

The ICESat-2 Mission: Land, Ocean, and Inland Water Data Products for Middle and Low Latitude Science and Applications

Michael Jasinski

NASA Goddard Space Flight Center Greenbelt, MD

2020 Annual Meeting of the Unión Geofísica Mexicana RAUGM

MISSION

Mission Summary http://icesat-2.gsfc.nasa.gov

Instrument:

- Advanced Topographic Laser Altimeter System (ATLAS)
- Micro-pulse instr w/single-photon detection
- 532nm
- 6 beams: arranged in 3 pairs low and high energy (25/100 μJ)
- 10 kHz pulse repetition rate
- 17m footprint
- ground speed ~ 7000m/s

Orbit:

- 500 km, non-sun-sync, 92° inclination
- 91 day exact repeat, ~30 day subcycle

Status

450 days on orbit

Laser energy stable, spacecraft & ATLAS healthy

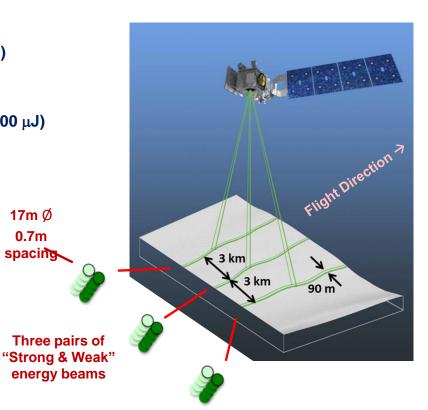
Implementation Data Products since Oct 15, 2018

Lifetime: 3 years, with consumables for 5+

Orbit: 496 km, non-sun-synch, 92° inclination

Repeat: 91 day exact repeat, ~30 day sub-cycle

Science Data: 1 TB/day


System Pointing: Control = 45 m (14.3 m, CBE)

Geolocation Knowledge = 6.5 m (4.0 m, CBE)

17m Ø

0.7m spacing

Three pairs of

ICESat-2 Mission Overview

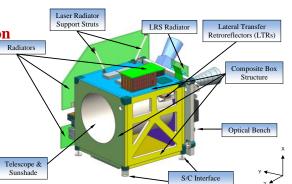
Payload

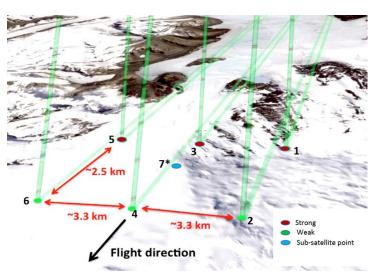
ATLAS – Advanced Topographic Laser Altimeter System developed at Goddard Space Flight Center, Greenbelt, MD.

Measures time of flight of laser pulses

Measures pointing direction

Single-photon sensitive detection


6 beams, arranged in 3 pairs


10 kHz pulse-rep. rate

11 m footprint

spaced 0.7m along-track

532nm wavelength

- ~3 km spacing between pairs provides spatial coverage
- ~90 m pair spacing for *slope determination* (2° yaw) **high-energy beams (4x)** for better performance over low-reflectivity targets.

Implementation

Lifetime: 3 years, with consumables for 5+

Orbit: 496 km, non-sun-synch, 92° inclination

Repeat: 91 day exact repeat, ~30 day sub-cycle

Science Data: 1 TB/day

System Pointing: Control = 45 m (14.3 m, CBE)

Geolocation Knowledge = 6.5 m (4.0 m, CBE)

Magruder, L.A., Neumann, T. A., Brunt, K., Farrell, S., Fricker, H., Gardner, A., Neuenschwander, A., et. al., (2019) New Earth orbiter provides a sharper look at a changing planet. *EOS*, 100,

https://doi.org/10.1029/2019EO133233

Current Status

726 days on orbit since launch

ATLAS: transmitting laser light since 1 October 2018

605 billion laser pulses (compared with 2 billion from ICESat)

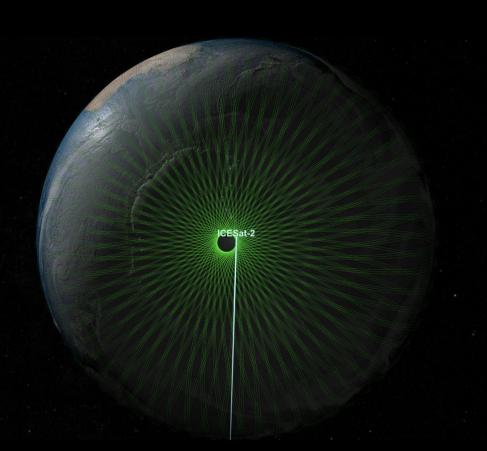
6 beams, arranged in pairs

11 m footprint diameter

0.7 m along-track spacing

Performance metrics remain nominal, and within requirements

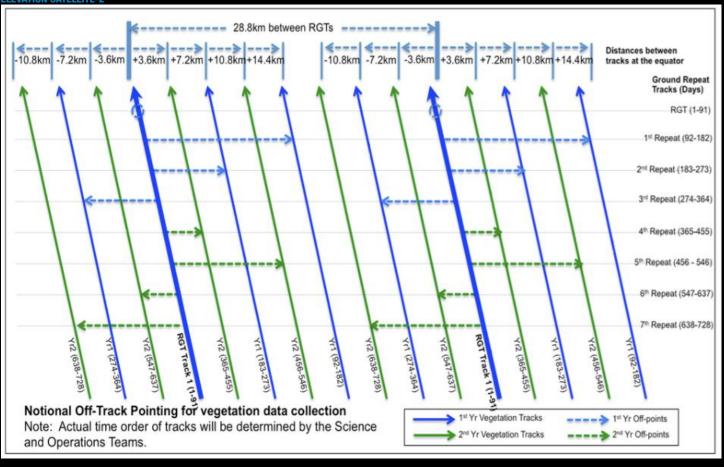
500 km altitude


88S to 88N

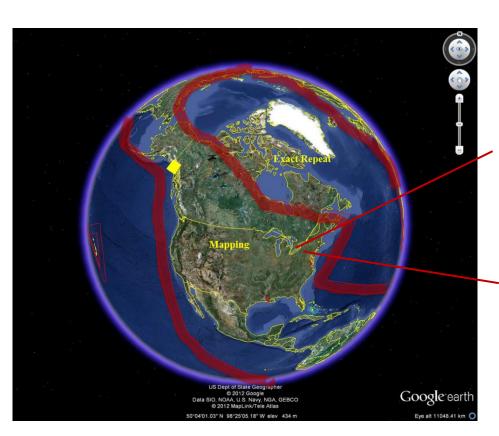
15 revs/day

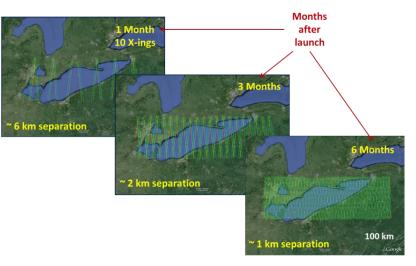
1387 tracks

91-day revisit


Ground tracks at icesat-2.gsfc.nasa.gov

Off Pointing in Mid-Latitudes





ICESat-2 Orbital Sampling

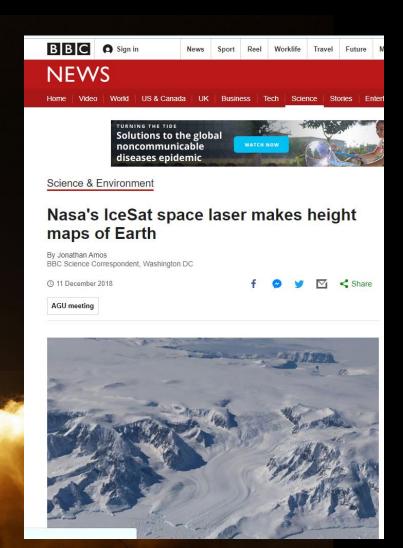
"Mapping" and "Repeat" Zones

Consequences for Inland Water E.g. Lake Erie, USA ~42 deg N

ICESat-2 Mission

NASA's Earth observing altimetry mission

Successor to ICESat (2003-2009)


Designated as a top priority in Earth Science Decadal Survey

Launched successfully September 2018

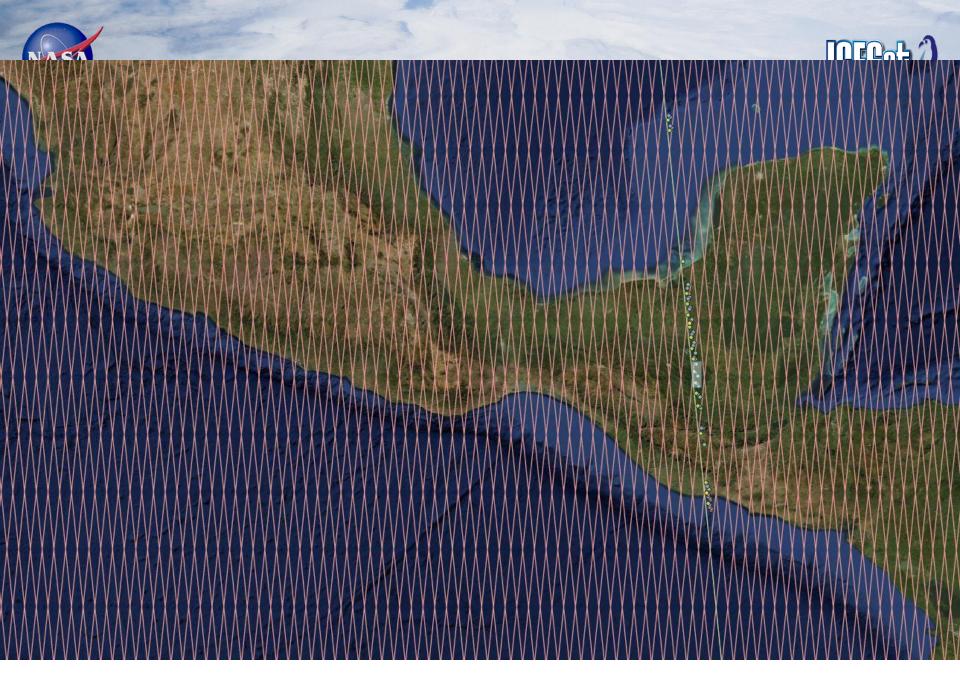
More than a trillion measurements to date

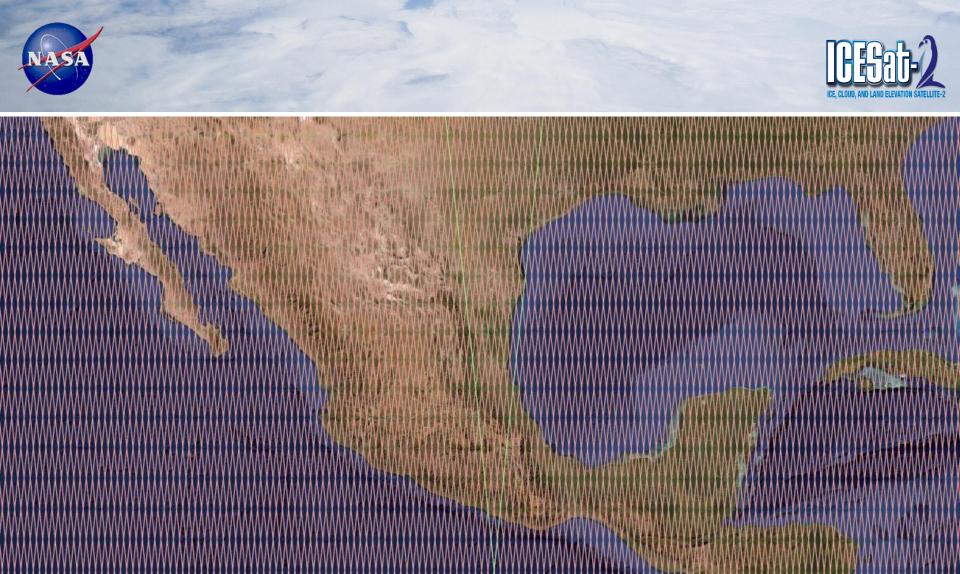
All data available at National Snow and Ice Data Center

(nsidc.org)

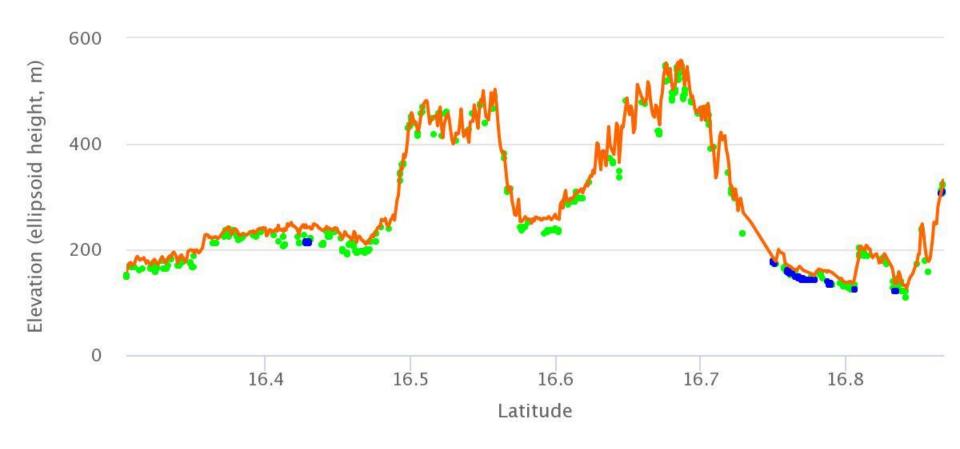
Purpose

- i) Improve understanding of:
 - high-latitude hydrology and lake storage dynamics within pan-Arctic basin and globally, including the role of small lakes, in response to melting permafrost and thermokarst.
 - quantification of freshwater fluxes into the Arctic and other oceans, ocean salinity/circulation.
- ii) Enable other science and application studies that may benefit from global, seasonal, high resolution observations of inland water dynamics.
- iii) Provide hydraulic properties for remote estimation of stream discharge and lake storage/elevation, including bathymetry where possible.
- iv) Serve as an accurate high-resolution calibration for other radar altimeters.
- v) Provide synergy with upcoming SWOT mission.

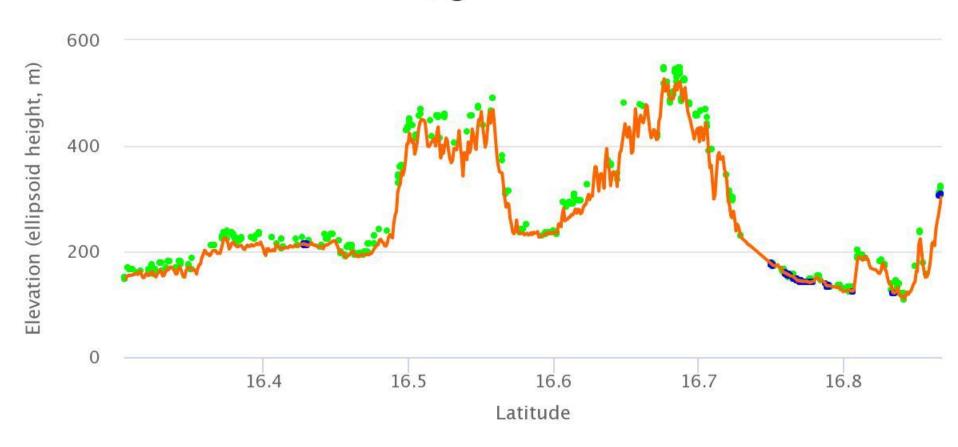




MEXICO



Return Signal Photons



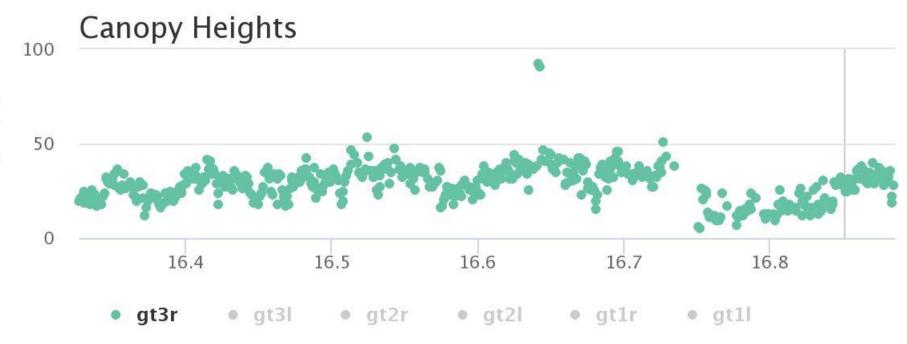
Confidence:

- Noise [41325]
 - Medium [848]
- Buffer [746]
- High [520]

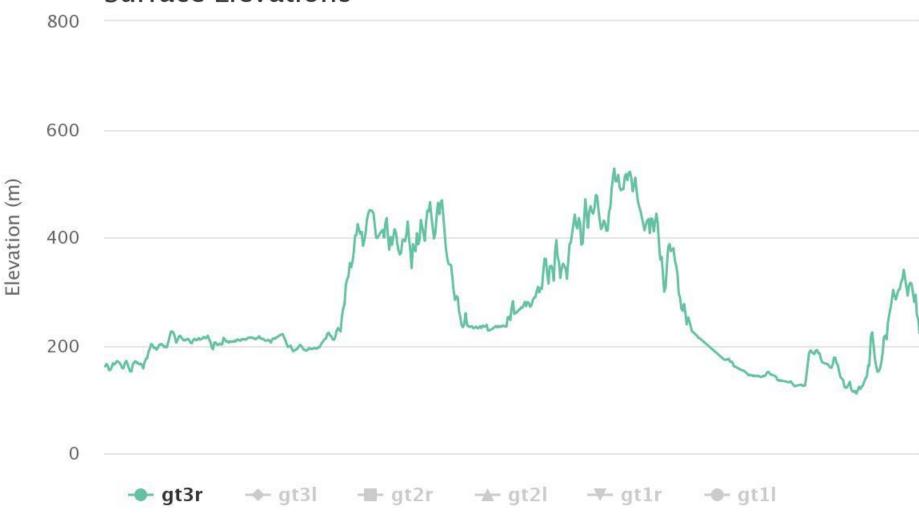
Low [9957]

Return Signal Photons

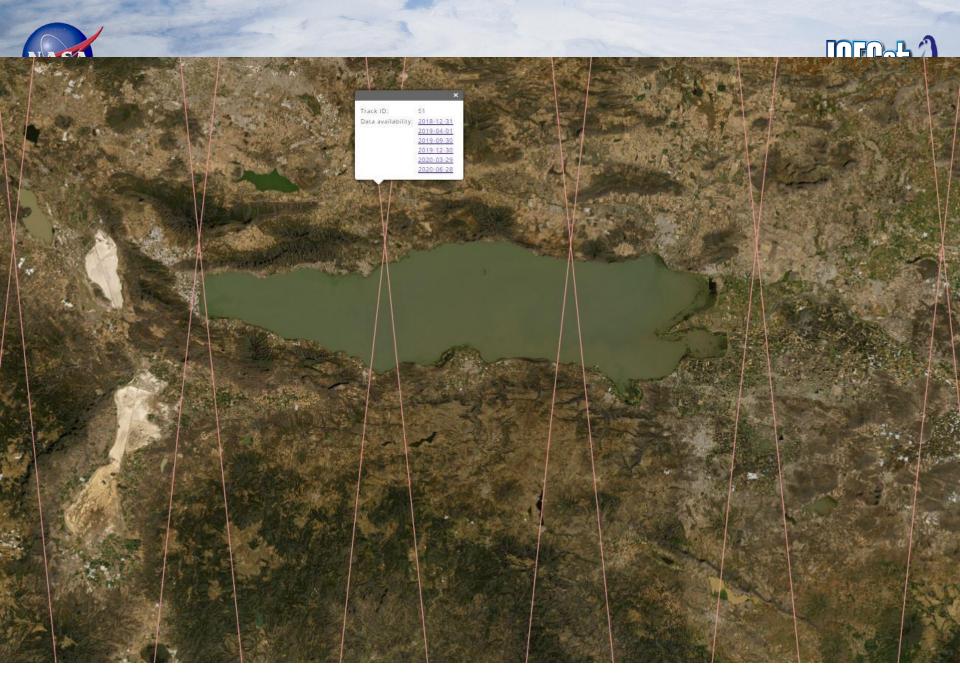
Confidence:

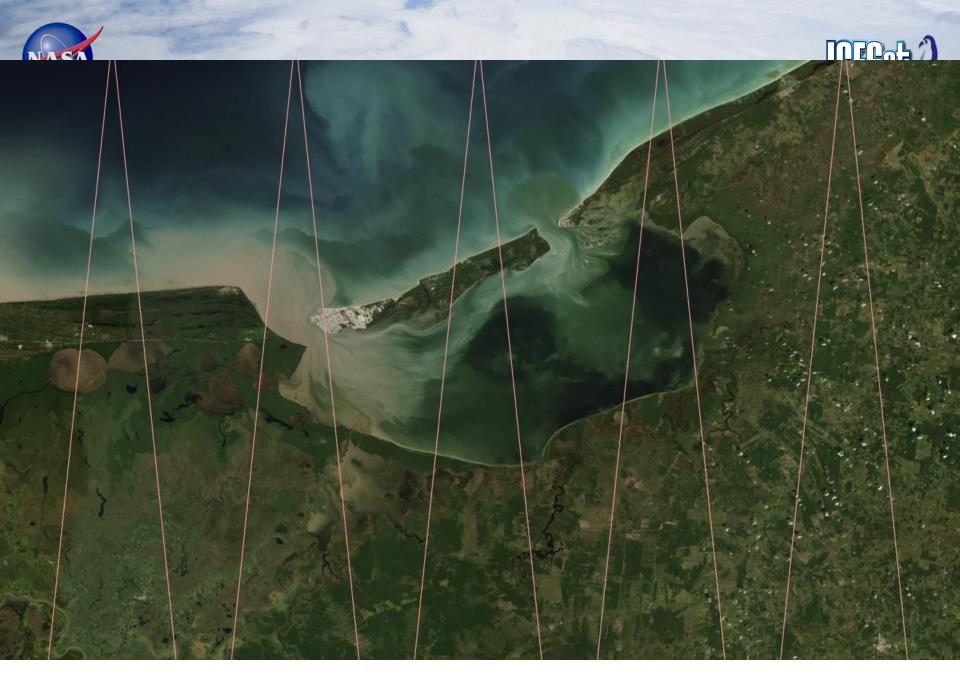

- Noise [41325]
- Medium [848]
- Buffer [746]
- High [520]

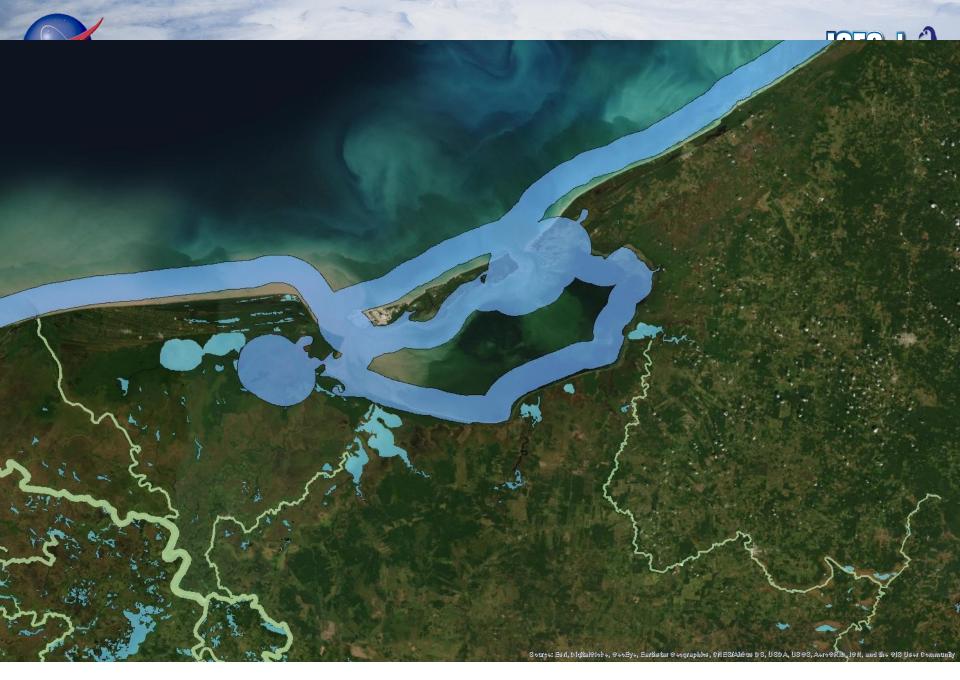
Low [9957]

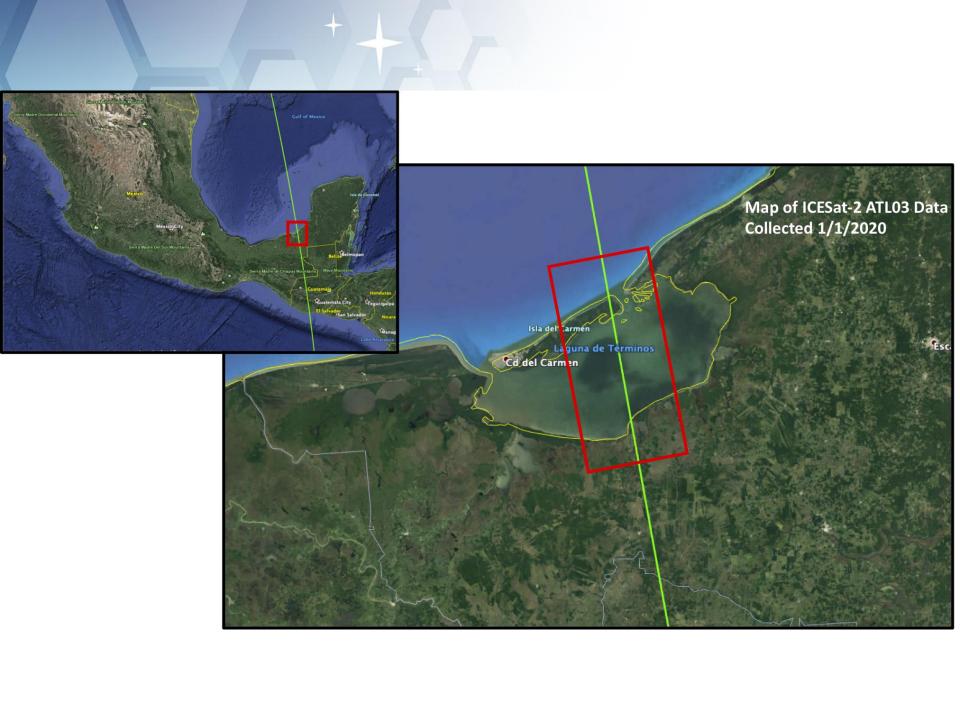


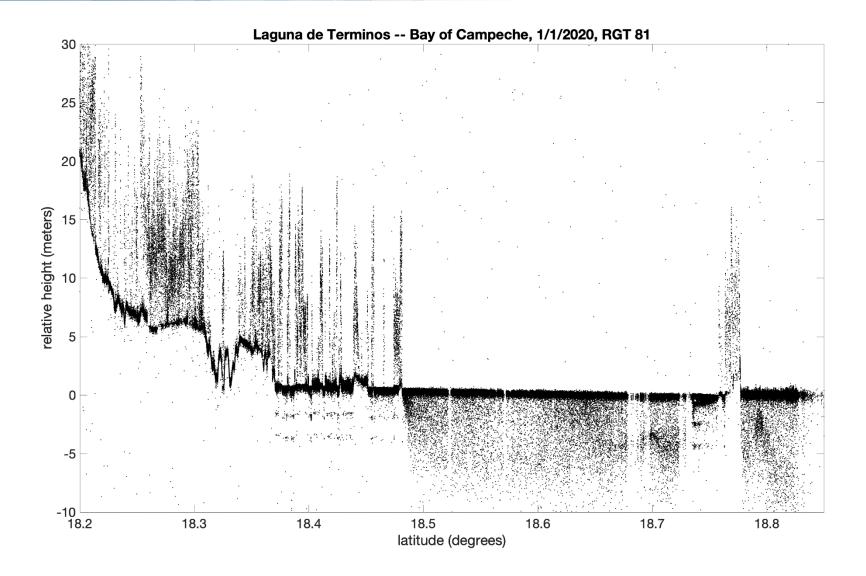



ATL08: Ground Elevation and Canopy Surface


Surface Elevations Showing 100% data sample rate





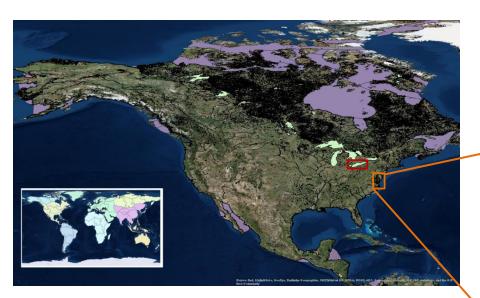


Acknowledgements

David Hancock, NASA GSFC
John Robbins, NASA GSFC
Jyothi Nattala, SSAI
Tamlin Pavelsky, U N. Carolina
James Morrison, U Washington
Christopher Arp, U Alaska
Benjamin Jones, U Alaska
Michael Ondrusek, NOAA STAR
Christopher Parrish, Oregon State
Huilin Gao, Texas A&M U
Charon Birkett, NASA GSFC
Bernhard Lehner, McGill U
Tom Wagner, NASA HQ

Thorsten Marcus, NASA HQ
Tom Neumann, NASA GSFC
Jared Entin, NASA HQ
Jeffrey Lee, NASA
Lisa Callahan, NASA
Kelly Brunt, NASA GSFC
Christopher Hiemstra, CORREL
Sabrina Delgado-Arias, NASA GSFC
Anita Brenner, NASA GSFC
Yao Li, Texas A&M U
Jeffrey Danielson, USGS
Kaitlin Harbeck, NASA GSFC
Eric Stengel, NOAA STAR

Bill Cook, NASA
Yongwei Sheng, UCLA
David Harding, NASA GSFC
Jeremy Kasper, USGS
Krista Bartz, USGS
Jennifer Wozencraft, JALBTCX
Mark Carroll, GSFC
Claudia Carabajal, GSFC
Richard Kelly, U Waterloo
Jeffrey Gerber, GSFC
ICESat-2 Science Team



INLAND WATER

Global Inland Water Coverage

Identification

ATL13 water body mask merged from several databases, each w/unique ID (E.g. HydroLAKES, GRWL, GSHHG Shoreline)

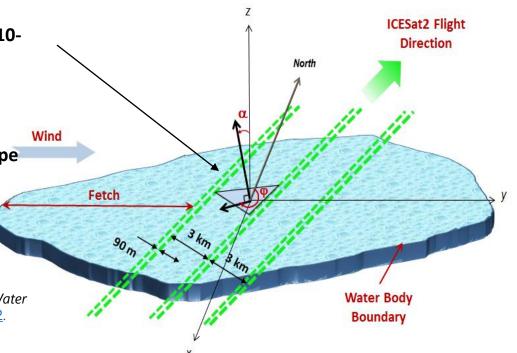
Water Body Types

- Lakes and Reservoirs > 1 km²
- Rivers > ~ 100-200 m
- Transitional water including estuaries, bays & near shore

ATL13 Inland Water Data Product

Principal ATL13 products

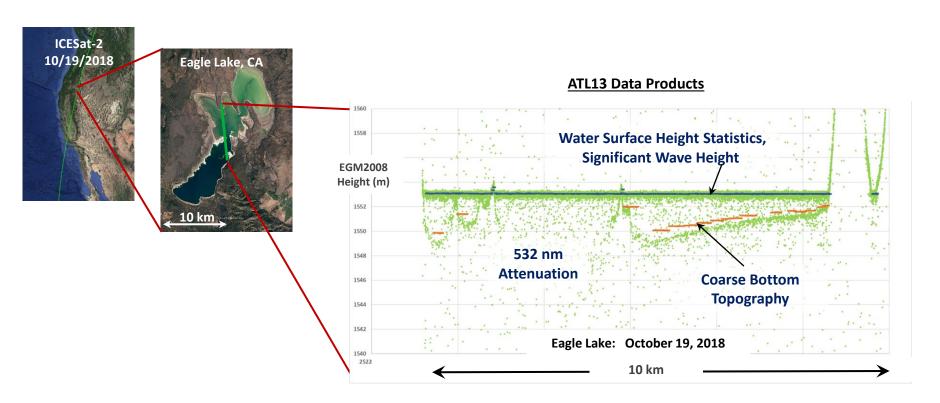
Along track surface height stats
 Reporting at ~100 pe segment lengths (10-200m)


- Significant Wave height

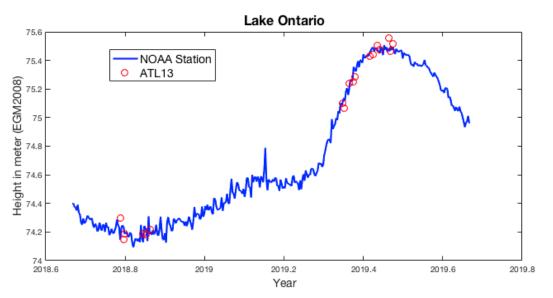
- Subsurface attenuation

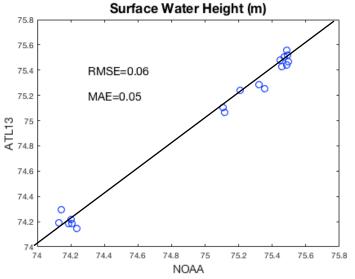
- Coarse Bottom Detection

- Estimated vertical accuracy: 5-10cm/100pe


Jasinski, Stoll, and Coauthors. 2019: *ICESat-2 Inland Water ATBD*, doi: https://doi.org/10.5067/ATLAS/ATL13.0012.

Eagle Lake, October 19, 2018


Jasinski, Stoll, Hancock, Robbins, Nattala. 2019: *ICESat-2 Inland Water ATBD*, doi: https://doi.org/10.5067/ATLAS/ATL13.002.

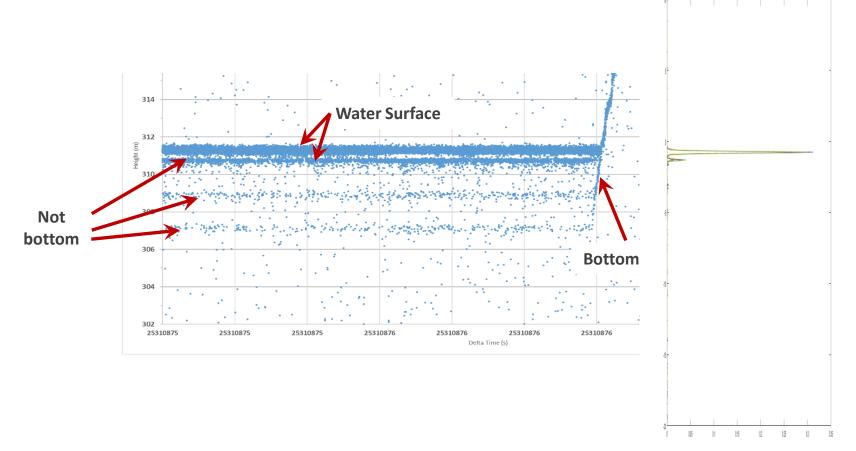


Lake Ontario ATL13 vs NOAA gauge

- Lake Ontario (HydroLake ID=7)
- Oswego, NY NOAA Station ID: 9052030
- ATL13 Rel 002, EGM2008, median values)
- Evaluation metrics: RMSE = 0.06m, Absolute Mean Error =0.05m
- Evaluation period: 9/1/2018 11/18/2018; 5/1/2019 6/26/2019

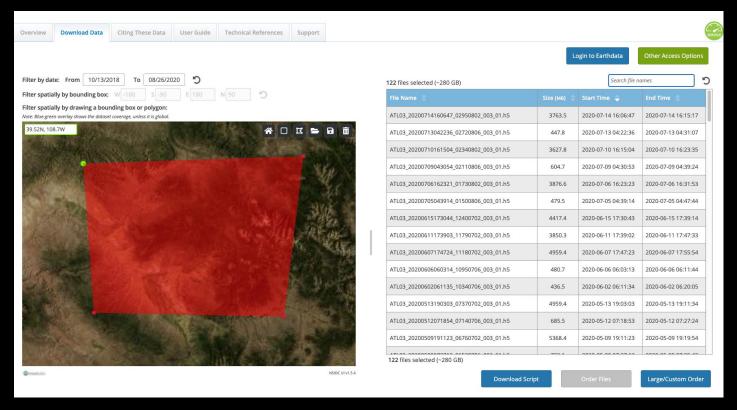
ATL13 Status

ATL13 Version	Release Date	Water Body Types	Description & Principal Features
1	May 2019	Lakes > 10 km ² (19,634 lakes)	 Surface water height statistics (mean, StdDev, slope), significant wave height, subsurface attenuation, and supporting variables, reported at short segment length scale (~30-200m) Employs GLWD (Lehner & Doll 2004)
2	November 2019	Lakes & reservoirs ≥ 1 km²; (185,181 lakes) Estuaries and bays, Near shore buffer (7km)	 Replaces GLWD with HydroLAKES (Messager & Lehner, 2016) Adds coarse bottom finding algorithm Adds dynamic shore finding Employs Named Marine Water Bodies (ESRI) Employs GSHHG Shoreline (Wessel et al, 1996)
3	April 2020	Above plus rivers; All lakes > 0.01 km ²	- Employs GRWL (After Allen and Pavelsky, 2018) to create river mask - Adds Ice on/off flag from multi-sensor NOAA product - Flags/corrects dead-time error
ATL22	April 2020	All water bodies	- Transect mean and supporting quantities


ATL13 Status

Inland Water ATBDs	Release Date	Water Body Types	Description & Principal Features
ATL13 Ver 1	May 28, 2019	Lakes > 10 km ² (19,634 lakes)	- Computes full surface water statistics at short segment lengths - Uses GLWD (Lehner & Doll 2004)
ATL13 Ver 1	December 2019	Lakes & reservoirs ≥ 1 km²; (185,181 lakes) Adds estuaries and bays, near shore buffer	- Replaces GLWD with HydroLAKES (Messager & Lehner, 2016) - Adds coarse bottom finding algorithm - Adds dynamic shore finding
ATL13 Ver 1	April 2020	Adds rivers; Incl. HydroLAKES >0.1km ²	- Uses GRWL (After Allen and Pavelsky, 2018) to create river mask - Adds Ice on/off flag from multi-sensor NOAA product - Flags/corrects dead-time error
ATL22 Ver 1	April 2020	All	- Adds transect mean quantities

Known Issue: Striping in high surface reflectance



Grand Mesa, CO

via NSIDC spatial search tool

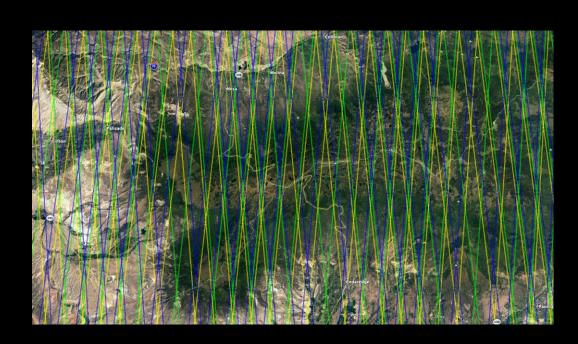
Reference Ground Tracks repeat every 91 days

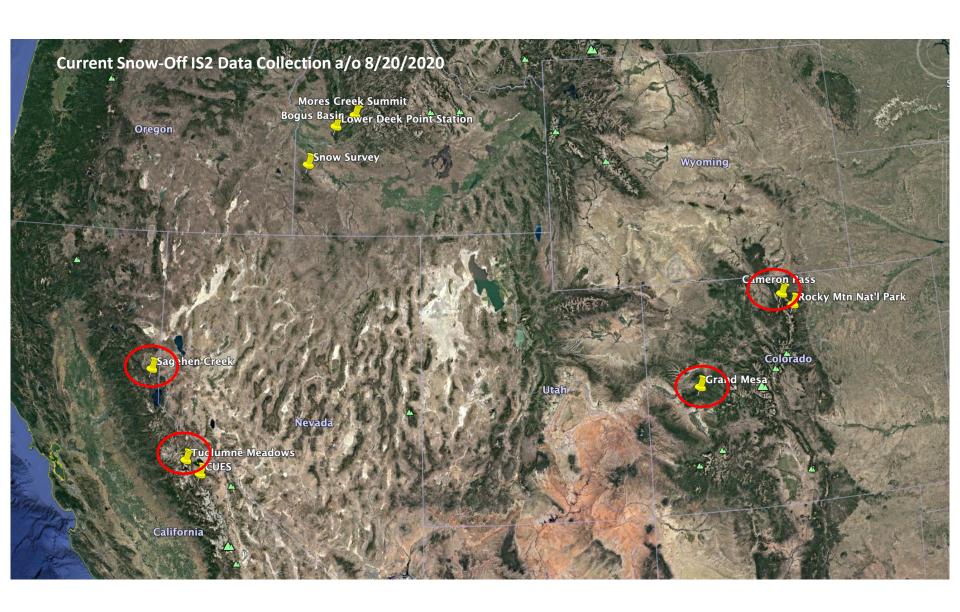
Cycle 9 begins late September 2020

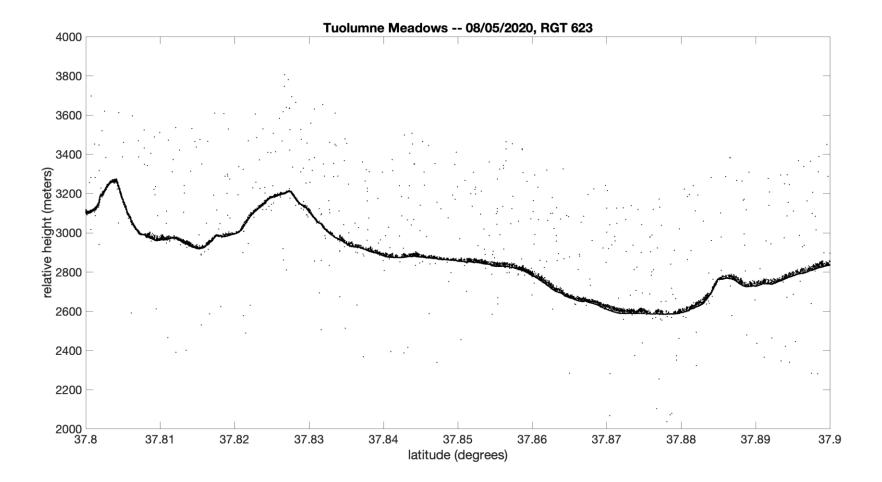
5 RGTs intersect Grand Mesa every 91 days:

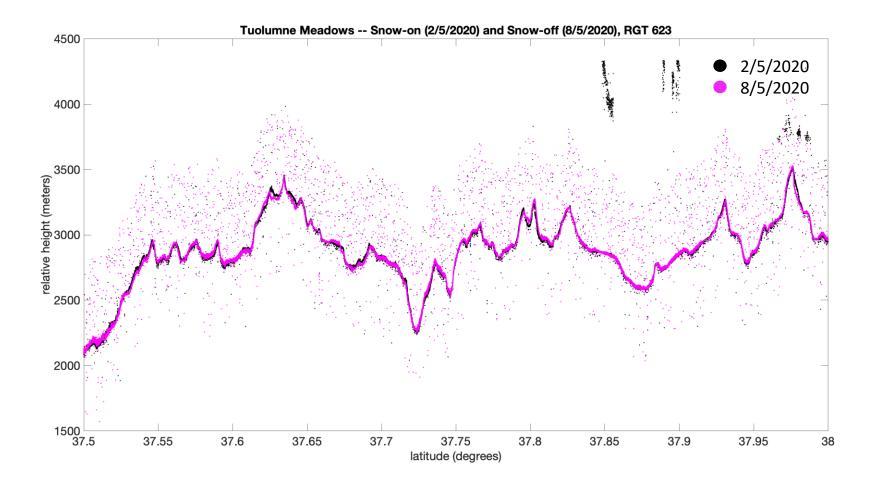
211

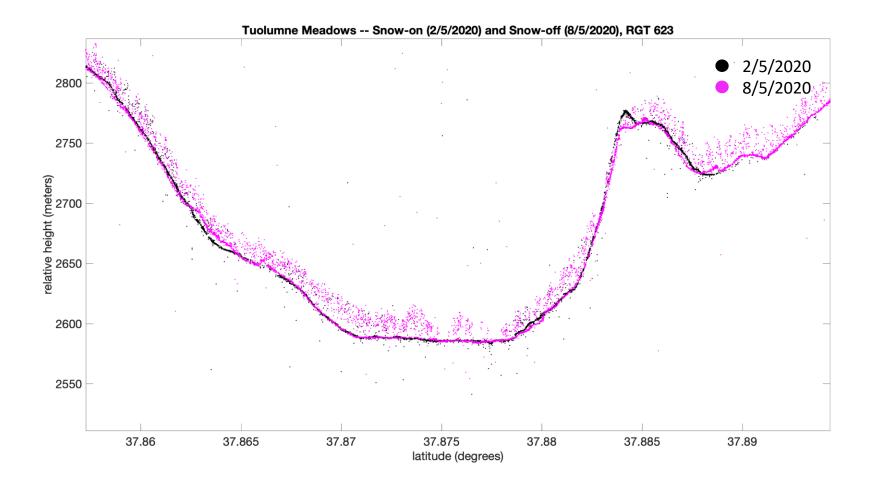
714


737


1156


1179


Some are ascending passes, some descending


Yellow is right pair Green is center pair Blue is left pair Tracks from Cycle 1 through Cycle 6 are shown

Pointing at SnowEx Sites

Idaho Snow On Status

Name	Date of Orbit	Site group(s)*					TOO STATUS	TO
RGT 341	18 Jan 2020	Banner Summit	Bull Trout Lake	Canyon Creek	Fox Tail Ridge		Performed; cloudy.	ı
RGT 379	20 Jan 2020	Banner Summit	Bull Trout Lake	Canyon Creek	Fox Tail Ridge		Performed; cloudy.	ı
RGT 402	22 Jan 2020	Bogus Basin	Lower Deer Point Station				Performed; cloudy.	1
RGT 440	24 Jan 2020	Bogus Basin	Lower Deer Point Station				Not performed; exceeded pointing constraints (6.30 d	ı
RGT 463	26 Jan 2020	Snow Survey	Scan 1	Scan 2	RCEW HQ	cabins at RME	Performed; cloudy.	1
RGT 501	28 Jan 2020	Snow Survey	Scan 1	Scan 2	RCEW HQ	cabins at RME	Performed; cloudy.	ı
RGT 783	15 Feb 2020	Banner Summit	Bull Trout Lake	Canyon Creek	Fox Tail Ridge		Not performed; exceeded pointing constraints (7.08 d	ı
RGT 821	18 Feb 2020	Banner Summit	Bull Trout Lake	Canyon Creek	Fox Tail Ridge		Not performed; exceeded pointing constraints (7.08 d	1
RGT 844	19 Feb 2020	Bogus Basin	Lower Deer Point Station				Fatal; exceeds pointing constraints.	ı
RGT 882	22 Feb 2020	Bogus Basin	Mores Creek Summit	Mores Creek Summit - SNOTEL			Looks AWESOME in rapid ATL03!	١
RGT 905	23 Feb 2020	Snow Survey	Scan 1	Scan 2	RCEW HQ	cabins at RME	Looks AWESOME in rapid ATL03!	
RGT 943	26 Feb 2020	Snow Survey	Scan 1	Scan 2	RCEW HQ	cabins at RME	Looks AWESOME in rapid ATL03!	
RGT 1286	19 Mar 2020	Mores Creek Summit	Mores Creek Summit - SNOTEL				Performed; comically cloudy over your TOO.	
RGT 1324	22 Mar 2020	Mores Creek Summit	Mores Creek Summit - SNOTEL				Looks AWESOME in rapid ATL03!	
RGT 1385	26 Mar 2020	Lower Deer Point Station					Looks AWESOME in rapid ATL03!	

Summer Snow Off Status

Name	Date of Orbit	Site	Latitude	Longitude	TOO Status	TOO ID			
RGT 211	7/9/2020	Grand Mesa MM Tower	39.0395	-107.942	confirmed	1571	clear and good d	lata quality	
RGT 272	7/13/2020	Grand Mesa MW Tower	39.0339	-108.214	confirmed	1572	looks like it was	cloudy right over y	our target :(
RGT 295	7/14/2020	Grand Mesa MW Tower	39.0339	-108.214	confirmed	1573	much better!		
RGT 531	OFF LIMITS	Cameron Pass	40.5186	-105.8917	OFF LIMITS				
RGT 554	7/31/2020	Cameron Pass	40.5186	-105.8917	confirmed	1623	clear and good d	lata quality	
RGT 623	8/5/2020	Tuolumne Meadows	37.875962	-119.363387	confirmed	1627	clear and good d	lata quality	
RGT 745	8/13/2020	Sagehen Creek	39.43021	-120.23960	confirmed	1652	clear and good d	lata quality	
RGT 768	8/14/2020	Sagehen Creek	39.43021	-120.23960	confirmed	1653	cloudy throughou	ut the region :(
RGT 882	8/22/2020	Bogus Basin	43.932074	-115.665987	confirmed	1673			
RGT 905	8/23/2020	Snow Survey	43.066476	-116.757682	confirmed	1674			
RGT 943	8/26/2020	Snow Survey	43.066476	-116.757682	submitted	1675			
RGT 996	8/29/2020	Rocky Mountain National	40.3129	-105.6483	submitted	1688			
RGT 1065	9/3/2020	CUES	37.643	-119.029	submitted	1698			
RGT 1126	9/7/2020	Tuolumne Meadows	37.875962	-119.363387	submitted	1699			
RGT 1187	9/11/2020	Sagehen Creek	39.43021	-120.23960					
RGT 1324	9/20/2020	Mores Creek Summit	43.932074	-115.665987					
RGT 1385	9/24/2020	Lower Deer Point Station	43.737047	-116.122066					

Colorado Snow On Status

Date	Orbit	Site	Lat	Lon		TOO Status
1/30/2020		Cameron Pass	40.5186		Crossing of two tracks (531/554)	
1/31/2020	554	Cameron Pass	40.5186		, ,	
2/11/2020	714	Grand Mesa SWESARR north intersect	39.032990	-108.180517	, ,	Not performed; exceeds offpointing constraints (7.18 deg)
2/12/2020	737	Grand Mesa SWESARR south intersect	39.016432	-108.161671		Not performed; exceeds offpointing constraints (7.34 deg)
2/28/2020	973	Rocky Mountain National Park	40.3129	-105.6483	Crossing of two tracks (973/996)	Rejected; request was for off-limit RGT
2/29/2020	996	Rocky Mountain National Park	40.3129	-105.6483	Crossing of two tracks (973/996)	Looks AWESOME in rapid ATL03!
4/9/2020	211	Grand Mesa MM Tower	39.0395	-107.942	met tower with snow depth obs	Looks awesome in rapid ATL03!
4/10/2020	234	Grand Mesa ME Tower	39.1037	-107.884	met tower with snow depth obs	Rejected; request was for off-limit RGT
4/13/2020	272	Grand Mesa MW Tower	39.0339	-108.214	met tower with snow depth obs	Looks good in rapid ATL03!
4/14/2020	295	Grand Mesa MW Tower	39.0339	-108.214	met tower with snow depth obs	Looks AWESOME in rapid ATL03!

California Snow On Status

Name	Date of Orbit	Site	TOO Status
RGT 120	3 Jan 2020	CUES	
RGT 181	7 Jan 2020	Tuolumne Meadows	
RGT 204	9 Jan 2020	CUES	
RGT 242	11 Jan 2020	Sagehen Creek	
RGT 265	13 Jan 2020	Tuolumne Meadows	
RGT 326	17 Jan 2020	Sagehen Creek	
RGT 623	5 Feb 2020	Tuolumne Meadows	Looks AWESOME in rapid ATL03!
RGT 623	5 Feb 2020	CUES	Not performed; exceeded pointing constraints (6.80 d
RGT 707	11 Feb 2020	Tuolumne Meadows	Fatal; exceeds pointing constraints.
RGT 707	11 Feb 2020	CUES	Fatal; exceeds pointing constraints.
RGT 745	13 Feb 2020	Sagehen Creek	Looks AWESOME in rapid ATL03!
RGT 768	15 Feb 2020	Sagehen Creek	Looks AWESOME in rapid ATL03!
RGT 1065	5 Mar 2020	CUES	Looks AWESOME in rapid ATL03!
RGT 1126	9 Mar 2020	Tuolumne Meadows	Looks AWESOME in rapid ATL03!
RGT 1149	10 Mar 2020	Tuolumne Meadows	Performed; cloudy.
RGT 1149	10 Mar 2020	CUES	Not performed; too close in proximity to TOO ID 1358
RGT 1187	13 Mar 2020	Sagehen Creek	Looks AWESOME in rapid ATL03!
RGT 1210	14 Mar 2020	Sagehen Creek	Performed; cloudy.

ICESat-2 Data are Publicly Available

Greenland

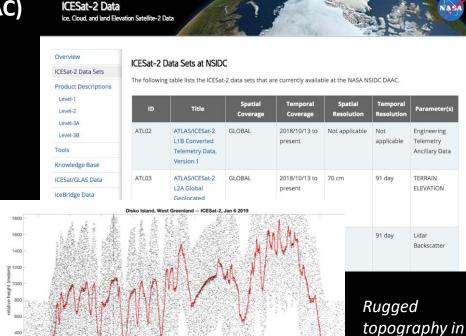
National Snow and Ice Data Center (NSIDC DAAC)

Data Products:

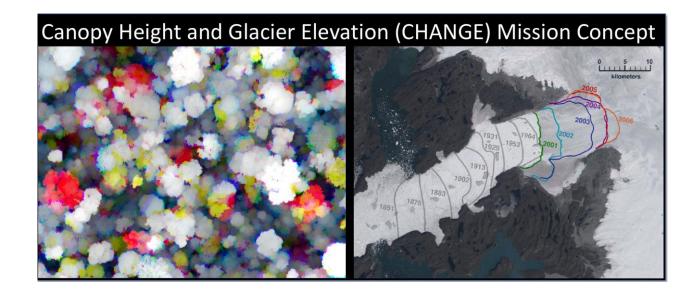
Geolocated Photons (ATL03)

Land Ice Elevation

Sea Ice Elevation and Freeboard


Land Elevation (ATL08)

Atmospheric Backscatter


Ocean Surface Height

Inland Water Elevation

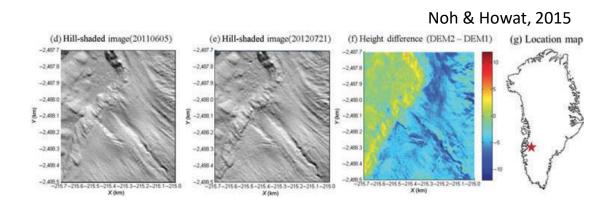
Rel003 data out 5 May 2020
Data through 15 July 2020
2297 unique data users to date
7,712,619 files served from since May 2019

NASA Distributed Active Archive Center (DAAC) at NSIDO

Pls: Cook, Morton, Neumann

Collaborators: Scott, Neigh, Yin, Martino, Vuyovich (GSFC) Shean (Univ. of Washington), Morin (Univ. of Minnesota), Howat (Ohio St.), Gardner (JPL), Smith (Univ. of Washington)

CHANGE: Concept paper for Decadal Survey

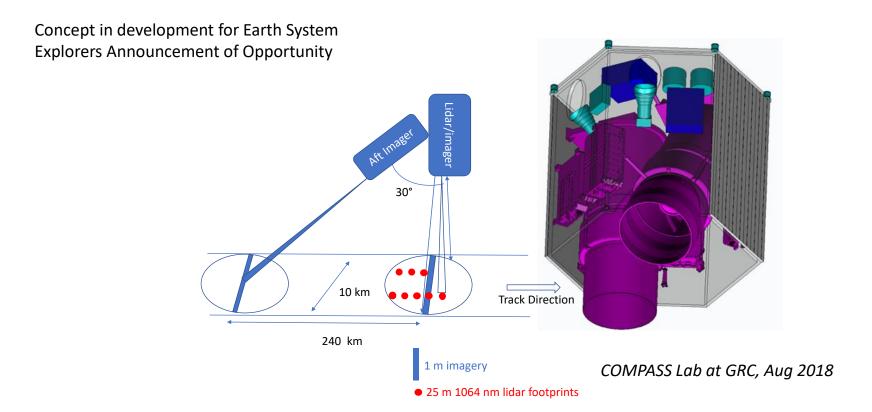

Lidar-Optical Fusion for High-resolution Measurements of Ice and Vegetation Change Douglas Morton¹, Tom Neumann¹, Bruce Cook¹, Kelly Brunt¹, Lola Fatoyinbo¹, Thorsten Markus¹, Paul Montesano¹, Chris Neigh¹, Jon Ranson¹, Michael Studinger¹, Lee Vierling², Randy Wynne³, Paul Morin⁴, Ian Howat⁵, Ben Smith⁶, Ron Kwok⁷, Alex Gardner⁷, Michael Keller⁸, Robert Hawley⁹

Summary: Climate change has accelerated the loss of ice and dynamism of vegetation in the Earth system. Melting ice sheets and glaciers, receding sea ice, forest disturbances and dieback, and biome boundary shifts constitute critical changes in the Earth system with concomitant impacts on hydrological cycling, biogeochemical cycling, surface energy budgets, and natural hazards. Mapping, monitoring and characterizing changes in ice and vegetation targets key cryospheric and biospheric science objectives. Quantifying polar ice sheet mass balance is

One of ~125 such White Papers
One of ~handful of laser altimetry white papers

CHANGE Science

- Full time stereo & lidar operation
- Seasonal (90 day) repeat ground tracks to assess fine-scale changes in ice topography and vegetation structure
- 1064 nm laser for vegetation profiles, ice sheet elevation
- Fusion: lidar-derived control points in image swath; knowledge of features in lidar footprint.



ATL13 Status

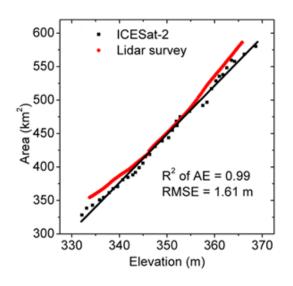
Version	Release Date	Water Body Types	Description & Principal Features
1	May 2019	Lakes > 10 km ² (19,634 lakes)	 Surface water height statistics (mean, StdDev, slope), subsurface attenuation, and supporting variables at short segment length Employs GLWD (Lehner & Doll 2004)
2	November 2019	Lakes & reservoirs ≥ 1 km²; (185,181 lakes) Estuaries and bays, Near shore buffer (7km)	 Replaces GLWD with HydroLAKES (Messager & Lehner, 2016) Adds coarse bottom finding algorithm Adds dynamic shore finding Employs Named Marine Water Bodies (ESRI) Employs GSHHG Shoreline (Wessel et al, 1996)
3	April 2020	Above plus rivers; All lakes > 0.01 km ²	 Uses GRWL (After Allen and Pavelsky, 2018) to create river mask Adds Ice on/off flag from multi-sensor NOAA product Flags/corrects dead-time error
ATL22	April 2020	All water bodies	- Transect mean and supporting quantities

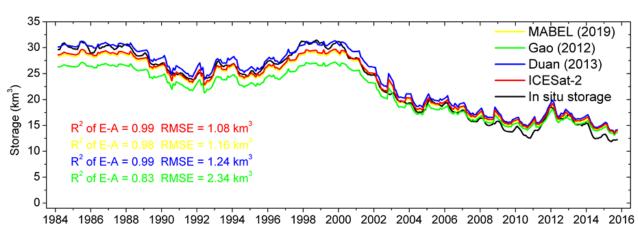
CHANGE Measurement Concept

ICESat-2 Measures the Earth

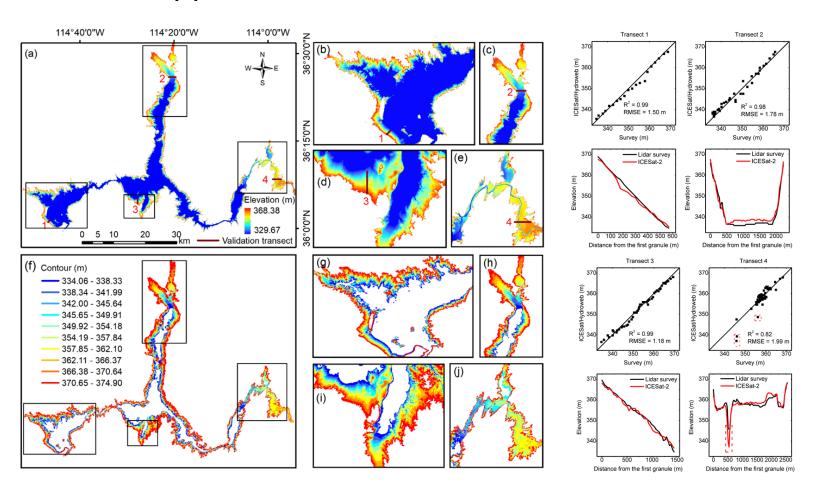
ICESat-2 well on it's way to meeting science requirements:

ice sheet elevation, sea ice freeboard, vegetation canopy height

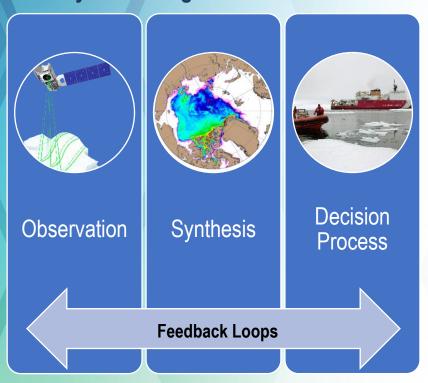

APPLICATIONS


ICESat-2 Applications Program

Application results over Lake Mead



Algorithm from Li et al., IEEE-TGRS, 2019.


Application results over Lake Mead

ICESat-2 Applications Program

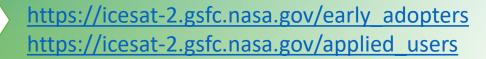
https://icesat-2.gsfc.nasa.gov/applications

Identify and strengthen links between:

Why Applications?

- Applications research provides fundamental knowledge of how mission data products can be scaled and integrated to inform resource management, policy development, and decision making.
- We define applications as <u>innovative uses</u> of mission data products in <u>decision-making</u> activities for <u>societal benefit</u>
- As of October 2020, we have 651 members in our Applications Community, including 24 Early Adopters and 6 Applied Users

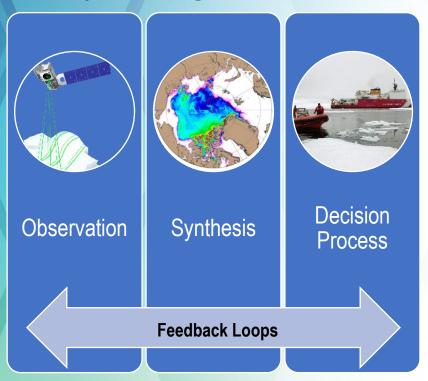
How are you using ICESat-2 data?



- ATL08 analyses for bottom roughness and topography studies in Mexico, with application to numerical modelling of wind energy resources (PI: Vanesa Magar, CICESE). Analyze data from the ATL08 product to generate bottom roughness and topography and assess the effect of these assumptions on wind energy resources at several locations around Mexico.
- National Power Company Iceland (PI: Andri Gunnarsson, Manager of Hydrological Research). Using ICESat-2 data to improve winter mass balance estimates and short/midterm melt seasons forecasting for hydro power operations in Iceland.

Learn about current research & join the Applied Users Program

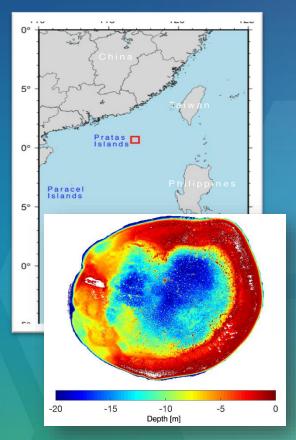
ICESat-2 Applications Program



ICESat-2 Applications Program

https://icesat-2.gsfc.nasa.gov/applications

Identify and strengthen links between:



Why Applications?

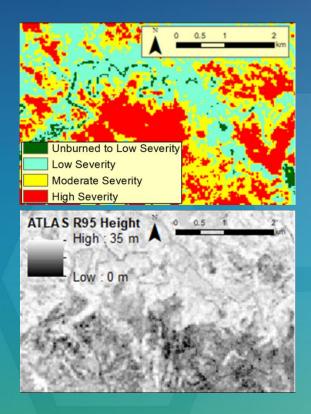
- Applications research provides fundamental knowledge of how mission data products can be scaled and integrated to inform resource management, policy development, and decision making.
- We define applications as <u>innovative</u>
 <u>uses</u> of mission data products in
 <u>decision-making</u> activities for <u>societal</u>
 <u>benefit</u>
- As of October 2020, we have 651
 members in our Applications
 Community, including 24 Early
 Adopters and 6 Applied Users

Island Near-shore Bathymetry for Navigation

Early Adopter PI: Steven
Kuo-Hsin Tseng, Taiwan
National Central
University, Center for
Space and Remote Sensing
Research

Key Question: How can we improve Electronic Navigation Charts for navigation in South China Sea if we integrate water depth data from ICESat-2 with optical imagery from Sentinel-2?

Synthesis: is it possible to model underwater terrain of South China Sea islands with ICESat-2? <u>Yes, it is!</u> Water clarity in the region allows for penetration of photons down to 20-30 meters.



Next Steps:

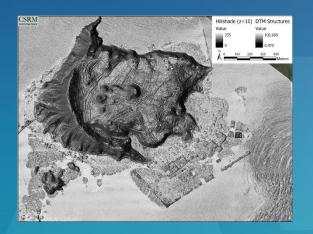
- 1. Currently have mapped 6 islands with promising results. In 2021, work with the Ministry of Interior to produce 10-20 more maps to increase reliability.
- 2. In 2022, aim to operationalize SDB fusion method to map all islands in South China Sea.
- 3. Show capability of satellite technology to monitor changes in underwater terrain due to sand and coral dredging near protected islands.

Wildland Fire Management

Early Adopter PI: Birgit
Peterson, US Geological
Survey, Earth Resources
Observation and Science
Center

Key Question: How can we make better burn severity assessments if we integrate vegetation structure data (e.g. from ICESat-2, GEDI) with spectral data from (e.g. Landsat, Sentinel?

Synthesis: Does the ICESat-2 data have enough sensitivity to distinguish between pre-and post-fire structure, particularly in areas where the fire hasn't been severe? Yes, it does!



Next Steps:

- 1. What is the next step to integrating structure information into existing operational burn severity programs?
 - Monitoring Trends and Burn Severity Program: https://www.mtbs.gov/
 - LANDFIRE Program: https://landfire.gov/
- 2. How does all this scale? From local measurements to space-based observations?

Archeological Discovery

Early Adopter PI: **Douglas Comer**, CSRM Foundation

Key Question: How can we advance the state of knowledge in Micronesian archeology, to improve cultural and natural resource conservation, if we integrate vegetation structure and bathymetry data from ICESat-2?

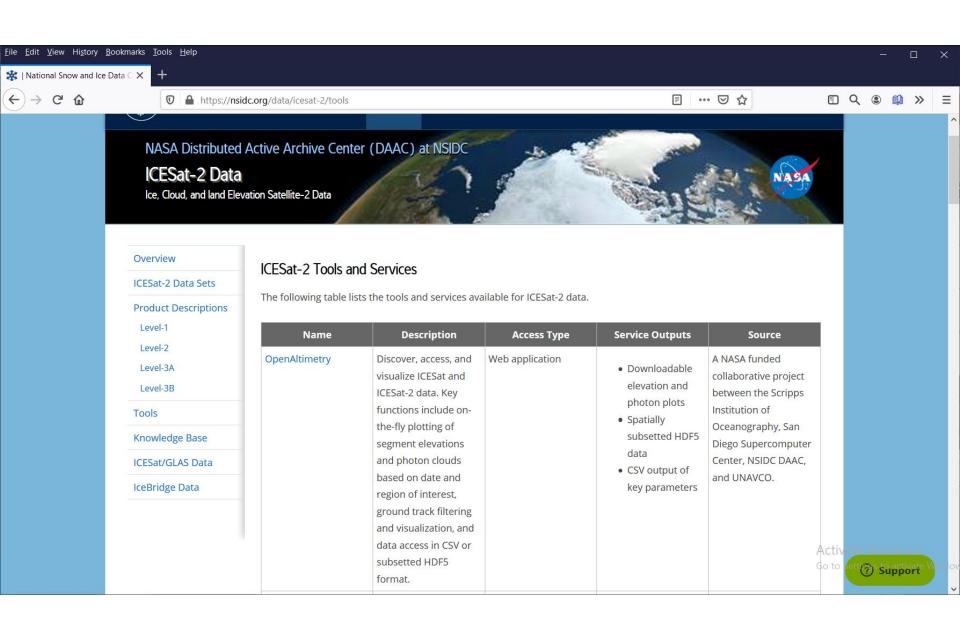
Synthesis: Can topographic profiles derived from ICESat-2 be used for archeological discovery in heavily vegetated environments?

Next Steps:

- 1. Use a combination of ICESat-2 and Sentinel-2 data to derive regional- or island-scale bathymetry maps
- 2. Validate ICESat-2 and GEDI topographic profiles across the LiDAR surveys to assess the utility of current satellite altimeters for characterizing archaeological landscapes.

OBTAINING DATA

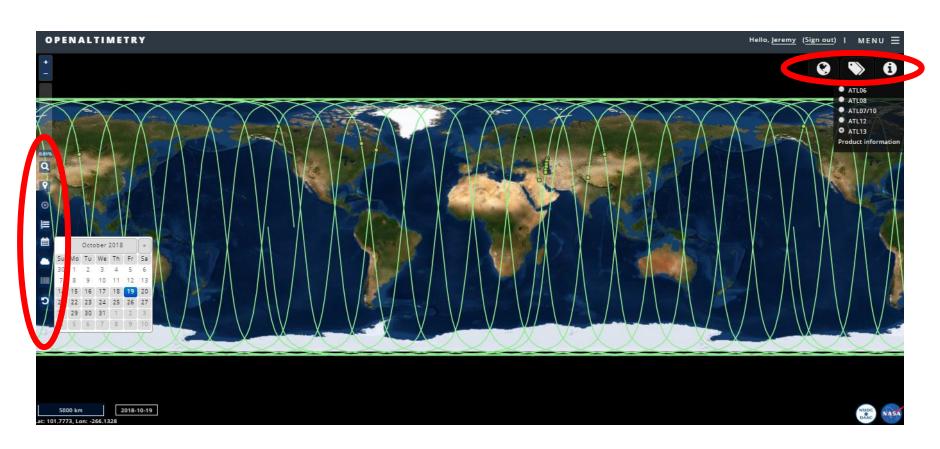
How are you using ICESat-2 data?



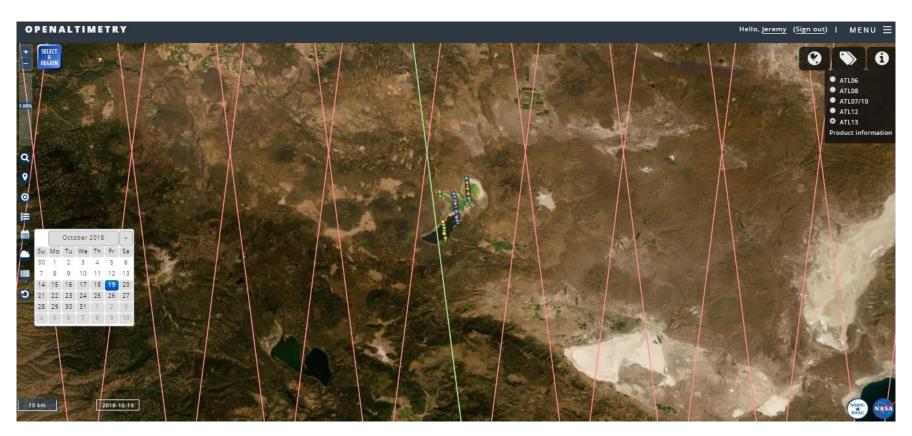
- ATL08 analyses for bottom roughness and topography studies in Mexico, with application to numerical modelling of wind energy resources (PI: Vanesa Magar, CICESE). Analyze data from the ATL08 product to generate bottom roughness and topography and assess the effect of these assumptions on wind energy resources at several locations around Mexico.
- National Power Company Iceland (PI: Andri Gunnarsson, Manager of Hydrological Research). Using ICESat-2 data to improve winter mass balance estimates and short/midterm melt seasons forecasting for hydro power operations in Iceland.

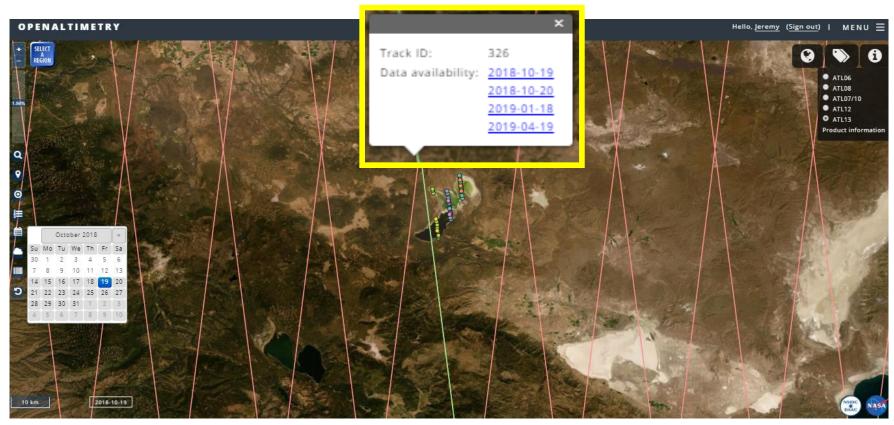
Learn about current research & join the Applied Users Program

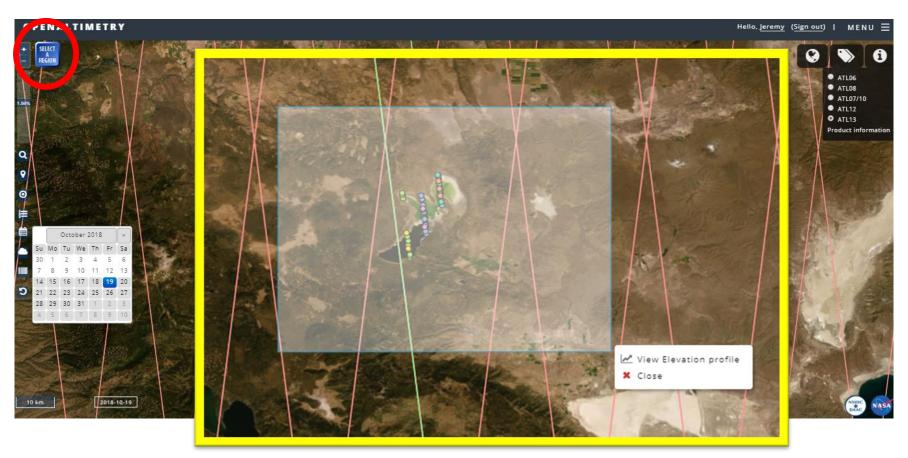
https://icesat-2.gsfc.nasa.gov/early adopters https://icesat-2.gsfc.nasa.gov/applied users

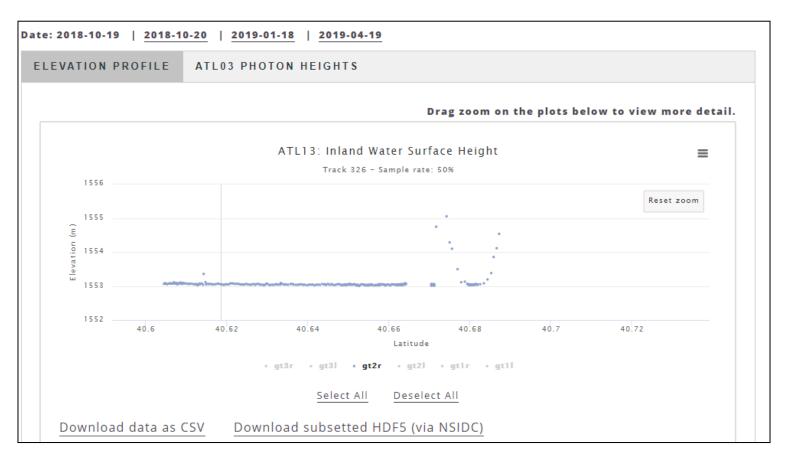

ICESat-2 Tools and Services

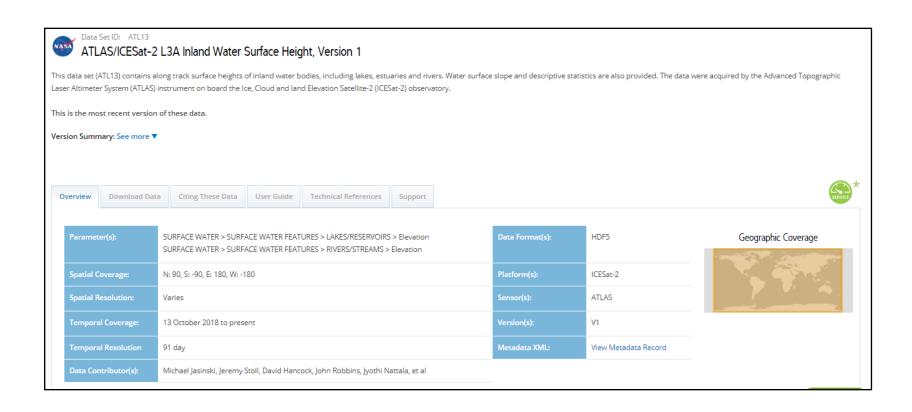
<u>Name</u>	<u>Description</u>	Access Type	Service Outputs	<u>Source</u>
OpenAltimetry	Discover, access, and visualize ICESat and ICESat-2 data. Key functions include on-the-fly plotting of segment elevations and photon clouds based on date and region of interest, ground track filtering and visualization, and data access in CSV or subsetted HDF5 format.	Web application	•Spatially subsetted HDF5 data	A NASA funded collaborative project between the Scripps Institution of Oceanography, San Diego Supercomputer Center, NSIDC DAAC, and UNAVCO.
NASA Earthdata Search	Search, visualize, and access data across thousands of Earth science data sets, including ICESat, IceBridge, and ICESat-2. Customization services are available for most ICESat-2 data sets, including subsetting and reformatting.	Web application	•Data access via shell script and zip links •Visit this page for details on subsetting and reformatting services available for each ICESat-2 data set.	NASA EOSDIS, supported by NSIDC DAAC.
Data Subscription	Subscribe to have new ICESat-2 data automatically delivered to you as they become available at NSIDC. Customization services including subsetting and reformatting can be applied to your subscription request.	Online subscription request form	•Automated emailed data delivery •Visit this page for details on subsetting and reformatting services available for each ICESat-2 data set.	NSIDC DAAC
Data Access and Service API	The NSIDC DAAC's Application Programming Interface, or API, provides spatial and temporal filtering as well as customization options as a single access command, without the need to script against our data directory structure.	АРІ	*Visit this page for details on subsetting and reformatting services available for each ICESat-2 data set.	NSIDC DAAC_
NSIDC DAAC Data Access Jupyter Notebook	A Jupyter notebook exploring data coverage, size, and customization service availability along with direct data download utilizing the NSIDC DAAC's access and service API.	Downloadable tool	•Visit <u>this page</u> for details on subsetting and reformatting services available for each ICESat-2 data set.	NSIDC DAAC
Panoply	Plot arrays and geo-referenced data from NetCDF and HDF files.	Downloadable tool	*Downloadable plots as GIF, JPEG, PNG, TIFF bitmap images, PDF, or PostScript graphics files, as well as lon-lat map plots as KMZ files. *Animations as MP4 video or as a collection of individual frame images.	NASA Goddard Institute for Space Studies
HDFView	Browse, visualize, and edit HDF (HDF5 and HDF4) files. Key functions include viewing HDF file hierarchy in a tree structure, opening data and metadata arrays, image creation, and HDF file modification.	Downloadable tool	•Save data values to a text or binary file •Save HDF image to JPEG, GIF, PNG, or BMP file	The HDFGroup

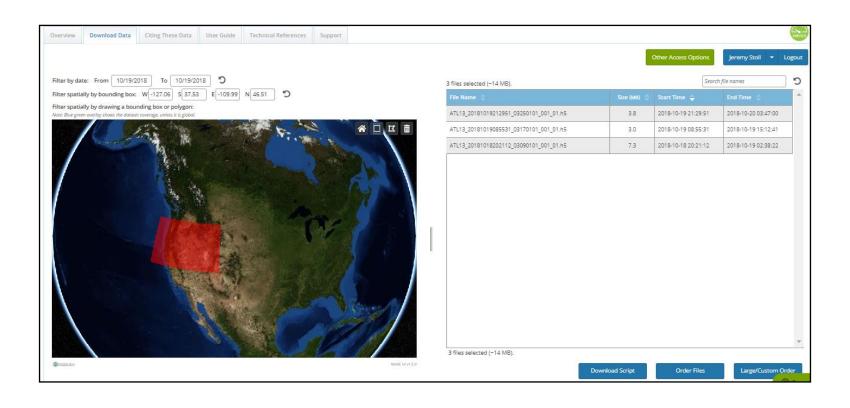


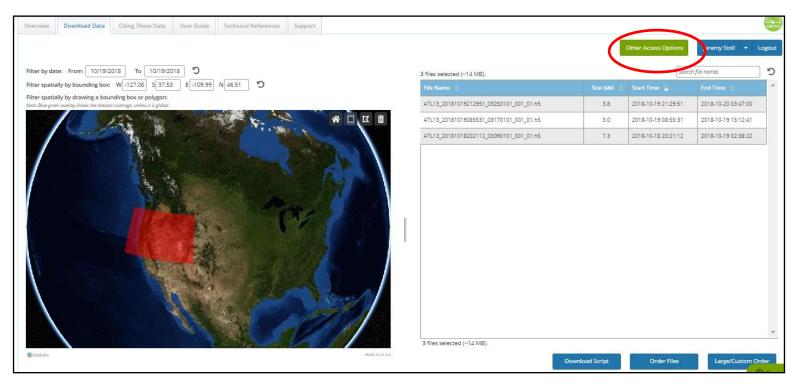









Data Access: NSIDC DAAC


Data Access: NSIDC DAAC

Data Access: NSIDC DAAC

ICESat-2 Tools & Services: https://nsidc.org/data/icesat-2/tools NISDC DAAC tutorial video (YouTube): https://bit.ly/2rHdQz7

Data Format: Product Layout

- → **⑤** ATL13_20190719082904_03250401_002_01.h5

 → **ⓒ** METADATA
 - ancillary_data
 - 🗦 🞑 gt1l
 - → 🞑 gt1r
 - 🗦 🔪 gt2l
 - → 🔪 gt2r
 - 🗦 🞑 gt3l
 - → 🞑 gt3r
 - → Quanto orbit_info
 - > 🔪 quality_assessment

GRANULE DELINEATION

-~5 files per day (several RGTs)

-data exist only over water bodies

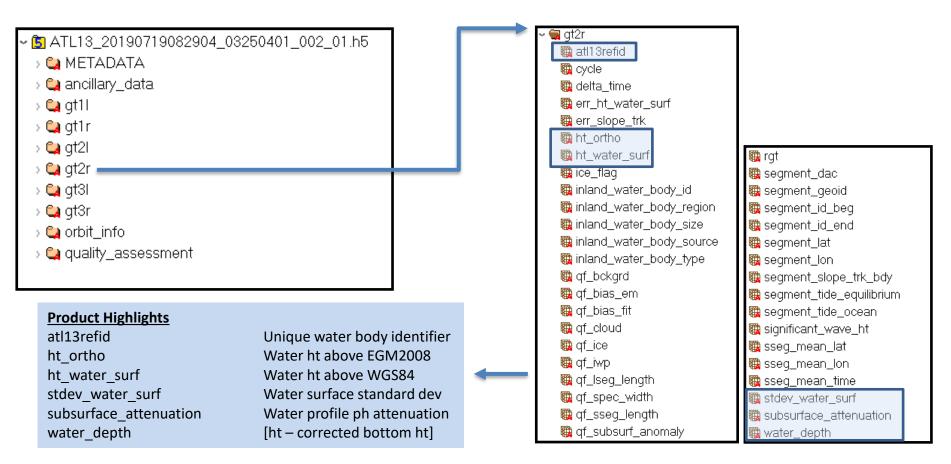
NAMING CONVENTION

-date+time, RGT, cycle, release

6-BEAM STRUCTURE

-along-track hierarchy

IMPORTANT METADATA


-ancillary_data > RGT, time start & end

-orbit_info > sc_orient

Data Format: Product Layout

Data Format: Product Rate

ATL13refid

	AILISIEIIU
81	1410003682
82	1410003682
83	1410002095
84	1410002095
85	1410002095
86	1410002095
87	1410002095
88	1410002095
89	1410002095
90	1410002095
91	1410002095
92	1410002095
93	6033000122
94	6033000122

ht_ortho

	111_011110
81	237.68318
82	237.65822
83	23.176842
84	23.179201
85	23.164207
86	23.173082
87	23.140081
88	23.16066
89	23.16881
90	23.1775
91	23.172443
92	23.184858
93	0.13068293
94	0.18919733

stdev_water_surf

81	3.4028235E38
82	3.4028235E38
83	0.065
84	0.065
85	0.065
86	0.065
87	0.065
88	0.065
89	0.065
90	0.065
91	0.065
92	0.065
93	0.125
94	0.125

- -Short Segment rate
- -1-D arrays
- -Mapped by ATL13refid
- -Long Segment-derived products repeat

Questions, Discussion, Feedback

Thank You!