; however, due to their sheer volume and diversity,
they can be difficult to locate and obtain as sifting through deluge of data manually is impractical
(Waide et al., 2017; Reichstein et al., 2019).  [R10] To make data FAIR, we recommend data
producers  use  consistent  naming  structures  (e.g.  Assistance  for  Land-surface  Modelling
activities [ALMA] convention, also please see Appendix A for more details) and open file formats
(e.g. CSV, netCDF) (Hart et al., 2016).  [R11] Next, data should be stored in data repositories
where datasets are versioned, data citations are provided, and that support  [R12] standard,
searchable metadata, and machine-readable Application Programming Interfaces (APIs) (e.g.
the  Oak  Ridge  National  Laboratory  Distributed  Active  Archive  Center,  Cook  et  al.  2016;
Environmental  Data  Initiative,  Gries et  al.,  2019;  Open Science Framework,  Sullivan  et  al.,
2019).  When  those  repositories  are  part  of  jointly  searchable  networks  (e.g.  DataONE  -
www.dataone.org),  it  could  further  allow  developers  to  leverage  one  set  of  tools  for  many
sources. 

Admittedly, data providers may have to invest significant time and resources to follow these
recommendations.  These  costs  include;  preparing  descriptive  metadata  to  prevent  misuse,
choosing the right repository with appropriate licensing and without isolating data from relevant
disciplines,  and finding  means (funding  and expertise)  to  manage data  especially  for  small
projects (Gil  et  al.,  2016;  Waide et  al.,  2017;  Culina  et  al.,  2018).  Furthermore,  other  valid
concerns  such  as  data  leakage  and  insufficient  recognition  are  frequently  raised  (Bond-
Lamberty et al.,  2016). While these issues are not specific to the roadmap discussion here,
community  cyberinfrastructure  tools  can  alleviate  them  to  a  certain  extent.  For  example,
investments in optimizing standardized protocols, terminologies and file formats for community
tools during data collection and processing .will help with metadata preparation and repository
selection.  By  getting  involved  with  community  cyberinfrastructure,  small  projects  can  gain
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access to larger community expertise and support. Cyberinfrastructure data ingest pipelines can
automatically query licenses as chosen by the data provider (Culina et al., 2018) and streamline
citations  to  credit  researchers  seamlessly.  Community  tools  (such  as  Brown  Dog,
browndog.ncsa.illinois.edu) can access and index data collections, in particular small uncurated
and/or unstructured data collections,  thereby preventing data loss,  increasing discovery and
further securing recognition.

On the big data side,  approaches for  scientifically  and computationally  interacting with high
volume, high velocity data become increasingly available (Reichstein et al., 2019). While it is
important  to  generalize  these  cutting-edge  tools  and  share  with  the  community,  modeling
activities frequently involve a subset of data (e.g., a specific region or period) for which time to
transfer data often exceeds the time to process it. Thus, we endorse the recent paradigm of
[R13] cloud  computing and  online  services  (e.g.  Google  Earth  Engine)  that  allow users  to
select, subset, transform, or perform other operations on the data without having to download
and  expand  (see  Gomes  et  al.,  2020  for  more  examples).  Within  this  set  up,  community
cyberinfrastructure also provides a medium where a diverse array of data delivered by Internet
of Things (IoT) techniques can be integrated into models in a sensible manner (Fang et al.,
2014).  As  developers  combine  cloud-based  cyberinfrastructure  tools  with  cutting-edge  data
platforms, this would free the users from their local constraints altogether. Empowering more
groups to interact with large datasets brings its own push towards progress in terms of scientific
proficiency and diversity (Nagaraj et al., 2020). 

Way forward in calibration 

After  data  ingest,  another  persistent  challenge  in  process-based  ecosystem  modeling  is
calibration: the process of using data to constrain model parameters (Dietze et al. 2013; van
Oijen,  2017,  Seidel  et  al.,  2018).  Some  model  parameters  may  be  directly  informed  by
ecological  trait  data  (e.g.,  turnover  rates).  In  this  case,  meta-analysis  tools  can  pull  data
together from open-access, machine-readable, curated databases (LeBauer et al. 2013, 2018;
Shiklomanov et al. 2020). A non-negligible portion of model parameters, however, are often not
directly measurable, therefore, there is a need to estimate parameters indirectly using inverse
methods that  infer  what  parameter combinations produce model predictions compatible with
observations (Hartig et al., 2012). [R14] When doing this, we recommend the community take
the Bayesian approach to transfer the information from data to probability distributions about
models and parameters (Hartig et al., 2012; LeBauer et al., 2013). Bayesian approach allows
combining information from multiple sources and scales, iteratively updating our understanding
as  new  data  become  available,  propagating  uncertainty  into  model  predictions  to  inform
decision making, and it is becoming more effective in dealing with complex systems with the
increase of computing power and numerical methods (van Oijen, 2017).

Most  off-the-shelf  Bayesian  tools  (e.g.  JAGS  -  mcmc-jags.sourceforge.net;  STAN  -  mc-
stan.org), however, are not designed to work with external ‘black box’ models. Process-based
models cannot simply be “plugged-into” these tools and are often too complicated to be re-
implemented in the specific syntax of these software. In addition,  [R15] these tools need to
support  re-reading their  own outputs (posteriors)  as new inputs (priors),  which is critical  for
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iterative updating of the analyses. Due to lack of available tools, models are frequently used
uncalibrated  (or  hand-tuned)  (Seidel  et  al.,  2018).  Assessment  of  uncalibrated  (or  naively
calibrated) models can cause poor calibration to be mistaken for inadequate model structure or
mask real problems with the model structure, hindering overall progress in model development
(van Oijen, 2017). [R16] Using multiple data constraints can be critical to ensuring that a model
is getting the right answer for the right reason (Medlyn et al.,  2015). Even when a model is
calibrated for one setting (e.g., site or period), it does not guarantee reliable performance at
another setting because there is variability and heterogeneity in natural systems. More flexible
techniques,  such  as  hierarchical  Bayesian  calibration,  can  formally  quantify  the  scales  of
unexplained system variability and inform directions for model development (van Oijen, 2017),
but there are even fewer available tools for their standard implementation with external models.

Within a community cyberinfrastructure, the challenge of developing advanced calibration tools
only needs to be faced by statistics experts.  Software alternatives for  calibrating ‘black-box’
models are becoming increasingly available (Fer et al., 2018; Hartig et al., 2019; Huang et al.,
2019).  [R17] Community cyberinfrastructure will  be most successful if hierarchical calibration
tools are able to account for all kinds of ecological variability and heterogeneity (Farley et al.,
2018), and if coupling to a calibration workflow is part of model development. When calibration
tools are implemented in community cyberinfrastructure, they can seamlessly link multiple data
constraints with multiple models. As such workflows are tracked by provenance systems, [R18]
results  from  one  analysis  (e.g.  posteriors)  can  readily  be  used  by  a  subsequent  analysis
elsewhere,  accelerating  our  ability  to  confront  models  with  data.  Investing  in  such
standardization and generalization will not only allow a wider audience to adopt these methods
as common practices,  but  also  foster  progress on  [R19] developing  novel,  more advanced
calibration techniques (e.g. with emulators, Fer et al., 2018; deep learning, Tao et al., 2020 ).

Model intercomparison and benchmarking 

Comparing models to data is at the heart of hypothesis testing and model evaluation (Fisher et
al., 2014; Best et al., 2015). While process-models are frequently compared to multiple datasets
across  their  lifespan,  it  is  remarkably  rare  to  put  an ecosystem model  through  all  its  past
assessment exercises every time it is updated unless a workflow has been automated (Best et
al.,  2015;  Collier  et  al.,  2018).  [R20] To verify progress,  and assess the tradeoffs between
model parsimony and complexity, key datasets need to be set as “benchmarks” to track and
compare performance through time (Luo et al., 2012; Best et al., 2015).  Benchmark data can
also be used to compare across models  as part  of  model  intercomparison projects  (MIPs).
However, the lack of automated and shared workflows also makes traditional MIPs logistically
challenging  to  coordinate  and  repeat  (Fig  3,  top  panel).  Modeling  groups  could  face
incompatibilities in their results due to differences in their model configurations (e.g. calibrated
vs. uncalibrated). Furthermore, due to the cost of performing a MIP, model output requests and
experimental designs are typically kept simple. For example, MIPs largely focus on single model
realizations which can lead to biased or overprecise  decisions about model performances.

Many  of  the  utilities  that  are  particularly  valuable  for  MIPs  and  benchmarking  are  already
included  in  embedding  each  individual  model  in  the  community  cyberinfrastructure  (Fig  3,
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bottom panel). The use of a cyberinfrastructure also opens up the possibility of more advanced
MIP benchmark activities, such as running ensembles to propagate input uncertainty to model
output uncertainty. Generating multi-model ensembles with uncertainties are also practical for
studying model structural errors (Bonan and Doney, 2018) and for model averaging which could
potentially  reduce  prediction  errors  (Dormann  et  al.,  2018).  [R21] We  recommend  the
community  move  towards  benchmarks  that  account  for  model  and  data  uncertainty,  and
leverage this information when computing model performance scores (e.g. benchmarking that
takes into account  the uncertainty  bounds in  models and observations to calculate a score
based on overlap probability).

Once a model  is integrated into community  cyberinfrastructure,  it  becomes trivial  to add its
alternative versions, benchmark against existing MIPs and seamlessly feedback to future model
developments  (Kelley  et  al.,  2013;  Collier  et  al.,  2018;  Wieder  et  al.,  2019).  For  example,
advancing model versions would benefit from being continually tested against the Free-Air CO2

Experiments (FACE-MIP, De Kauwe et al., 2014; Hoffman et al., 2017) and the Arctic-Boreal
Vulnerability  Experiment  (ABoVE,  Fisher  et  al.,  2018).  Within  or  in  addition  to  existing
frameworks, interactive environments (e.g. Rstudio/Jupyter) would allow users to perform more
extensive  analyses  with  pre-loaded  and  aligned  models  and  data.  However,  a  number  of
challenges remain,  including how to deal  with data sets and metrics that are incomplete or
inconsistent with each other (Hoffman et al., 2017; Collier et al., 2018). [R22] Thus, we further
recommend model developers enable direct comparison to observations when possible.  For
example, instead of relying on modeled data products (e.g. leaf area index) whose uncertainties
are  harder  to  determine,  models  can  be  augmented  to  predict  observations  (e.g.  reflected
spectral radiance) as measured by the instruments. In other words, bringing models to data,
rather than the other way around, may eventually reduce artificial inconsistencies between data
sets that stem from additional manipulations for making data and models match. Concomitantly,
community cyberinfrastructure would facilitate  [R23] interaction with a compilation of standard
data sets that models need to be able to reproduce repeatedly (Anderson-Teixeira et al., 2018;
Kraemer, et al. 2020; Reyer et al., 2020).  

Who sets up benchmarks?

To address the bottleneck that only a small fraction of the data collected by ecologists (often
with the aim of improving projections) ever makes its way into ecosystem models and scale up,
data  generators  and  disciplinary  experts  need  also  be  equipped  with  tools  for  data-model
comparison,  not  only  the  “modeler”  minority  (Seidl,  2017).  Through  community
cyberinfrastructure, [R24] domain experts will more easily be able to compare multiple models
to their data and set up persistent benchmarks. For example, with input/output standardization
and data harmonization,  the person leading the MIP no longer needs to be concerned with
multiple file formats and model-specific terminology while assessing the underlying processes
and mechanisms represented in the models. As cyberinfrastructure automates tedious activities
associated with a MIP, experts can focus on their analysis rather than the logistics, making
modeling activities more relevant for their science. 
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Yet, even before the challenges of running a model or a MIP, it is nearly impossible for non-
modelers  to  keep  abreast  of  which  models  exist,  their  most  updated  version,  and  their
respective  strengths  and  weaknesses  (Jeltsch  et  al.  2013;  Schwalm  et  al.,  2019).  [R25]
Therefore,  we  further  recommend  developers  encode  model  structural  characteristics  as
traceable metadata. Although there are preliminary examples of this (e.g. MsTMIP encoding
presence and absence of process representations, Huntzinger et al., 2016), standards need to
be developed by the community to provide information about key structural characteristics of
models.  As a result,  process representations that  repeatedly  perform below-average across
multiple MIPs can be considered rejected hypotheses (Schwalm et al., 2019), which community
cyberinfrastructure could track and in return inform the development of the next generation of
models  as  advancing  new  hypotheses  can  regain  focus.  In  time,  by  centralizing  these
comparisons into databases, community cyberinfrastructure allows new users to discover new
models and to evaluate their updated process representations with minimal technical barriers
while simultaneously allowing the modeling minority to focus on learning from their colleagues
and improving models, rather than the status quo where the majority of their time is spent on
mundane informatics issues.

Data assimilation and ecological forecasting 

For ecology to respond to the pace of global change, and better inform environmental decisions,
the nature of the relationship between ecological models and data must be reconsidered. While
most ecological analyses tend to be non-specific and a posteriori (e.g. ANOVA models), and
most ecological forecasts are long-term (e.g. 2100 projections), there is much to be learned
from  [R26] making near-term ecological  forecasts  that  can  be tested  and  updated  as  new
observations become available (Fox et  al.,  2009;  Dietze et  al.,  2018).  Adopting an iterative
forecasting approach will  not  only  make ecology more relevant  to  the society,  by providing
information  on  fast,  decision-relevant  timescales,  but  will  also  transform  basic  ecological
science and theory (Dietze et al. 2018), by accelerating the pace at which specific, quantitative,
and falsifiable predictions are confronted with data.

Like calibration, the data assimilation methods that drive forecasting, through a formal fusion of
data and modeled states (or both states and parameters), also require advanced statistical and
computational  expertise.  Ecological  models  and  data  frequently  violate  the  statistical
assumptions embedded in assimilation algorithms developed in other disciplines (e.g. normality,
homoscedasticity, independence), hence, [R27] many existing tools need to be reassessed and
generalized by experts within community tools to appropriately meet the ecological model-data
characteristics (Raiho et al., 2020). Making a forecast operational also requires [R28] a higher
level of repeatability and efficient scheduling of cyclic workflows, where a large number of jobs
are executed at regular intervals and each forecast cycle depends on previous ones (Oliver et
al., 2019). Overall,  the breadth of expertise and investment of resources needed to set up a
forecasting pipeline using state-of-the-art data assimilation methods often exceeds the limits of
individualistic efforts (White et al., 2019).

Community-level development of automated pipelines provide a key economy of scale in data
assimilation and forecasting and builds upon many of the features already discussed (Dietze et
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al., 2018): informatics tasks of gathering,processing and standardizing new data will maximize
data use and diversity  of  contributions.  Managing  the execution  of  analytical  workflows will
refine analyses and make them applicable to new problems.  [R29] By publicly archiving and
reporting  results  community  cyberinfrastructure enables  comparisons of  different  forecasting
approaches, future syntheses, and assessment of improvement over time. These features are
integral to the vision for such an infrastructure and could then be coupled to, and build upon,
existing community tools for workflow scheduling (Oliver et al. 2019) and data assimilation (Fox
et al., 2018; Raiho et al., 2020; Pinnington et al. 2020).

Box. How to support and sustain community cyberinfrastructure?

The  ongoing  maintenance  and  development  of  common  cyberinfrastructure  tools  are  essentially
conditioned upon uptake and support  by the community.  This effort  typically  starts with  building a
bottom-up community (Boettiger et al., 2015) involving:

 Support widely adopted languages by the domain scientists (e.g. R and Python) so that;
 experienced users can get off to a running start, 
 inexperienced users would be motivated to invest efforts with the co-benefit of learning

a popular language,
 larger communities of these languages can bring further support.

 Initiate strong ties with the demographic that can highly benefit from community solutions such
as early career researchers.

 Establish codes of conduct for inclusion and diversity, and encourage participation regardless
of experience level.

 Always adhere to open software best practices to build a reputation that can in return attract
human resources and funding.

Luckily,  these efforts  do not  need to  start  from scratch:  the community can adopt  and build upon
existing  systems  (Appendix  C).  While  we  acknowledge  that  getting  involved  with  community
development  requires  upfront  investment  of  time  and  resources  of  individuals,  the  benefits  from
participation are significant overall:

 Contributions to community tools perpetuate and increase their value, elevate recognition of
their contributors (Lowndes et al., 2017; Dai et al. 2018).

 Community involvement provides larger support and career networks (McKiernan et al., 2016).
 In a research landscape that  is  ever diversifying,  community cyberinfrastructure will  be an

active learning platform where ecologists gain advanced capability (Dietze et al., 2013).
As the community grows, successful strategies could be taken as an example, such as the WRF (The
Weather Research and Forecasting Model) community (Powers et al, 2017):

 Financial and personnel burdens are spread out among the community, while the main support
and steering responsibility could remain centralized.

 A help service that is responsible for user assistance is fundamental.
 Building committees in charge of coordination and direction is effective, e.g.:

 Developers committee, to maintain code design, testing and upkeep
 Release committee, to oversee and time major releases
 Review committee, for scientific evaluation of major module/package contributions

Open software and data management plans are increasingly becoming an important requirement by
funding agencies (Powers and Hampton, 2019) for which use of community cyberinfrastructure could
be fittingly proposed. Thus, we suggest such proposals to include a budget item or person hours for the
support of community tools when possible. While projects without funding should also be welcome,
short-term funding opportunities for open research (McKiernan et  al.,  2016; Powers and Hampton,
2019)  will  help  bottom-up  community  building.  However,  viability  over  the  long-term  requires
sustainable funding structures and top-down support from funding agencies, networks, and the private
sector.  There  are  currently  several  appropriate  venues  for  cyberinfrastructure  projects  (e.g.  NSF
Cyberinfrastructure  for  Sustained  Scientific  Innovation),  but  as  communities  make  their
cyberinfrastructure  needs  better  known  (e.g.  through  communication  with  funding  agencies  and
uptake),  we  expect  such  opportunities  to  increase  in  number  and  variety.  Ultimately,  [R30] it  is
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important  that  community and funding agencies support  the sustainability  of  these tools as critical
components  of  the  collective  scientific  infrastructure  in  a  similar  way  they  do  with  the  physical
infrastructure (field stations, sensor networks, satellites) and data repositories.

Conclusions 

Scientists, managers, and policy makers increasingly rely on models to understand the impact
of decisions on ecological processes (Arneth et al. 2014; Bonan and Doney, 2018; Smith et al.,
2019). As the barriers to entry for using the latest models and data are lowered, decisions will
be  made  with  better  information,  and  scientific  problems  will  be  solved  more  quickly.
Community cyberinfrastructure is the engine to bring time frames associated with model-data
integration  in  line  with  the  pressing  needs  of  managers,  policymakers,  and  society  more
broadly. We summarize our major recommendations for promptly meeting the dispersed and
variable model-data synthesis needs of the ecological community as follows.

(1)  Integrated community principles and practices

Modeling needs to be open, verifiable and credible.  Three key concepts in modeling
cyberinfrastructure  ―  abstraction,  automation,  and  provenance  ―  open  up  the
possibility  for  realistic  replication,  community-wide  transparency,  and  model-based
ecological  analysis.  Adopting  common  cyberinfrastructure  tools  that  are  accessible,
reproducible, interoperable, scalable, and community-driven, will  play a critical role in
reshaping how ecologists interact with models.

(2) Reusable data and software

Data  processing  remains  a  bottleneck  to  model  improvement.  To  foster  effective
discovery and reuse of both data and software, we recommend human- and machine-
friendly community-scale approaches. Developing reusable tools based on community
standards  and  involving  the  measurement  community  more  deeply  in  data-model
integration, are both essential for scaling up modeling efforts. 

(3) More advanced calibration techniques

Testing hypotheses should be done with properly calibrated models. Inconsistencies in
model comparison due to different calibration procedures will be reduced by employing
shared Bayesian calibration tools that are set up to work with process-based models.
Hierarchical  Bayesian  calibration  solutions  and  novel  algorithms,  developed  and
generalized under community cyberinfrastructure, will help us better capture the inherent
variability and heterogeneity in ecological systems.

(4) Persistent benchmarks

Model benchmarking and intercomparison are dynamic activities that need to continually
inform model improvement. We recommend a more streamlined, easily repeated and
modified process for  benchmarking a suite of  models with varying levels  of  process
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complexity  and  scale.  Community  cyberinfrastructure  will  allow  domain  experts  to
determine and more directly influence the most salient  datasets that models need to
replicate to demonstrate that they are capturing processes correctly, and then take the
lead in setting up and performing these benchmarks.

(5) Near-term ecological forecasts

Automated data assimilation and forecasting pipelines are a necessity for ecology to
support decision making in an increasingly non-equilibrium world that has moved outside
of  historical  norms.  Building  these  forecasting  systems requires  complex  automated
systems, and community cyberinfrastructure is well-positioned for putting the parts of
operational forecasts together.

Process-based  models,  though  imperfect,  are  our  window  into  the  future  functioning  of
ecosystems under global change. The next generation of ecological models will need to ingest
increasingly diverse and expansive data to inform and test new process representations and
scaling approaches, allow rapid detection and explanation of global change patterns, and even
possibly allow them to be prevented. This need is now more pressing than ever. To achieve
ecological model-data integration in a way that is transparent, easily communicable, and scales
up  to  the  size  and  diversity  of  the  ecological  community,  we  must  invest  in  community
cyberinfrastructure.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the
particular study.

Code availability

Code availability not applicable to this article. However, we note for the interested reader that all
example community tools mentioned in Appendix C are open source and available on online
code repositories.
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Figure 1. Schematic of  a community  cyberinfrastructure example and summary of  recommendations
(numbers in the green boxes refer to our recommendations in the main text). Users start with a high-level
Graphical  User  Interface  (GUI)  to  provide  their  setup  for  a  modeling  activity.  These  selections  are
translated into a human and machine-readable markup language and read in by the master workflow
which then executes a sequence of modularized tasks. At this stage, a unique identifier is assigned to the
workflow to be executed. This ID, which points to the full workflow output and access to the metadata
required to repeat it, can be shared among collaborators and published in papers. Next, the selections of
the user are queried with the database, and actions are decided depending on whether requested items
are already processed in  an earlier  modeling activity  and ready to use or  need to  be retrieved and
processed. Then, each module performs a well-defined task in the specified order. Crucial information for
provenance of the whole workflow is recorded in the database during associated steps. Key outputs from
analyses, such as calibration posteriors, are stored in a way that enables their exchange and re-use
between different workflows. An important feature of this cyberinfrastructure is that both its parts and itself
as a whole are virtualized (containerized) to add an additional layer of abstraction and automation, and to
ensure interoperability.
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Figure 2. Reduction in redundant work when adopting common formats. There are “n” data types that
must  be  linked  to  “m”  simulation  models  and  “k”  post  simulation  analyses.  In  the  top  panel,  the
conventional approach where modeling teams work independently requires implementing  n*m different
input  and  m*k different  output  conversions.  As  data,  models,  and analyses are  added,  effort  scales
quadratically. On the other hand, the bottom panel shows that by working as a community, and adopting
common formats and shared analytical tools, the number of converters necessary to link models, data,
and analyses reduces to an m+n and m+k problem, and scales linearly. When a new input source or a
new analysis is added to the system, it can immediately get access to  m models by writing only one
converter, (a) and (d) respectively. Likewise, when a new model is added, it can get access to n inputs
and  k analyses by writing one converter for each, (b) and (c) respectively. This scaling also extends
beyond data conversions to the development of tools and analyses. For example, if input data need to be
extracted, downscaled, debiased, gap-filled, or have their uncertainties estimated, each of these steps
does not need m x n variants but rather just one tool that can be applied to the standard. 
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Figure  3. Traditional  multi-model  intercomparison  project  (MIP)  workflow  versus  Community
Cyberinfrastructure.  Historically,  each model and associated experts/infrastructure individually  engage
with MIPs (top). While stimulating model improvement is intended, it is not inherently nor readily available
in traditional MIPs. In a Community Cyberinfrastructure, by contrast, both standardization of inputs and
outputs and troubleshooting are included in embedding each individual model in the system (bottom)
where  MIP  analyses  are  a  use  case.  MIP  conclusions  relevant  for  model  or  cyberinfrastructure
development can be fed directly back into this framework.
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