
March 2021

NASA/CR-20205009755

Defining and Reasoning about Model-based
Safety Analysis: A Review

Minghui Sun, Cody H. Fleming, and Milena Milich
University of Virginia, Charlottesville, Virginia

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

 TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

 TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

 Access the NASA STI program home page at
http://www.sti.nasa.gov

 Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/
and select the “General” help request type.

March 20211

NASA/ CR-20205009755

Defining and Reasoning about Model-based
Safety Analysis: A Review

Minghui Sun, Cody H. Fleming, and Milena Milich
University of Virginia, Charlottesville, Virginia

National Aeronautics and Space
Administration

Langley Research Center
Hampton Virginia 23681-2199

Prepared for Langley Research Center
under Cooperative Agreement NNX16AK47A

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

ii

Table of Contents
1. Introduction ... 1
2. Setting the Stage: A General Process of MBA ... 2

2.1 The MBD Process ... 2
2.2 The MBA Process ... 4

3 MBSA: Problem Statement... 8

3.1 The Defining Feature: The Fail-Safe Property ... 8
3.2 The Notable Pattern: The Inductive Analysis ... 9

3.2.1 The Inductive Analysis ... 10

3.2.2 The Deductive Analysis .. 10
4 MBSA: Engineering Solution (The Global Effect) .. 11

4.1 Engineering Solution: The Off-Nominal Behavior ... 11
4.2 The Defining Feature: Architecture Consistency ... 12
4.3 The Notable Pattern of Architecture Consistency .. 13
4.4 Comparing the Notable Patterns ... 15

4.4.1 Flexibility for Complex Behavior ... 15
4.4.2 Human Effort .. 16
4.4.3 Automation ... 17
4.4.4 Observation ... 17

5 MBSA: Engineering Solution (The Causal Scenario and the Local Effect) 18
5.1 A Framework for the Component Fault Process ... 18
5.2 The Structure of the Phenomenon-centric Framework ... 19
5.3 The Notable Patterns to Specify the Phenomenon-centric Framework 20

5.3.1 Causal Factors ... 20
5.3.2 Activation Mechanism .. 22
5.3.3 Impact Mechanism .. 22
5.3.4 Effects on the Component ... 23

5.4 The Phenomenon-centric Framework for the Component Fault Process 24
6 MBSA: The Desired Analysis .. 24

6.1 Mathematical Construct .. 25

6.2 Safety Analysis ... 28
6.2.1 Automatic FTA ... 29
6.2.2 Notable Patterns of Safety Analysis ... 29

7 Conclusion .. 30

iii

7.1 Defining Features and Notable Patterns ... 30
7.2 Suggestions Moving Forward. .. 31

8 References ... 0
Appendix ... 8

1

1. Introduction
Model-based safety analysis (MBSA) has been around for over two decades. The benefits of

MBSA have been well-documented in the literature, such as tackling complexity, introducing
Formal Methods to eliminate the ambiguity in the traditional safety analysis, using automation to
replace the error-prone manual safety modeling process, and ensuring consistency between the
design model and the safety model [1].

However, there is still a lack of consensus on what MBSA even is. Prominent modeling
languages such as AADL-EMV2 [2]–[4], AltaRica [5][9], and HipHops [10][11] are generally
considered MBSA, which, according to [12], are the only three languages that “have matured
beyond the level of research prototypes.” However, the question “what makes them MBSA” is left
unanswered. For example, do Formal Methods apply to safety analysis MBSA? Does safety
analysis even mean the same thing in the context of Formal Methods? The ambiguity has
significant implications.

From a System Safety Engineering* point of view, without a clear definition and boundary
MBSA can quickly become a buzzword that any other disciplines can claim as long as the work
uses computer models and is safety-related (e.g., refs. [102] and [103]). This is good because
MBSA as an active research topic is enriched by different schools of expertise. However, this also
jeopardizes the identity of MBSA as a main research thrust of the System Safety Engineering
community. Research development has flourished over the years, with Software Engineering
(especially Formal Methods) seeming to have a stronger presence in the MBSA literature. As
pointed out by reference [100], most MBSA innovation focuses on model specification notations
and/or algorithms for possible manipulations of the models, but very little research is asking
whether the safety model is valid, a question that is and will always be at the center of System
Safety Engineering.

Therefore, “the major open issue is how to reason about the choice of models, and not so much
how to reason about the properties of the models ” [13]. Toward this end, this paper reviews MBSA
by answering the following three specific research questions from the perspective of System Safety
Engineering:

(1) What is a minimal set of defining features that a work must have to be considered MBSA?

Three defining features are identified and can be seen as the negating criteria of MBSA. In
other words, if a work satisfies the whole set of the defining features, it is MBSA.

(2) What are the different schools of thoughts, i.e., the notable patterns, in the current MBSA
literature? This can be seen as the specific ways to implement the defining features.
Through the review, we will show different notable patterns along each step of the MBSA
process. In the end, we will conclude with the mapping on how the notable patterns
implement the defining features.

(3) What are the issues of current MBSA practice, and what are the suggestions moving
forward from the perspective of System Safety Engineering?

We put forward the main findings here first and will discuss in detail at the end of this paper:

*System Safety Engineering is a discipline to identify hazards and then to eliminate the hazards or reduce the associated
risks when the hazards cannot be eliminated [124].

2

• There is a lack of emphasis on deductive safety analysis in MBSA and the deductive analysis
cannot and should not be automated.

• There is a lack of “hard facts” to anchor safety modeling as those fundamental laws (e.g.,
fluid dynamics and heater transfer) in other scientific modeling communities. This makes it
difficult in safety modeling to make explicit decisions about abstraction, i.e., what is (and is
not) included in the safety model.

• Automation is closely related to MBSA, but automation does not necessarily ensure high
quality safety analysis. Instead, it might give a false sense of complacency that compromises
the trustworthiness of safety assurance.

• There is a tradeoff between the specificity and flexibility of a modeling language.

Finally, a review paper must have a set scope of papers to review. However, a MBSA review

does not have that privilege because MBSA is ill-defined. Therefore, constraints must be added as
the minimal assumptions to establish at least a broad scope of MBSA to start with. For this reason,
we broadly assert that “MBSA is an application of model-based design to hazard analysis.”
Because there is no consensus on an exact definition of MBSA, it is difficult to find concise, direct
evidence to support this assertion. However, this assertion is consistent with one of the MBSA
seminal works [14] which says MBSA is an extension of safety analysis to model-based design.
More importantly, our confidence in beginning with this assertion is in its broadness, meaning
MBSA, however defined, can only be a subset of it. We start from this assertation and refine all
the way down to a minimal set of features that any MBSA work must have and a set of notable
patterns that a MBSA work might have. In this way, we believe our approach is valid in terms of
not missing characteristics by starting off with a too narrow view. In section 2, a general model-
based analysis (MBA) process is derived based on model-based design (MBD). MBSA follows
this MBA process with a specific purpose of safety analysis. In other words, MBSA is an instance
of MBA.

In sections 3, 4, 5, and 6, for each step identified in the MBA process, detailed discussions are
conducted about the activities that have to take place specifically for MBSA. The discussions are
tasked with two goals: identifying the defining features of MBSA and describing the notable
patterns of MBSA.

In section 7, a discussion is conducted for the most important future directions of MBSA.

2. Setting the Stage: A General Process of MBA
The MBA process described in this paper is derived from the MBD process, as MBA itself is

not a widely used concept. In this section we start with MBD to provide a context for MBA and
then zoom in to MBA to further provide a context for MBSA later.

2.1 The MBD Process
First of all, we are aware that MBD is an overloaded term, as numerous papers tried to

differentiate it from “model-driven engineering,” “model-driven design,” and “model-driven
architecture” [104] [105]. It is not our intention to define these terms. However, we need a clear
understanding of MBD to conduct meaningful discussion about the body of literature pertaining
to (or not pertaining to) MBSA. Hence, we adopt the process proposed by [106] as the “ground
truth” of our discussion. The left of figure 1 shows the proposed MBD process which can be
mapped to the detailed 10 steps of reference [106] on the right. Two loops, an inner loop and an

3

outer loop, are identified for the MBD process. We explain all the involved steps in this section
and will zoom in on the inner loop in the next section.

Figure 1. The MBD process. The arrows on the left can be mapped to the steps to the right
(adopted from ref. [106]). The inner loop (shaded area) is the model-based analysis.

An MBD process starts with a problem statement (Step A) which details the goal of the design

activities, such as a set of functions with performance requirements and safety constraints.
Second, an engineering solution is derived based the engineer’s domain knowledge. Although

three independent steps (Steps B, C, and D) are identified by reference [106], we acknowledge this
process in reality can be quite fuzzy, because the engineer’s thought process varies from person to
person, depending on their own expertise and nature of the problem at hand. Nevertheless, we
prescribe the process always ends with a solution (valid or not) to the stated problem from the
perspective of the specific engineering discipline.

Third, a modeling language is selected to faithfully represent the engineering solution with a
model of computation (Step E). Compared to a simulation model that is created to loosely “get a
feel” of the proposed engineering solution, the model in MBD is a faithful computational copy of
the engineering solution and hence used as the primary artifact [114]. Models in MBD are directly
evolved into full-fledged implementations without changing the engineering medium, tools, or
methods [107]. Specifications and even software code of the implementation are (automatically)
derived from the model [108][134]. Therefore, the modeling language must be fully equipped to
express the engineering solution.

Fourth, the model of computation is automatically analyzed to gain a required level of
confidence of the engineering solution before building the prototype or the real system (Step G).
This step closes the inner loop. Analysis techniques with different level of mathematical rigor,
such as simulation and Formal Methods, are usually required in accordance with the required level
of confidence. Obviously, this not only begs the question of the availability of the tool support for
the analysis, which itself is an entire research area, but also whether the semantics of the modeling
language can be formalized in a way that tools can be developed for the desired automated analysis.

Fifth, specification is derived from the model of computation (Step F); hardware is constructed
in accordance with the specification (Step H), and software is developed or automatically

4

generated from the model and synthesized with the hardware (Step I). This is what makes the
“model” in MBD different from models for simulation because (1) specifications for constructing
a prototype of the real system are derived from the model, for example a CATIA model can be
used for both structural analysis and directly as 3D drawings for manufacture [110], and (2)
software code sometimes can even be automatically generated from it, which is the perhaps the
main reason for MBD’s growth of popularity in the first place [111].

Finally, Step J closes the outer loop. The prototype or the real system is verified, validated,
and tested against the problem statement made at the beginning of the MBD process.

Clearly, as shown in figure 1, an MBD process consists of an inner loop and an outer loop,
where the former is about modeling and analysis, and the latter is about construction (automated
or not) and testing. As defined by reference [112], a hazard analysis is “the process of identifying
hazards and their potential causal factors.” Although it is a highly iterative process, meaning
verification is still required after the construction (e.g., the SSA process of ref. [113]), the hazard
analysis mostly happens during the inner-loop so that safety-critical decision can be made early
before construction of the prototype or the real system.

Therefore, for MBSA, we mainly focus on the inner loop, which is the shaded area in figure 1,
and we call this inner loop “model-based analysis” (MBA).

2.2 The MBA Process
In this section, we take a closer look at the inner loop of figure 1 to derive a more general MBA

process. As shown in figure 2, the artifacts on the righthand side are adopted from figure 1. The
activities to generate these artifacts are expressed in more general terms, and the supports for the
activities are displayed on the left-hand side, both of which will be explained in great detail in this
section.

Figure 2. The MBA process, where the artifacts on the right-hand side are adopted from
the inner loop of figure 1 and the left-hand side are the supports for the respective
activities.

First, from the perspective of an application engineer, the MBA process consists of three steps:

“formulate,” “express,” and “analyze” (the right workflow in figure 2).
Step 1. Given a design problem, the engineers first use their domain knowledge to formulate

an engineering solution to that problem. Informally, the engineering solution is the engineer’s
understanding of the real behavior of the system-to-be-built and his/her decisions about what to
capture from this “real” behavior by applying his/her domain knowledge. Although the resulting

5

engineering solution has to be represented eventually in a certain modeling language, and any
modeling language has a limit of expressiveness, in theory this formulate process has to be
language-neutral, meaning solely determined by applying the domain knowledge, not limited by
the modeling language. For example, the engineering solution of a control system should solely
be determined by the physical dynamics and preferred control policy rather than the modeling
language such as Matlab and Modelica.

However, in reality, this formulate process is more complicated. As explained in section 2.1
about MBD, because primary artifacts such as specification, software code and safety decision are
made from this process, the engineering solution has to be faithfully represented by the model of
computation, meaning the modeling language has to be fully equipped to express the engineering
solution. Two possibilities exist for this concern. One is to find the appropriate modeling language
after the engineering solution is developed or design a new modeling language if none of the
current ones fit. The other is to have one or multiple candidates modeling languages in mind
beforehand, use the modeling languages to formulate the engineering solution, and finally pick the
most appropriate one. In reality, for most engineers who use models to develop their own systems,
the latter is most dominant. In fact, the structured semantics of a modeling language can help
engineers to perceive the problem and manage the cognitive complexity in the problem-solving
process.

This observation has a significant implication because although the formulate process focuses
on problem solving and highly relies on the domain knowledge, the resulting engineering solution
has to be practical enough so that it can be expressed by a modeling language. Hence, two
“support” arrows (figure 2) from the domain knowledge and the language semantics go into the
engineering solution. We make the following assertion, which is similarly referred to as “the
abstraction challenge” in reference [107].

Assertion 1: The modeling language, especially its semantics, has to be able to represent the

engineering solution.

Step 2. The engineering solution, already consistent with the semantics of the modeling

language, is mapped accordingly to the language syntax and eventually yields the model of
computation. We call this process “express” because it is simply a “faithful” representation of a
well formulated engineering solution (in whatever form) to a well-defined explicit model in the
computer. Note that, this process is only to “express.” Information shall neither be subtracted from
the engineering solution nor added to it.

Step 3. The model of computation is “analyzed” automatically, so that a required level of
confidence can be established. Specifically, different levels of confidence require different analysis
techniques such as step-wise trace demonstration, stochastic simulation and model checking,
which in turn has an implication on the formalism of the modeling language. In other words,
analysis techniques must be available for the desired analysis with the selected language, thus the
arrow from the “semantics” to the “analysis” in figure 2. Therefore, we make the following
assertion, which is similarly referred to as “the formality challenge” in reference [107].

Assertion 2: The modeling language, especially its semantics, has to be analyzable by

computer programs for the desired analysis.

From the perspective of the methodological support (the left workflow in figure 2), it includes

language support and tool support. The modeling language, particularly its semantics, has to be

6

expressive enough to fully represent the engineering solution (Assertion 1) and techniques and
tools must be developed for the modeling language for the desired analysis (Assertion 2).
Obviously, the semantics of the modeling language plays a center role here. As shown in figure 3,
it affects the formulation of the engineering solution (the upper loop) and the feasibility of the
desired analysis (the lower loop).

For language support, we further assert that the semantics of a modeling language in the MBA
process must simultaneously have a context-specific modeling construct for the engineer to
represent the engineering solution (the upper loop) and a context-free mathematical construct for
the computer to conduct the desired analysis (the lower loop). For example, a Simulink block at
the same time has both a specific engineering meaning at the front end and a context-free purely
mathematical expression at the back-end, such as a high-pass filter has a modeling construct that
means signals below a cutoff frequency are attenuated and a mathematical construct that is usually
represented by a first-order mathematical transfer function. The transition in a Markov process can
mean at the same time both the triggering of a failure event (i.e., the modeling construct) and a
context-free Poisson process (i.e., the mathematical construct). In fact, the modeling construct and
the mathematical construct are consistent with the concepts of a “pragmatic model” and a “formal
model” in reference [15]. The difference is that the modeling construct and the mathematical
construct are two aspects of the same model rather than two different types of model as argued in
reference [15].

There is usually a unique mapping between the modeling construct and the mathematical
construct, to translate between the context-specific concepts and the context-free mathematical
expression. Depending on the specific situations, this translation is bi-directional. The engineer
can use an appropriate modeling construct directly to formulate the engineering solution, such as
modeling in Simulink. The resulting model is translated (usually automatically by the modeling
environment) into the context-free mathematical model (i.e., the downward translation) for the
desired analysis later. It is also possible the engineer uses the mathematical construct directly to
formulate the engineering solution, such as writing state space model in a Matlab file. They then
need to reconstruct the modeling construct (i.e., the upward translation) manually from the
mathematical construct to link with the context-specific concepts in order to make sure the
resulting mathematical model faithfully represents the solution in the specific engineering context.
It is worth mentioning that it can be very difficult to formulate the engineering solution directly
with the mathematical construct especially for complex systems because manually mathematically
modeling a complex system is error prone, and the resulting pure math model is very difficult to
communicate and review, which is why modeling with Simulink has gained much more traction
than modeling directly with Matlab script files. Therefore, the upward translation is not considered
for the rest of the paper.

For tool support, algorithms are developed around the mathematical construct of the modeling
language for the desired analysis. Sometimes in order to reuse existing algorithms, “model
transformation” algorithms such as AADL to GSPN [115] are developed to translate the
mathematical construct of the current modeling language to the formalism that the target
algorithms can be applied to.

Although algorithms can be developed for the desired analysis or model transformation, an
inappropriate abstraction level of the modeling language can render the desired analysis infeasible.
For example, a traditional fault tree cannot generate the critical event sequence for a top-level
event, simply because the sequence information is abstracted by the semantics of the traditional
fault tree. More information has to be included (hence less abstract), such as the Dynamic Fault

7

Tree [16] [17], for the desired analysis. This echoes our previous claim that the semantics of the
modeling language not only affect the formulation of the engineering solution, but the feasibility
of the desired analysis.

Figure 3. The semantics of the modeling language are at the center of an MBA process in
the view of a methodology developer.

To conclude, table 1 is a summary of the MBA process. From the perspective of the domain

engineer, the process mainly consists of three activities: formulate, “express,” and “analyze.” Each
of the activities requires different methodological supports, which are essentially application and
manipulation of the “modeling construct,” “mathematical construct,” and “syntax” of the modeling
language.

Table 1. The summary of the MBA process.

Domain engineer
Methodology developer

Language support Tool support

Manual
Formulate Modeling construct NA

Express Syntax to express the
engineering solution

Modeling environment

Automated Analyze

Mathematical construct to be
translated.

Programs for model
transformation

Mathematical construct to be
analyzed.

Programs for the
desired analysis

Finally, we focus this paper on how the modeling language supports the MBSA process rather

than how the modeling language is supported and implemented by tools, as the former is closer to
the System Safety Engineering community while the latter is mostly Software Engineering. For
this reason, we adapt the MBA process of figure 3 into figure 4 below, with a more explicit

8

depiction of the relationship between the MBA process and the modeling language. The rest of the
paper will follow closely with figure 4.

Figure 4. The MBA process and the language support. While the analytical process
represents a series of (iterative) steps [right], it is supported by particular choices with
respect to the modeling language [left]. The discussion of MBSA will follow closely with
this process.

3 MBSA: Problem Statement
Figure 4 is a general MBA process and MBSA is an application of this process to the domain

of hazard analysis. In other words, MBSA follows the MBA process and specifies each MBA step
for hazard analysis. In the rest of the paper, we will review MBSA following the steps in the MBA
process with the goal to identify the defining features and notable patterns for MBSA. We focus
this section on the “problem statement.”

3.1 The Defining Feature: The Fail-Safe Property
The problem statement determines the goal and the scope of an analysis. As asserted in section

1, the goal of MBSA is broadly hazard analysis. Although there is no definitive prescription about
the scope of hazard analysis in System Safety Engineering, we posit that MBSA, like any other
system safety analysis, is mostly concerned with hazard related to system function. In other words,
a work that uses a “model-based” approach and has safety implications does not necessarily make
it MBSA. It has to focus on the violation of functional safety [116][117] by analyzing the dynamic
behavior of the system. For example, the “model-based” approach is also applied to analyzing
hazards in other disciplines such as structural safety [118]–[120] and occupational safety
[121][122], but because they do not address hazard from the perspective of system function, they
are trivially ruled out for MBSA.

Furthermore, according to reference [123], hazard analysis is performed to identify hazards,
hazard effects, and hazard causal factors. This definition is widely accepted in the community. For

9

example, aviation industry specifies three prominent tasks [113]: function hazard assessment
(FHA), preliminary system safety assessment (PSSA) and system safety assessment (SSA), where
FHA sets up the safety requirements by identifying the potential hazards and their effects, PSSA
validates the system architecture by identifying the possible causal factors, and SSA verifies that
the risk of the causal factors leading to the hazard is acceptable.

Clearly, the overarching goals of hazard analysis are achieved through the following three
tasks:

• Task (1) determines the safety requirement by hazard identification.
• Task (2) identifies the possible causal factors through a deductive analysis.
• Task (3) makes sure the system is still safe in the presence of the causal factors through an

inductive analysis.

In the safety community, Task (1) is usually referred to as “hazard identification” [124], and

safety analysis usually refers to Tasks (2) and (3). Methodologically, Task (1) is different from
Tasks (2) and (3) in both the goals they seek to achieve and methods they follow. Therefore, we
do not include hazard identification as a potential area of MBSA. It is worth mentioning that there
are works (mostly based on UML/SYSML) to partially automate the hazard identification process
[18]–[22]. Neither UML/SYSML language nor the partial automation can change the fact that
hazard identification is generally not considered safety analysis in the System Safety Engineering
community. As pointed out by reference [23], “the focus of classical safety analysis techniques
lies on supporting the reasoning of possible failures and on recording the causal relationships in
failure events.” Rather, hazard identification is the input of a safety analysis, but not the safety
analysis itself. Therefore, we do not include in the scope of MBSA.

In terms of Task (2) and Task (3), although they are fundamentally different analyses, they
both share the same goal to ensure the system is safe in the presence the causal factors. While there
are many types of causal factors, such as design error, manufacture defect, human error, and
component failure, a minimal requirement for a safety analysis is that it must address component
failure. In other words, the goal of a safety analysis must at least involve proving the system is
fail-safe. A defining feature of MBSA is that it must at least be able to argue whether a system is
fail-safe. In fact, most MBSA works focus on modeling component failure with an exception of
the EAST-ADL framework [24][25], where the process faults (systematic faults such as design,
implementation, installation, operation, and overstress faults) are considered in the modeling
semantics. However, it is unclear from the literature how process faults are identified, mitigated,
and implemented by the framework.

3.2 The Notable Pattern: The Inductive Analysis
Tasks (2) and (3) both have the fail-safe feature but Task (2) is a “deductive analysis” (also

called top-down [26][27] or effect-to-cause [28]), and Task (3) is an “inductive safety analysis”
(also called bottom-up [26] [27] or cause-to-effect [28]). At this point, “inductive analysis” is
widely practiced in the MBSA literature, which makes it a notable pattern. Note that the lack of
emphasis on the “deductive analysis” has a significant impact on the quality of the “inductive
analysis.”

10

3.2.1 The Inductive Analysis
A notable pattern of MBSA is that most works in the literature are inductive analysis. The

inductive analysis is a notable pattern rather than a defining feature, meaning MBSA does not
necessarily have to be an inductive analysis. But in this section, we focus on this pattern of MBSA.

 We already knew that an inductive safety analysis is a bottom-up safety analysis. A bottom-
up analysis in the context of MBA will, given a set of properties (or requirements) and a model,
verify whether the model satisfies the given requirements. In the context of MBSA, there are
generally two types of properties (functional property and safety-critical property) and two types
of models (nominal model and off-nominal model). As shown in figure 5, a property-model
combination yields four types of inductive analysis.

Arrow 1 verifies the “goodness” of the design. The intended function has to be achieved by the
designed behavior in nominal conditions. This is the foundation of all other types of analysis.

Arrow 2 verifies that the designed behavior in nominal conditions will not lead to hazardous
situations. For example, reference [103] conducted a series of safety assessments to prove that all
the possible trajectories of autonomous cars are not in conflict by using reachability analysis.

Figure 5. Four types of inductive safety analysis. The start of the arrow is verified against
the end of the arrow. No. 4 is one of the defining features of MBSA.

Arrow 3 verifies the “fail-operational” [126] property of a system design, i.e., the desired

function is still achievable even in the case of device malfunction. This is a subject of robustness
analysis [127], a dependability property that is closely related to safety.

Arrow 4 verifies the fail-safe property. As explained in the previous section, this is one of the
minimal requirements for any work to be considered as MBSA.

It is worth mentioning that all four arrows can be implemented by Formal Methods. In Model
Checking, a safety property is even explicitly defined in the methodology. However, if a formal
analysis does not include Arrow 4, it is not MBSA, even if a safety-critical property is verified
against.

3.2.2 The Deductive Analysis

The deductive analysis is not the notable pattern of MBSA as very few works address it. But
the lack of emphasis on the “deductive analysis” has a significant impact on the quality of the
current inductive MBSA practice. More specifically, inductive analysis can only work with a set
scope of system, while it relies on the deductive analysis to set the scope.

Out-scope. Compared to inductive analysis, where the scope of the system is taken as given,
the deductive analysis takes a more holistic view and can identify contributing factors that can be
hard to capture if no structured method is provided. Reference [29] calls for a systematic approach
to achieve confidence in the completeness of an analysis, but as pointed out by reference [30],

11

completeness of the causal factors may only be proven with respect to those captured: “If a failure
mode is not even part of the formal model, then it is impossible to reason about it. But, finding a
complete set of failure modes for a given component is not an easy task.” Current MBSA practices
do not address how the failure modes are derived in the first place.

Furthermore, the inductive analysis focuses too quickly on failures. It is true that failures at the
device level are usually well-studied and well-recorded in the industry. A complete list of failure
modes of all the devices is presumably accessible from the industry record. This is perhaps why
most MBSA works are failure oriented. However not all the devices are well-studied especially
for those newly designed. The 737MAX accident perfectly exemplifies that a new system or a new
feature (i.e., the MCAS system) can have surprising behaviors that may cause catastrophic
accidents. More importantly, it has been widely accepted that hazards can also be caused by non-
failures [125]. The inductive safety analysis needs a deductive approach such as STAMP-STPA
[128] and FRAM [129] to out-scope the analysis boundary so that other casual factors and
unintended interactions are also captured.

Down-scope. Another benefit of deductive analysis is down-scope. The combination of all the
possible device failures can dramatically increase the complexity of the inductive analysis. So far,
this problem is mitigated by abstraction. But abstraction has a price. The more abstract a model is,
the less precise the result will be (see ref. [31] for the comparisons). Furthermore, as pointed out
by reference [32], “the combinatorial diversity of each plausible (fault) event interacting with each
other set of events within and without the system makes bottom-up analysis intractable, so
heuristics on system behavior need to be employed to narrow the search space of critical
scenarios.” This is why reference [30] claims the completeness of the failure modes but only at a
lower device level. Clearly, inductive analysis alone is not sustainable to analyze a complex
system. It has to be complemented with a deductive analysis, as a deductive analysis only identifies
the casual factors that are relevant to the hazard of interest, which significantly reduces the
complexity of the analysis.

4 MBSA: Engineering Solution (The Global Effect)

4.1 Engineering Solution: The Off-Nominal Behavior
We move to the “engineering solution” of figure 4 now. Although not unique to MBA (or even

engineering), the formulation of engineering solutions is intended to solve the stated problem. In
the context of MBSA, the problem statement is to argue whether a system is fail-safe, which, as
shown in figure 5, requires a set of safety-critical properties and a model of off-nominal behavior.
The properties are usually derived from the hazard identification process, which is not part of
MBSA and hence for the purposes of this paper we simply assume the existence of the set of
properties, and do not discuss how it is created. The engineering solution in the context of MSBA
is the off-nominal behavior.

We reiterate that the engineering solution in MBA focuses on depicting the actual behavior of
the system-to-be-built with as much fidelity as possible and the formulate process is language-
neutral. Similarly, regardless of the modeling language, to formulate the off-nominal behavior is
to decide how a fault happens in reality and its effect on both the local component and other
components. This is consistent with the three propositions proposed by reference [33] for any fault
logic modeling. Specifically, it includes defining the following three subprocesses:

• Causal scenario: the condition for a component fault to happen;
• Local effect: the effect of the fault on its respective component;

12

• Global effect: how the local effect affects the system behavior as a whole.

In this section, we will show how the specific ways to implement the global effect subprocess
lead to a defining feature of MBSA. The casual scenario and the local effect subprocesses will be
addressed in the next section.

4.2 The Defining Feature: Architecture Consistency
It is usually argued in the MBSA literature that MBSA adds value to the current safety

engineering practices at the following aspects:
(1) Handling the increasing complexity of safety-critical system.
(2) Integrating the design view and the safety view.
(3) Finding design shortcomings and flaws early.
(4) Reusing previously developed artifacts.
(5) Introducing automation to reduce time and cost and improve quality.
(6) Structuring unstructured information.

However, these benefits are also claimed by the general MBD community [105]

[109][114][130][131][133] except (2). As argued by reference [132], MBD is just a tool for
realizing the integration among the different domain of systems and must be supported by an
integrated design methodology. MBSA is exactly such a methodology to support the view
integration of design and safety. This is also consistent with the claim made by one of the seminal
MBSA works [34] that MBSA is about maintaining the consistency between the design model
and the safety model, and this consistency is unique to MBSA compared with traditional safety
analysis.

However, the component fault and the local effect subprocesses have no logical consistency
with the nominal function of the component, because while the fault of a component might
eventually affect the intended function, how it happens and how the fault affects the component
are not determined by how the component is supposed to work in the first place. It is worth
mentioning that in some works (such as the Generic Failure Model Library [35] [36]), a fault
library is developed to associate each component with a fault model. We argue the association is
not integration because association is enabled by numerous reuses of the same component in the
same (or at least very similar) systems. In fact, the association is a result of the MBD approach
being able to structure unstructured information and use computer models as media to store
institutional knowledge for reuse, i.e., benefit (4) and (6) discussed above.

In fact, it is the specific ways to implement the global effect subprocess that leads to the
consistency between the design model and safety model. The global effect is to model how the
fault effect of an individual component affects the system behavior as a whole. While the fault
effect of an individual component varies from case to case, the propagation path does have (at least
partially) resemblance with the interaction path in the nominal behavior. This resemblance is the
basis of the consistency between the design model and safety model. Because the propagation path
and the interaction path are the architectures of the safety model and the design model, we call the
consistency Architecture Consistency in this paper, and it is one of the defining features of
MBSA.

13

4.3 The Notable Pattern of Architecture Consistency
Three different ways of achieving Architecture Consistency is found in the MBSA literature

(figure 7). This classification is an extension of the model provenance in reference [25] and the
ESACS project in references [37] and [[38].

But first, an important distinction has to be made between “views” and “behaviors” (figure 6).
The nominal view means the semantics adopted to describe the nominal behavior (Arrow 1) are
the same as the off-nominal view (Arrow 4). However, an off-nominal behavior can also be
described in a nominal view (Arrow 2). For example, a current overflow can be called out by off-
nominal semantics as a faulty state. It can also be simply represented, as any other nominal current
is measured, by a number of Amperes that happens to be higher than intended by the designer.
Being off-nominal does not change the nature of the current, therefore it can still be represented
using the nominal semantics. Similarly, the nominal behavior can also be represented using off-
nominal semantics (Arrow 3). For example, off-nominal semantics can be equipped with all the
complex off-nominal behaviors, but a “healthy” state can be all it needs to represent all the nominal
behaviors.

Figure 6. Nominal behaviors can be represented in both the nominal and the off-nominal
views. Same for the off-nominal behavior. The arrow means “represent” in this figure.

14

Figure 7. Notable patterns to achieve Architecture Consistency.

Now, we are ready to explain the notable patterns to achieve Architecture Consistency (figure

7).
The first class injects faults into the components of the design model. The off-nominal behavior

of the individual component is described in the nominal view and then is injected into the design
model. No information of the propagation paths of the off-nominal behavior is defined. Instead,
the propagation paths are generated automatically by reusing the interaction paths of the nominal
behavior. This leads to the Architecture Consistency of the design model and the safety model.
From the perspective of the safety engineer, the integration is achieved at the component level, as
the generation of the architecture of the safety model is shielded from him/her by the automation.
A typical example is the FSAP/NuSMV-SA language [39].

The second class involves formulating the off-nominal behavior using a dedicated off-nominal
view. Compared to the injected class, off-nominal behaviors are explicitly called out as a set of
behaviors that are separate from the nominal behaviors. The architecture of the design model is
manually referred when defining the off-nominal behavior for each individual component.
Architecture Consistency is hence achieved through the shard architecture. This class is also called
“architecture-based evaluation methodologies” in reference [40]. Two subgroups exist depending
on whether the design model is explicitly required for the construction of the safety model, or only
has to be implicitly referred.

For the “explicit” case, an explicit design model is required. For each component, the off-
nominal behavior and/or the nominal behavior are defined by the engineer using the dedicated off-
nominal semantics. The propagation paths between the components are then defined manually.
Finally, the whole safety model is built (usually automatically) by aggregating all the well-defined
components and interactions. The Architecture Consistency is achieved manually, but the method
and the modeling tool enforces Architecture Consistency by requiring a dedicated component in
the off-nominal model for each component in the design model. A typical example is the AADL-
EMV2 [41].

15

The “implicit” case follows the same process as the explicit case. The safety model is organized
and constructed in a compositional way [42]. However, it does not require an explicit design
model, hence there is no way to enforce the Architecture Consistency except by completely relying
on the engineer’s discretion. Note that the traditional FTA also does not require an explicit design
model, but because it is not a compositional approach no implication of ensuring Architecture
Consistency can be made. Many methods belong to this subclass, such as Component Fault Tree
[43], Failure Propagation and Transformation Notation (FPTN) [44], Fault Propagation and
Transformation Calculus (FPTC) [45] and State Event Fault Trees (SEFTs) [46].

The final class attempts to “couple” both the nominal behavior and the off-nominal behavior
in the same model by describing them within by the same semantics. Models are structured in a
compositional way; each component contains both the nominal behavior and the off-nominal
behavior; the interactions between the components can be both the nominal interaction and the
fault propagation. Architecture of both the nominal behavior and off-nominal behavior are aligned
with the same compositional structure of the resulting model, which also leads to Architectural
Consistency by construction. From the perspective of the safety engineer, this is true integration
as the modeling semantics ensure the nominal behavior and the off-nominal behavior are weaved
organically in the same model. However, to achieve this, the safety engineer has to have a more
“holistic view” and approach the modeling task at a more comprehensive system level. A typical
example is the AltaRica modeling language [1].

Finally, we are aware there are a handful of works claiming to be MBSA that do not show a
clear way to achieve Architecture Consistency, such as reference [47]. This lack of Architecture
Consistency is mainly caused by a loose usage of the terminology in these works. In fact, reference
[47] even defines MBSA as an approach in which the system and safety engineers share a common
system model created using a model-based development process, which is consistent with our
definition.

4.4 Comparing the Notable Patterns
As shown in figure 7, the four different classes (counting the two subclasses) of Architecture

Consistency have different ways of integration and different means to achieve Architecture
Consistency. In this section, we will show the different ways integrations lead to different levels
of flexibility to describe complex (off-nominal) behaviors and interactions, and that the different
means to achieve Architecture Consistency can lead to different efforts from humans and
automation. Therefore, we compare the four classes from three perspectives: flexibility for complex
behavior, human efforts, and automation efforts.

4.4.1 Flexibility for Complex Behavior

For the injected class, the off-nominal behavior is described with the nominal semantics.
However, it is known that faults can create new component behaviors (i.e., the unintended
behaviors) and new interactions between them (i.e., the unintended interactions). These new
behaviors and interactions cannot be planned in advance in the nominal model. They cannot be
addressed in the injected way unless the original design model is adapted accordingly. However
changing the original design model just for the construction of the safety model not only violates
the current industry practices, but also defeats the purpose of MBSA, because in this way the safety
model is only consistent with a model that is different from the original design model, so the
inconsistency is guaranteed by construction. Similar argument can also be found in [48].

Compared with the injected class, the referred (including both implicit and explicit) class has
more flexibility to define the new behaviors and interactions, as the off-nominal model is defined

16

in a stand-alone model using dedicated off-nominal semantics. However, the off-nominal view
taken by this class limits the options of modeling the nominal behaviors. For example, instead of
modeling the real dynamics of the nominal behavior, it is usually abstracted as some discrete
modes, such as “working” and “healthy” [49] [50]; in some cases, the nominal behavior is even
completely left out of the off-nominal model, such as HipHops and Component Fault Tree. This
significantly reduces the flexibility of modeling especially those faults whose presence or effects
depend on specific nominal conditions.

Finally, the coupled class takes a holistic view to include both nominal behavior and off-
nominal behavior in the same model. On the one hand, it gives the safety engineers more flexibility
to describe the behaviors that they identify from the specific domain; on the other hand, however,
it relies on the safety engineers to make the important modeling decisions, such as decomposition
and abstraction. Nevertheless, this class indeed has the greatest flexibility in describing complex
behaviors.

In summary, we conclude coupled > implicit = explicit > injected in terms of the flexibility
to describe complex behaviors.

4.4.2 Human Effort

Different classes of Architecture Consistency require different levels of human effort to
achieve Architecture Consistency. Note that the effort here means the work to specifically achieve
Architecture Consistency rather than the overall manual efforts in constructing the safety model.
The manual efforts in the construction of the safety model will be addressed in the next subsection
from the perspective of the overall automation support for that purpose.

Furthermore, “human” here means both the methodology developer who sets out the working
process and develops tool support, and the safety engineer who follows the working process to
actually execute the MBSA analysis. Two metrics are used to compare the human efforts: the
primary one is how much the methodology relies on the efforts of the safety engineer to achieve
Architecture Consistency, and the secondary one is how much effort is required from the
methodology developer to develop automation for Architecture Consistency. For each class, the
primary standard is compared first; if they are at the same level, then the secondary standard is
compared.

In this regard, the coupled class requires the least effort from the safety engineer to achieve
Architecture Consistency, because the modeling language inherently guarantees it between the
design view and safety view. No extra effort is required from the safety engineer, and no
automation is needed, specifically for Architecture Consistency.

Second is the injected class where Architecture Consistency is ensured by the automation. No
extra effort is required from the safety engineer but automation has to be developed by the
methodology developer beforehand to enable the derivation of the safety model from the design
model. Using the metrics above, the injected class requires less human effort, specifically for
Architecture Consistency.

Third is the “referred” class where Architecture Consistency is achieved manually by the safety
engineer. However, compared to the implicit class, the explicit class has a specific modeling
process for the safety engineer to follow and the consistency usually can be examined by
automation, while the implicit class instead is completely reliant on the discretion of the safety
engineer. Therefore, the explicit class requires less effort from the safety engineer than the implicit
class, specifically for Architecture Consistency.

In summary, we conclude coupled > injected > explicit > implicit in terms of the least
requirement of human effort.

17

4.4.3 Automation

In general, automation serves two purposes in supporting the construction of the safety model.
One is achieving Architecture Consistency, and the other is aggregating a complete safety model
from the individual components and the interactions among them.

In this regard, the injected class has the most automation support, because both Architecture
Consistency and the aggregation are supported by automation. The second is the explicit class,
because it usually provides automation support to examine Architecture Consistency and build the
complete safety model from the defined off-nominal components and the propagation paths
between them.

Finally, the implicit and the coupled classes do not have the automation support to examine
the Architecture Consistency because no explicit design model is available in these two cases. The
aggregation of the safety model can be automated from the off-nominal components and the
propagation paths between them, such as in reference [51]. Therefore, they are at the same level
of automation support.

In summary, we conclude injected > explicit > implicit > coupled in terms of overall
automation support.
4.4.4 Observation

The evaluation results are summarized in table 2.

Table 2. Evaluation of the four different classes of Architecture Consistency.
Perspective Results
Flexibility coupled > implicit = explicit > injected
Human efforts for
Architecture Consistency coupled > injected > explicit > implicit

Automation injected > explicit > implicit = coupled

Architecture Consistency and automation. Based on the information in table 2, automation

is neither a sufficient condition nor a necessary condition for Architecture Consistency. This
defeats the general belief in the MBSA community that the automation leads to the consistency
between the design model and safety model. In fact, only Architecture Consistency in the injected
class is achieved by automation; Architecture Consistency in the explicit class can only be
examined by automation and in other classes are completely achieved by humans. Furthermore,
automation can be used for automatic aggregation, but aggregation is a different concept from
Architecture Consistency. No correlation can be made between automatic aggregation and
Architecture Consistency. Therefore, while Architecture Consistency is a defining feature of
MBSA, it is inaccurate to equate MBSA with automatic construction of safety model.

The Pareto tradeoff. A simple pareto analysis on the evaluation results in table 2 reveals that

no single class of MBSA is globally superior or inferior. The four different classes perform
differently based on the specific perspective taken.

However, with the three identified standards, the implicit class is dominated by the explicit
class. Compared to the explicit class, the implicit class requires more involvement from the safety
engineer to maintain the architectural consistency, receives less automation support as it does not
have an explicit design model, and has about the same flexibility in modeling complex off-nominal

18

behavior. Therefore, if only the three standards are considered for the tradeoff, the implicit class
should never be selected over the explicit.

Finally, the “Flexibility” row of table 2 has the opposite ranking to the “Automation” row. The
coupled class can model more complex behaviors, but the safety engineer has to be responsible for
the most modeling work as it is the least supported by automation. While the injected class can
model less complex behaviors, the automation can take care of the most modeling activities
including Architecture Consistency and aggregation. The referred class is in between and, to a
certain extent, can be seen as a balance of the trade-off between flexibility and automation.

5 MBSA: Engineering Solution (The Causal Scenario and the Local Effect)
To reiterate, the engineering solution in the context of MBSA is the depiction of the actual off-

nominal behavior with as much fidelity as possible, which is supposed to be language neutral. In
this section, we focus on the other two language-neutral subprocesses to formulate the off-nominal
behavior, the causal scenario, and the local effect. Because the two subprocesses describe how a
fault develops in a component and affects the component, we call them together as a “component
fault process” for simplicity.

5.1 A Framework for the Component Fault Process

Figure 8. Formulating the component fault process top down and bottom up.

Ideally, the component fault process is supposed to depict the actual off-nominal behavior

based on the safety engineer’s domain knowledge. Then a MBSA modeling language can be
selected to represent the component fault process in the safety model. This is the top-down process
in figure 8 and is widely practiced in the scientific modeling community; however, this is
challenging for safety engineering. In the traditional scientific modeling community, there are
usually a set of fundamental laws and principles to describe how the subject under study works in
the real world. These laws and principles are hard facts that the engineers can use to formulate a
language-neutral process. However, the authors are not aware of any such hard facts or if it is even
possible to ask for such hard facts in the safety engineering community. Admittedly, there are a
variety of high-level accident models [112] [129], but none of them are specific enough for a safety
engineer to formulate how a fault develops within a component. As a result, this top-down
approach relies heavily on the expertise of the safety engineer, which in our opinion makes the
safety modeling hard to repeat, to review, and to assure.

Consequently, in practice, many safety engineers rely on the modeling language (specifically
the modeling construct) to formulate the component fault process. This is the bottom-up process

19

in figure 8 where the modeling language provides a structure for modeling, reviewing, and
assurance. This is problematic, because all modeling languages are (rightfully) an abstraction of
the reality (the subprocesses in our context), and this automatically abstracts away the real
phenomenon that is not captured by the modeling language. Using a language correctly does not
mean the correct language is selected in the first place. For example, by selecting FTA, the safety
engineers immediately abstract away the fault propagation among the components. They can select
AADL-EMV2 instead to capture the propagation, but what else is abstracted away by AADL-
EMV2? Most MBSA modeling languages present their own modeling construct without even
addressing what real phenomenon they cannot model, and so safety engineers make abstractions
already without even knowing what is abstracted away by only deciding what modeling language
is going to be used. Abstraction is not the problem here, as a model by definition is an abstraction,
but the point is to make these abstractions explicit.

Therefore, the problem is that there are no hard facts akin to the scientific modeling community
for the component fault process in the safety engineering community. In fact, we doubt whether
there will be any a priori principle such as Newton’s law that can completely depict the component
fault process. However, we take an in-the-middle approach in the paper to solve this problem by
proposing a phenomenon-centric framework to describe the hard facts of the component fault
process. By “phenomenon-centric” we mean it focuses on the real process of how a fault appears,
develops, and affects the component. For safety engineers, the framework can be used to guide the
formulation of the specific component fault process for their project; for the language developer,
the framework can be used as the basis to make explicit decisions about what phenomenon is and
is not supported by the language. In section 5.2, inspired by the Ericson’s hazard theory [123], we
will propose a high-level a priori structure for the framework of the component fault process. Then,
in section 5.3, we use the notable patterns of the component fault process identified in the MBSA
literature to enrich and, more importantly, to specify the framework.

5.2 The Structure of the Phenomenon-centric Framework
According to Ericson [123], a hazard is comprised of three components: hazardous element

(HE), initiating mechanism (IM) and target/threat (T/T). HE is the basic hazardous resource
creating the impetus for the hazard; IM is the trigger or initiator event(s) causing the hazard to
occur. The IM causes actualization or transformation of the hazard from a dormant state to an
active mishap state. T/T is the mishap outcome and the expected consequential damage and loss.
There is a hazard actuation process to transition the system from a benign state to a mishap (figure
9).

Figure 9. The hazard actuation (adopted from figure 2.5 of [123]).

20

Inspired by the hazard actuation process, we propose a structure (figure 10) to depict the actual

process of how a fault develops in a component and affects the component (i.e., the component
fault process). The fundamental belief of this structure is that a component fault is present when
certain conditions are satisfied, and the fault takes effects on the component function when certain
conditions are satisfied. This observation is consistent with the error propagation process proposed
by reference [136] (note the “error” in reference [136] means fault in our context).

Figure 10. The structure to depict the component fault process appears at the top. It can
be mapped to the hazard actuation process at the bottom. The solid arrow represents the
causal sequence and the dotted arrow represents the mapping relationship between the
proposed structure and the hazard actuation process.

Specifically, the HE in the hazard actuation process is defined as a casual factor in our

structure. Each fault is correlated with a set of casual factors, all of which have to be present for
the fault to happen. Furthermore, the IM is decomposed into the activation mechanism and the
impact mechanism. This is driven by the fact that “a fault does not necessarily lead to a failure”
[137], implying two processes in play: one leading to the fault (i.e., the activation mechanism) and
the other leading to the effect of the fault (i.e., the impact mechanism). Finally, the T/T is defined
as the effects on the respective components. As a result, the causal factors and the activation
mechanism comprise the original causal scenario subprocess in the formulate process; the impact
mechanism and the effect comprise the original local effect subprocess.

In summary, figure 10 is a structure that we believe is generally true for any component fault
process. Again, unlike other scientific communities, there is no experiment to prove its validity
definitively. However, it is developed based on well-received works in the System Safety
Engineering community. In fact, in 2007, Ortmeier proposed that failure modeling “split the
(failure) process into two parts: one part is modelling how and when the failure occurs and the
other is to model the direct, local effects of the failure” [52]. In the next section, we will enrich
and specify this structure based on the notable patterns of MBSA literature. Although many works
do not have the explicit structure as in figure 10, the fact that most MBSA works can fit into this
structure indirectly provides evidence of validity for this structure.

5.3 The Notable Patterns to Specify the Phenomenon-centric Framework
5.3.1 Causal Factors

While the specific contents of casual factors vary from application to application, two
questions are usually answered in the MBSA literature about the causal factors: (1) what causes
the fault and (2) what is the likelihood of those causes occurring? Therefore, two notable patterns
are identified for the causal factors: the source and the occurrence (figure 11).

21

Figure 11. Notable patterns for the casual factors associated with a component fault.

The source of the causal factor is determined with respect to the boundary of the component.

As pointed out by reference [53], the component fault can be caused by internal causes or external
causes. Most works stop at this level with the exception of reference [54] which goes on classifying
the external causes into “connected” and “unconnected.” Similar to reference [54], we classify the
external causes into “defined interaction” and “unintended interaction.” The former means the off-
nominal input causes the fault of the component. For example, a voltage (i.e., the input) too high
can break a capacitor in the circuit. A processor depends upon the functioning of a fan, and if the
fan fails, the processor overheats and fails as well. Similar concepts can be found in references
[55] and [138]. Furthermore, new unintended interactions can also be created by the fault of other
components, such as fire and fluid leak. This type of interaction is the secondary effect of a fault
stemming from an external component that is not supposed to interact with the current component
whatsoever. Many MBSA works consider both external and internal fault sources, such as
references [41], [56], and [57], but rarely make the explicit distinction between the faults caused
by the defined interaction and the unintended interaction. We argue that an explicit distinction
should be made between the two different sources of the external causes because (1) the
methodology developer must make sure their modeling language can model both phenomena as
they are inherently different in nature, and (2) identifying the unintended interactions is
challenging, and without explicitly emphasizing it in the formulate process, they are more likely
to be missed by the safety engineer.

For the same reason, another important distinction has to be made between the external cause
and the propagated input fault as in AADL-EMV2. The former leads to component malfunctions,
but the latter does not necessarily so. For example, a current flows into a resistor but is too high
(i.e., the fault) for the operation (say to heat a camera in the space shuttle [139]) yet not high
enough to change the property of the resistor. In this case, the resistor is not faulty although its
input is faulty. The resistor only correctly passes the fault to the camera. Therefore, the faulty
current is not an external cause of the resistor because nothing fails in the resistor although its input
is faulty. If the current is so high that it changes the performance property of the resistor, then the
current becomes an external cause because it leads to improper functioning of the resistor.

The second notable pattern is the occurrence of the causal factor. This aspect determines what
types of safety analysis can be conducted later, i.e., a qualitative one or a quantitative one [58].
For the external causal factors, the occurrence depends on the source component(s), and therefore
is referred. For the internal causal factors, if they are characterized with probability distributions,
then both qualitative analysis and quantitative analysis can be conducted; however, if the
probabilistic distribution is unspecified, then only qualitative analysis can be conducted. The
implication is quite straightforward: if quantitative analysis is required, then the occurrence of the
internal causal factor has to be characterized with probability distribution; otherwise “unspecified”
occurrence will suffice.

22

5.3.2 Activation Mechanism

The causal factors being present is the necessary but not sufficient condition for the fault to be
present. Activation mechanism is the name given to the set of additional conditions (if applicable)
that the causal factors must satisfy to activate the fault, given all the causal factors are present.
This is reflected by some MBSA works defining additional conditions for the fault to occur.
Although we do not believe there is an a priori definition of those conditions, we are able to find
the following list of attributes for the activation mechanism in the literature:
• Sequence: Sometimes the causal factors have to happen in a certain sequence so that the

fault can be activated. This is one of the main advancements of Dynamic Fault Tree over
the traditional FTA.

• Delay: Sometimes it takes time for the fault to happen even after the causal factors are all
present. For example, a pump overheats after no water flows in for a certain period of time.
This time period can be a deterministic one or a probabilistic one [7]. A special case is the
zero-delay, where the fault is activated right after the causal factors are present. The
presence of the causal factors in the zero-delay case is usually modelled as a trigger event
of the fault [46].

• Duration: Sometimes a duration is defined to model the phenomenon that a fault can be
deactivated. A fault can disappear a certain period of time after the activation because of its
transient nature [59] or after being repaired [60]. The characterization of the time can be
deterministic, probabilistic [61], or non-deterministic as suggested by reference [62].

•
5.3.3 Impact Mechanism

The fault being present is the necessary but not sufficient condition for the fault to show effects
on the component. Impact mechanism is the name given to the set of additional conditions (if
applicable) that needs to be satisfied for a given fault to cause the defined effects. This is reflected
by some MBSA works defining additional conditions for the effects to take place. Like the
activation mechanism, we do not believe there is an a priori definition of those conditions, but we
are able to find the following list of patterns for the impact mechanism in the literature:
• Guard: Sometimes the fault can only lead to the defined effects when the system is in a

certain state. In fact, as long as the fault is modeled as an event to trigger a transition, the
source state is the guard. In this case, the transition is the effect of the fault; if the system is
not in the source state, the transition will not be triggered even if the fault is present. For
example, loss of hydraulic supply will only affect the ground deceleration function when
the aircraft is in the state of landing. This guard condition is widely modeled in the
literature such as in state/event fault tree [46] and AltaRica Data-flow [63].

• Delay: As pointed out by reference [33], “the effect of a failure may not immediately cause
an output failure mode and may remain dormant.” The time between the fault being present
and the appearance of the fault effect is usually defined as a “Fault Tolerant Time Interval”
in the literature [64]. For example, this delay is considered a “safety-relevant property” in
SafeDeML [65].

• Determinism: Sometimes it can be uncertain to determine the exact effects of a fault due to
either epistemic uncertainty or aleatoric uncertainty. This uncertainty is traditionally
addressed by modeling the worst-case scenario instead of the uncertain process. Not many
MBSA works have non-deterministic impact process. Reference [66] coins it as
“probabilistic transition conditions.” Reference [67] provides a feature called “branching

23

transition” where multiple target states can be transitioned to following certain probability
distribution from one source state. This feature was originally designed for branching
transient and persistent failure, but it also seems to have the potential to capture the
uncertainty of the impact process.

5.3.4 Effects on the Component

The effects of a fault on the respective component is modelled widely differently in the
literature, but we are able to find the patterns in figure 12.

Figure 12. Notable patterns to model the fault effects on a component. A detailed
classification of a sample pool of MBSA works is given in the Appendix.

As shown in figure 12, two dimensions are identified from the literature: the abstraction and

the semantics. A detailed classification of a sample set of MBSA works is given in the Appendix.
The abstraction dimension determines how many details can be included in the effect model. For
the component level, the fault affects the internal behaviors of a component. This is also called
white box error model in references [45] and [68]. For the architecture level, the fault effects are
represented at the output port of a component and propagated to the input port of other components.
This is also called black box error model in references [45] and [68]. For the function level, the
component is abstracted as a Boolean logic node; the fault sets the node to be false, affecting all
the functional flows that pass through the node. In fact, AADL-EMV2 supports modeling at
exactly all the three levels of abstraction with a slightly different naming system [69][70].
Obviously, modeling at the function level is more abstract than modeling at the architecture level
which is more abstract than modeling at the component level.

The semantics dimension is created based on different interpretations of the local effect. First,
the local effect is interpreted as a deviation to the intended performance of the defined behavior.
In this way, the semantics for the nominal behavior is reused. Second, the local effect is interpreted
as a new behavior (such as omission, commission, early, late, or value deviations) beyond the
original nominal behavior. In this way, only off-nominal states are modeled in the safety model,
hence “off-nominal.” Third, the local effect is interpreted as a new off-nominal state interacting
with the nominal states of the system. In this way, both the nominal states and the off-nominal
states are present in the safety model, hence “hybrid.”

In fact, this semantics dimension is consistent with the classification result of reference [48],
which is based on the semantics of the component interface. When the local effect is represented
by the nominal semantics, the interaction between the components is the “nominal flow,” which
corresponds to the FEM class of reference [48]. When the local effect is only represented by off-
nominal semantics, the interaction between the components is the “fault logic,” which corresponds
to the FLM class. Finally, when the local effect is new off-nominal states interacting with nominal
states, both the nominal state and off-nominal state have to be communicated between the
components, which corresponds to the “hybrid” class in reference [48].

24

5.4 The Phenomenon-centric Framework for the Component Fault Process
The full framework of the component fault free is derived (figure 13). The structure is proposed

in an a priori way based on several well-received works, and the specifics of the framework are
achieved by the notable patterns from the MBSA literature. This phenomenon-centric framework
not only provides a way to organize the notable patterns of the component fault process in MBSA,
but more importantly it is a solution to the problem posed in section 5.1 of lacking the hard facts.
We argue that this framework quasi-functions as the hard facts as in other scientific model
communities.

Figure 13. The resulting phenomenon-centric framework to describe the hard facts of the
component fault process by combing the structure in section 5.2 and notable patterns in
section 5.3.

For the safety engineer, the framework is language neutral. It provides structure to

systematically formulate the real component fault process. The specific patterns presented in the
framework can be used as guidewords to capture different types of phenomena in the component
fault process. Furthermore, the safety engineer can also use the framework as a neutral standard to
compare different alternative modeling languages, and hence become explicitly aware about not
only what fault phenomenon can be modeled by the languages but more importantly what is
abstracted away by the language.

For the language developer, this framework helps them make explicit decisions about what
fault phenomenon will be supported by the modeling construct and what will not. Furthermore,
this framework can also be used as a meta-model of the modeling language (specifically the
modeling construct). By mapping the specific language semantics and syntax to this framework,
it gives the reader more transparency about how the language is designed to represent the real
process and potentially makes the language easier to learn, to use, and to improve.

Finally, although we cannot guarantee the aspects represented in the framework are exhaustive,
thanks to the flexibility of the basic structure, more aspects can be added to the basic structure as
more aspects are found in the MBSA community. This flexibility allows the authors to keep this
framework a living artifact and evolve it as we go.

6 MBSA: The Desired Analysis
Next, the “model of computation” of the MBA in figure 4 corresponds to the safety model.

However, because most of the modeling decisions are made in the previous steps and this step is
only to express the results by using the right syntax in the modeling environment, we skip the step
and proceed to “the desired analysis” of figure 4. In the context of MBSA, the desired analysis is
the safety analysis.

In this paper, we are not interested in the details of how the algorithms are designed and how
the tools are developed, which are closer to the Software Engineering community than System

25

Safety Engineering community. Rather, we focus on the mathematical construct and its implication
to model transformation (section 6.1) and the safety analysis (section 6.2) in the MBSA literature.

6.1 Mathematical Construct

Figure 14. The notable patterns of the mathematical construct.

To reiterate, the mathematical construct is the mathematical formalism (implicit or explicit) of

a modeling language for the automatic analysis by the computer programs. For example, the
mathematical construct of NuSMV is Finite State Machine (FSM) and AltaRica 3.0 is a General
Transition System [71]. The goal is to use the mathematical construct for the desired safety
analysis, either by designing new analysis algorithms or reusing existing tools. If such a goal
cannot be obtained by the current mathematical construct, transformation will be performed until
the desired analysis can be conducted on the resulting mathematical construct.

Based on how the mathematical construct is associated with the modeling construct, we found
the following three notable patterns of the MBSA languages from the literature (figure 14):
• Implicit: This class of languages is developed mostly for representing the system (off-

nominal) behavior in a specific way, and no dedicated mathematical construct is designed
specifically for the language (the dotted box of mathematical construct). The modeling
language has to be transformed (solid line to the model transformation) into a certain,
usually existing and well-supported formalism so that tools can be found for the desired
safety analysis, such as UML in reference [72], Sysml in references [73] and [74], HipHops
in reference [75] and AADL in reference [76].

• Comprehensive: This class of languages are developed with both a modeling construct to
represent the system (off-nominal) behavior and an equivalent mathematical construct for
the analysis (hence the solid boxes), such as the SMV [39] and Statemate [77] [78] with
finite state machine, SLIM with Event Data Automation (EDA) [57], AltaRica with
General Transition System [7], and Arcade with Input/output interactive Markov chains
(I/O-IMC) [55]. However, because it is not guaranteed that the embedded mathematical
construct fits for the desired safety analysis, it is possible further transformation is still
needed (the dotted arrow to model transformation), such as the I/O-IMC to CTMC in [55]
and EDA to MRMC in [57].

• Explicit: This class of languages is, in essence, the mathematical construct, and no
modeling construct is built for the languages (dotted box for the modeling construct). The

26

safety engineer has to build the off-nominal model directly using the mathematical
construct such as the Interface Automaton in reference [79] and Hybrid Automaton [80].
Usually, the formalism is well-supported by existing tools for the desired safety analysis.
Therefore, the model transformation is not necessarily required (a dotted arrow downward).

Figure 15. Comparing the three types of MBSA languages.

In fact, the notable patterns identified above are consistent with references [107] and [81]. Five
criteria are developed [81] to qualitatively compare the effectiveness of a modeling language that
are basically evaluations on the effectiveness of the modeling construct and mathematical
construct described in this paper. Centered on the modeling construct and the mathematical
construct, we further summarize the five criteria into two dimensions: easy to model and ready to
analyze. The three types of languages have opposite performance along the two dimensions.

As shown in figure 15, languages that are intuitive and flexible for modeling (such as UML on
the left of the spectrum) tend to be limited for analyzing, and languages that are ready to be
analyzed tend to make modelling the realistic behavior difficult especially as the system becomes
intrinsically more complex (such as hybrid automaton on the right of the spectrum). The
comprehensive language (such as AltaRica 3.0) meets both metrics in the middle. Unlike the
implicit language that is heavy on the modeling construct and the explicit language that is heavy
on the mathematical formalism, the comprehensive language is more balanced and hence is easier
to use for the safety engineer, but poses a greater challenge to the language developer to have a
language with both the intuition and flexibility for modeling and rigor and readiness for analysis.

At a deeper level, the classification is driven by the amount of information assumed in both
the system to be modelled and the analysis to be conducted. The implicit class mentioned above
does not assume what kind of analysis needs to be conducted later but does assume to a varying
extent what kind of engineering system needs to be modeled. The explicit class does not assume
what kind of engineering system needs to be modeled but does assume to a varying extent what
kind of analysis needs to be conducted. The comprehensive class assumes information to a varying
extent about both the engineering system to be modeled and analysis to be conducted as shown in
figure 15 above.

27

Figure 16. Comparison of modeling language with regard to how much information is
assumed about the system to be modelled (the y-axis) and the desired analysis (the x-
axis). The origin is the general language, like Python (not to imply it is MBSA language),
that does not assume any information at either dimension. The red star at the top-right
corner represents a specific MBSA task that has specific information about the target
engineering system and the desired safety analysis. Given a language (at any point of the
plane) for a specific MBSA task, efforts are made either by the methodology developer (the
black dotted line) or by the safety engineer (the red dotted line) to drive the point moving
towards the red star at top-right corner.

For this reason, a more general comparison between the modeling languages is conducted in

figure 16. The x-axis corresponds to the explicit class of language, which assumes no information
about the engineering system to be modeled. Along the x-axis, languages are positioned with
regard to the relative level of specificity in what kind of the analysis is to be conducted. For
example, Python at the origin is such a general language that can be used for a wide range of
analysis; FSM is a specific mathematical formalism with a more limited range of potentially
available analysis; and Markov Reward Model Checker (MRMC) [141], based on the Markov
process (a mathematical formalism), has a specific range of feasible analysis. Along the x-axis, no
information is assumed about the engineering system to be modelled, but the information about
the analysis to be conducted becomes more specific. Note that, we take a broad definition toward
“modeling language” in this paper. Strictly FSM is a formal mathematical construct and MRMC
is a tool, but a pure mathematical construct can also be used to model engineering systems directly,
and the tool has an input modeling language with specific analysis capability. Hence both of them
are considered languages in this paper, and this definition also applies to Simulink and NuSMV
below.

The y-axis of figure 16 corresponds to the implicit class of language, which assumes no
information about the analysis to be conducted. Along the y-axis, languages are positioned with
regard to the relative level of specificity of what kind of engineering system is to be modelled. For
example, Python is such a general language that can be used to model a wide range of systems,
while SYSML is more specialized in engineering system modeling, and AADL is further restricted
to avionics systems.

The comprehensive class of language is positioned within the plane. Depending on the level
of specificity at each dimension, different languages can be positioned accordingly. For example,

28

Simulink has a specific and unambiguous (although wide) boundary about what systems can be
modelled and what analysis can be conducted, and is thus placed towards the top-right of the plane.

Moreover, figure 16 reveals how a language moving from one point to another fits into the
MBSA (or the more general MBA process). For example, the horizontal movement from AADL
to GSPN is achieved through the “model transformation” mentioned earlier in this section. It does
not make the modeling construct of AADL more specific but gives a mathematical formalism that
adds specificity to analysis of conduct. Another example is the FSM on the x-axis at the bottom.
FSM first moves vertically to SMV [140]. Compared with FSM, SMV has the built-in semantics
to model complex hierarchical systems, which is the added specificity on the engineering system
to be modelled. Furthermore, the NuSMV is a model checker built based on the SMV, through
which specific model checking analysis can be conducted automatically. Compared with SMV,
NuSMV adds specificity to what analysis can be conducted through the dedicated analysis
techniques, thus a horizontal movement. Finally, based on NuSMV, FSAP/NuSMV-SA is
developed for MBSA, which is equipped with additional modeling constructs to describe different
types of components’ faults and dedicated analysis techniques for specific safety analysis. It adds
specificity to both dimensions, thus a movement towards the top-right direction.

For a safety engineer, the MBSA task is usually conducted in a project-by-project manner,
meaning specific information about the system to model and the analysis to conduct is available
for both dimensions. Hence, a MBSA task can be represented by an imaginary red star at the top-
right corner of the plane, and given modeling languages always move towards the top-right
direction to accomplish a specific MBSA task, the movement can be achieved by the language
developer as explained in the last paragraph (the black dotted line in figure 16) or the safety
engineer (the red dotted line in figure 16). For example, to use Python for a MBSA analysis, the
safety engineer has to build the safety model and design the analysis algorithms (hence the top-
right directed arrow) from scratch, which can be extremely challenging. The FTA is very general
in the modeling dimension but very specific in the analysis. For this reason, the safety engineer
has to expend a significant amount of effort in modeling (hence an upward arrow) to perform an
FTA, which is one of the main reasons that MBSA is proposed in the first place. In fact, the more
general a language is, the more effort the safety engineer needs to make for a specific MBSA task
and hence more room for errors.

 Therefore, from the perspective of the methodology developer, there is an incentive to make
the language as specific as possible, i.e., placing it as close to the top-right corner as possible so
that the safety engineer needs to expend the least amount of effort in terms of modeling and
analysis. However, the specificity comes with a price, which is the flexibility of the language. A
Simulink package for control system design is too specific for a financial system, but Python is
general enough to model all kinds of systems. Clearly, the challenge is how to strike a balance
between the specificity (of both dimensions) and flexibility of the modeling language so that the
safety engineer has to expend the least effort for the specific MBSA task, and the language is still
general enough for a wide range of systems and analysis. This is an open challenge for future work.

6.2 Safety Analysis
Safety analysis in a more general sense usually implies a safety modeling process and an

analysis process based on the safety model. In this section we use the term in latter sense.
Furthermore, in MBSA, the safety analysis is supposed to be automatically conducted by the tools
after the safety model is constructed. This is a defining feature, because if the safety analysis cannot
be conducted automatically, it is not even MBA let alone a MBSA. Therefore, automatic safety
model analysis is a defining feature of MBSA.

29

In the rest of this section, we focus on the notable patterns of safety analysis. We first discuss
one of the most prominent analyses, automatic FTA, then a complete list is given for all the
different types of safety analysis we found in the MBSA literature.

6.2.1 Automatic FTA

One of the most popular MBSA safety analyses is automatic FTA [82]–[84]. It is true that with
proper automation support, the automatic generation of a fault tree can lead to the Architecture
Consistency between the design model and safety model, a defining feature of MBSA. But it does
not necessarily guarantee the quality of the fault tree. In fact, the involvement of automation can
give the safety engineer a false sense of complacency, an illusion that because it is done
automatically, it must be correct [100]. Failure modes being organized in the form of a fault tree
do not necessarily mean a fault tree analysis is appropriately conducted.

At its core, FTA is a deductive analysis, identifying the possible casual scenarios for a high-
level event. On the surface, the automation eliminates the deductive process. However, it does not
eliminate the necessity of the deductive analysis. It only pushes it to the phase where the
component fault is identified and defined. To make the situation worse, the original
methodological support provided by the traditional FTA now is automated away by the idea of
automatic generation of a fault tree. In fact, most MBSA works take the lower level causal factors
as given. No rationale is given about how these failure modes are generated in the first place, and
thus there is no way to review whether all the possible causal factors are identified to a reasonable
extent. Reference [30] tries to tackle this problem with a bottom-up formal analysis, but it only
applies to low-level devices. This significantly compromises its effectiveness in the development
of system architectures, which is actually the whole point of FTA in reference [113].

In fact, most fault trees in MBSA are automatically reconstructed from a bottom-up inductive
analysis, which is actually a logic equivalence of failure modes and effects analysis (FMEA).
Therefore, MBSA can be an appropriate approach to automate FMEA, but not necessarily FTA. It
can even be counterproductive as the false sense of complacency in automated FTA can lead to a
less rigorous review process.

6.2.2 Notable Patterns of Safety Analysis

The following types of safety analysis are found in the MBSA literature. Note that only the
commonly conducted safety analysis is recorded here. The less commonly supported analysis is
not included, such as the safety optimization in reference [75] and the error propagation analysis
in reference [85].

(1) Fault tree analysis: This includes the automatic generation of a fault tree, the derivation of
the minimal cut sets, and the calculation of the failure rate. Note that not all works conducts
all three tasks. For example, reference [43] only mentions the generation of the fault tree;
reference [86] only derives the minimal cut set; and reference [87] only addresses the
failure rate calculation for the hazard. However, because all three activities are part of a
conventional FTA, they are all classified as fault tree analysis.

(2) Failure modes and effects analysis (FMEA): This is the automatic generation of FMEA
[88][89]. Because FMEA is a bottom-up process, which is consistent with the inductive
nature of the MBSA practice, it can be truly automated by MBSA.

(3) Reliability Block Diagram (RBD): This is similar to FMEA and can be automatically
accomplished by such as references [41] and [90].

(4) Probabilistic indicators: This is a broad class of analysis for dependability, such as
reliability and availability. We direct readers to reference [136] for a detailed explanation.

30

Example works that cover analysis of probabilistic indicators include references [57] and
[91].

(5) Property verification for nominal behavior: This is the formal verification of nominal
behavior (e.g., refs. [56] and [92]) against function properties. It checks the “goodness” of
a design, which is a precondition for any safety analysis.

(6) Property verification for off-nominal behavior: This is the formal verification of off-
nominal behavior (e.g., refs. [101] and [80]) against function properties. It rigorously
checks whether certain safety constraints can be broken under certain off-nominal
conditions.

(7) Critical sequence: A critical sequence is a sequence of events leading from the initial state
to a critical state. In the case of dynamic models, the order of occurrences of events is
important, and thus the approximation consisting in extracting minimal cut sets is not
suitable: minimal or most probable sequences or sequences of a given length (also called
order) can be extracted by simulation of the model [1]. Example works include references
[1], [72], [93], and [94] .

(8) Trace simulation: This is to display the traces of the individual failure scenarios for the
safety engineering to debug the model and understand the propagation of the fault effect.
It can be a step-wise interactive simulation [63], or the trace of a given number of steps is
output at the end of the simulation [39].

(9) Common cause analysis: This is required in reference [113] and aims at investigating
possible dependencies between the faults and evaluates the consequences in terms of
system safety/reliability [95]. Example works include references [96] and [78].

7 Conclusion

7.1 Defining Features and Notable Patterns
Figure 17 is a summary of the defining features and notable patterns, which are the main goals

of this paper.

Figure 17. A summary of the defining features and notable patterns. Arrow means
“implements” here.

The defining features (left of figure 17) of MBSA include the following three criteria:

31

7.1.1.1 Whether the method can be used to verify the fail-safe property of a system.
7.1.1.2 Whether the design model and safety model are consistent in terms of the architectures;

that is the consistency between the interaction paths defined in the design model and the
propagation paths captured in the safety model.

7.1.1.3 Whether automatic analysis on the safety model is supported.

If a work checks all the criteria above, then it is MBSA; if any of them is not satisfied, then

that work cannot qualify as MBSA.
Moreover, the notable patterns (right side of figure 17) are different schools of thoughts about

different aspects of a MBSA analysis that we found in the literature:
(1) The safety analysis conducted in MBSA is overwhelmingly inductive (bottom-up), but this

does not mean that a deductive (top-down) analysis cannot nor should not be embedded in
MBSA.

(2) The framework of the component fault process provides a template (i.e., a collection of
different patterns) to determine how a fault develops in a component.

(3) Architecture Consistency between the design model and safety model can be achieved in
three ways: injected, referred, and coupled.

(4) There are three types of MBSA languages depending on how mathematical construct is
addressed: explicit, implicit, and comprehensive.

(5) Nine types of safety analysis have been found in the MBSA literature.

In fact, the notable patterns (the arrows in figure 17) implement the defining features. First, to

argue whether a system is fail-safe, given the safety requirements (which come from hazard
identification), a model of off-nominal behavior has to be made, and the model has to be verified
against the given safety requirements. This is implemented by the first two notable patterns. The
deductive analysis is to identify the contributing scenarios including component faults that can
lead to the hazard of interest; the framework helps to make abstraction decisions about how to
model the component fault; the inductive analysis verifies whether the given safety requirements
are satisfied. Second, the three different ways of achieving Architecture Consistency has been
explained in great detail in section 4.3, with pros and cons in section 4.4. Finally, different ways
to embed a mathematical construct in the modeling languages determines what kind of automatic
safety analysis is available and whether model transformation is required before the automatic
safety analysis can be conducted.

7.2 Suggestions Moving Forward.
We explain the findings listed in section 1.
Deductive analysis. As argued in section 3.2.2, the deductive analysis is indispensable in

assuring the safety of a system. Without a deductive (top-down) analysis, the quality of the current
inductive MBSA analyses is dubious at best. Substantially more evidence must be provided to
demonstrate that the identified casual factors coming from inductive methods are complete to an
acceptable extent. Moreover, automatic FTA (section 6.2.1) automates away the deductive process
of the traditional FTA without proposing any effective replacement. MBSA is driven by fields like
Systems Engineering, System Safety Engineering, Software Engineering, and Formal Methods.
The general lack of deductive analysis in the MBSA literature is perhaps caused by the faster
advancement in the last two communities (especially Formal Methods which primarily focus on
inductive analysis) than the first two communities (especially the System Safety Engineering

32

community to which the deductive safety analysis is almost exclusively belong). Moving forward,
it is crucial especially for the System Safety Engineering community to develop new or modify
existing deductive analysis techniques to integrate with the current inductive MBSA methods and
tools, so that together system safety can be assured in a cheaper, faster, and more trustworthy
manner.

Explicit abstraction. Another bottleneck of MBSA is the quality of safety model, which is
also a core topic of the System Safety Engineering community. As argued in section 5, because
there is no set of hard facts for safety engineering, the abstraction of safety models is only guided
by a loose “fit for purpose” principle, which eventually leaves the construction and the review of
the safety model to the discretion of individual safety engineers. To be explicit about what has
been abstracted away, we need the hard facts of the component fault process so that the abstraction
can be made explicitly. The framework proposed in section 5 aims to serve as the hard facts. While
the structure is based on a priori concepts from well-received works, the specifics are from the
phenomenon described in the MBSA literature. We plan to add more phenomenon to the
framework as more works are reviewed from not only the MBSA community but the general
System Safety Engineering community.

Automation. It is a repeated theme in this paper that although automation is conceptually
closely associated with MBSA, it is too broad to be a defining feature of MBSA. It is important
moving forward to not over-claim the contribution due to automation because it can cause a false
sense of complacency, which can be dangerous for safety assurance. Particularly, automation can
play three roles in MBSA: to achieve Architecture Consistency in the specific injected way
(section 4.3), to aggregate the well-defined component faults (section 4.4.3) and to transform and
analyze the safety model (section 6). Finally, because the inductive nature of the current MBSA
practice, it is perfect to automate FMEA but dangerous to automate FTA if no deductive analysis
technique is proposed as a complement. After all, the authors fail to see the difference between
automatic FTA and automatic FMEA in current MBSA practice.

Specificity in the modeling language. This is mainly concerned with the discussion in section

6.1. There is a tradeoff to make between the specificity (in terms of the system to model and
analysis to conduct) and flexibility of the modeling language so that the safety engineer only has
to make minimal effort for the specific MBSA task and the language is still general enough for a
wide range of systems and analysis. The more specific a language is, on one hand, the less room
for errors there is for the safety engineer, but the less flexible the language is. Currently, most
MBSA languages are general enough for flexible applications in different domains, and the desired
safety analysis is pretty specific (see section 6.2.2). It is the specificity along the modeling
dimension (y-axis of figure 16) that needs more investigation. For example, intuitively, AADL-
EMV2 is more specific than FTA as it can model more behaviors (also known as expressiveness
[97] in the literature). But is there any language more specific than AADL-EMV2? How could one
know whether the added specificity is valid? Moreover, what does specificity even mean in safety
engineering? Adding specificity to the modeling dimension will definitely sacrifice the flexibility,
but to what extent; furthermore, is there an optimal solution to the tradeoff between flexibility and
specificity? These are tough questions that need to be answered by the System Safety Engineering
community moving forward. The authors believe the difficulty in answering the questions is
partially caused by the lack of hard facts (see section 5.1) in the System Safety Engineering
community as the baseline for comparison. The framework proposed in section 5.4 and the AADL
error taxonomy in reference [3] are both efforts to build the hard facts for the System Safety
Engineering community. In addition, references [98] and [99] propose System Structure Modeling

33

Language (S2ML), a generic modeling structure to connect the modeling construct and
mathematical construct of a wide range of MBSA languages, which the authors believe is another
promising direction to address the tradeoff between specificity and flexibility.

In summary, current MBSA practice tends to focus on the verification phase of the traditional
safety assessment process [113], where the safety model is taken as a given input. Although the
notion of Architecture Consistency between the safety model and design model improves the
quality of safety model, it is not convincing to the authors that Architecture Consistency is
adequate to ensure the quality of the resulting safety model. Moving forward, we advocate,
especially for the System Safety Engineering community, to put more emphasis on the activities
conducted before the verification phase, which emphasizes how to generate safety models that are
of high quality and also compatible with the current MBSA practices to achieve industry level
maturity for MBSA in the future.

34

8 References
[1] Prosvirnova, Tatiana. AltaRica 3.0: a model-based approach for safety analyses. Diss. 2014.
[2] Larson, Brian, et al. "Illustrating the AADL error modeling annex (v. 2) using a simple safety-

critical medical device." ACM SIGAda Ada Letters 33.3 (2013): 65-84.
[3] Procter, Sam, and Peter Feiler. "The AADL error library: An operationalized taxonomy of

system errors." ACM SIGAda Ada Letters 39.1 (2020): 63-70.
[4] Feiler, Peter, and Julien Delange. "Automated fault tree analysis from aadl models." ACM

SIGAda Ada Letters 36.2 (2017): 39-46.
[5] Machin, Mathilde, et al. "Modeling Functional Allocation in AltaRica to Support

MBSE/MBSA Consistency." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[6] Bieber, Pierre, et al. "Safety assessment with AltaRica." Building the Information Society.
Springer, Boston, MA, 2004. 505-510.

[7] Prosvirnova, Tatiana, et al. "The altarica 3.0 project for model-based safety
assessment." IFAC Proceedings Volumes 46.22 (2013): 127-132.

[8] Mortada, Hala, Tatiana Prosvirnova, and Antoine Rauzy. "Safety assessment of an electrical
system with AltaRica 3.0." International Symposium on Model-Based Safety and Assessment.
Springer, Cham, 2014.

[9] Tlig, Mohamed, et al. "Autonomous Driving System: Model Based Safety Analysis." 2018
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W). IEEE, 2018.

[10] Kabir, Sohag, et al. "A Conceptual Framework to Incorporate Complex Basic Events in
HiP-HOPS." International Symposium on Model-Based Safety and Assessment. Springer,
Cham, 2019.

[11] Chen, DeJiu, et al. "Systems modeling with EAST-ADL for fault tree analysis through
HiP-HOPS." IFAC Proceedings Volumes 46.22 (2013): 91-96.

[12] Bozzano, Marco, et al. "Safety assessment of AltaRica models via symbolic model
checking." Science of Computer Programming 98 (2015): 464-483.

[13] Braun, Peter, et al. "Model-based safety-cases for software-intensive systems." Electronic
Notes in Theoretical Computer Science 238.4 (2009): 71-77.

[14] Joshi, Anjali, et al. "Model-based safety analysis." (2006).
[15] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "Model synchronization: a

formal framework for the management of heterogeneous models." International Symposium
on Model-Based Safety and Assessment. Springer, Cham, 2019.

[16] Bäckström, Ola, et al. "Effective static and dynamic fault tree analysis." International
Conference on Computer Safety, Reliability, and Security. Springer, Cham, 2016.

[17] Junges, Sebastian, et al. "Uncovering dynamic fault trees." 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 2016.

[18] Beckers, Kristian, et al. "A structured and model-based hazard analysis and risk assessment
method for automotive systems." 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2013.

[19] Cancila, Daniela, et al. "Sophia: a modeling language for model-based safety
engineering." 2nd international workshop on model based architecting and construction of
embedded systems, CEUR. Denver, Colorado. 2009.

34

[20] Guiochet, Jérémie. "Hazard analysis of human–robot interactions with HAZOP–
UML." Safety science 84 (2016): 225-237.

[21] Johannessen, Per, et al. "Hazard analysis in object oriented design of dependable
systems." 2001 International Conference on Dependable Systems and Networks. IEEE, 2001.

[22] Kaleeswaran, Arut Prakash, et al. "A domain specific language to support HAZOP studies
of SysML models." International Symposium on Model-Based Safety and Assessment.
Springer, Cham, 2019.

[23] Cuenot, Philippe, et al. "Towards improving dependability of automotive systems by using
the EAST-ADL architecture description language." Architecting dependable systems IV.
Springer, Berlin, Heidelberg, 2007. 39-65.

[24] Cuenot, Philippe, Loic Quéran, and Andreas Baumgart. "Safe Automotive soFtware
architEcture (SAFE)." (2013).

[25] Chen, D., et al. "Integrated safety and architecture modeling for automotive embedded
systems." e & i Elektrotechnik und Informationstechnik 128.6 (2011): 196-202.

[26] Grigoleit, Florian, et al. "The qSafe Project–Developing a Model-based Tool for Current
Practice in Functional Safety Analysis." (2016).

[27] Chaari, Moomen, et al. "Transformation of failure propagation models into fault trees for
safety evaluation purposes." 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop (DSN-W). IEEE, 2016.

[28] Fenelon, Peter, et al. "Towards integrated safety analysis and design." ACM SIGAPP
Applied Computing Review 2.1 (1994): 21-32.

[29] Lisagor, O., J. A. McDermid, and D. J. Pumfrey. "Towards a practicable process for
automated safety analysis." 24th International system safety conference. Vol. 596. 2006.

[30] Ortmeier, Frank, and Wolfgang Reif. "Failure-sensitive specification: A formal method for
finding failure modes." (2006).

[31] Güdemann, Matthias, and Frank Ortmeier. "Quantitative model-based safety analysis: A
case study." Sicherheit 2010. Sicherheit, Schutz und Zuverlässigkeit (2010).

[32] Wille, Alexander. Contributions to Model-Based Safety Assessment. Diss. Technische
Universität München, 2019.

[33] Lisagor, Oleg. Failure logic modelling: a pragmatic approach. Diss. University of York,
2010.

[34] Joshi, Anjali, et al. "A proposal for model-based safety analysis." 24th Digital Avionics
Systems Conference. Vol. 2. IEEE, 2005.

[35] Bozzano, Marco, and Adolfo Villafiorita. "Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform." International Conference on
Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg, 2003.

[36] Akerlund, O., et al. "ISAAC, a framework for integrated safety analysis of functional,
geometrical and human aspects." 2006.

[37] Bozzano, Marco, et al. "Improving safety assessment of complex systems: An industrial
case study." International Symposium of Formal Methods Europe. Springer, Berlin,
Heidelberg, 2003.

[38] Bozzano, Marco, et al. "ESACS: an integrated methodology for design and safety analysis
of complex systems." Proc. ESREL. Vol. 2003. Balkema Publisher, 2003.

[39] Bozzano, Marco, and Adolfo Villafiorita. "The FSAP/NuSMV-SA safety analysis
platform." International Journal on Software Tools for Technology Transfer 9.1 (2007): 5.

35

[40] Grunske, Lars, and Jun Han. "A comparative study into architecture-based safety
evaluation methodologies using AADL's error annex and failure propagation models." 2008
11th IEEE High Assurance Systems Engineering Symposium. IEEE, 2008.

[41] Delange, Julien, et al. AADL fault modeling and analysis within an ARP4761 safety
assessment. No. CMU/SEI-2014-TR-020. CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 2014.

[42] Parker, David, Martin Walker, and Yiannis Papadopoulos. "Model-based functional safety
analysis and architecture optimisation." Embedded Computing Systems: Applications,
Optimization, and Advanced Design. IGI Global, 2013. 79-92.

[43] Kaiser, Bernhard, Peter Liggesmeyer, and Oliver Mäckel. "A new component concept for
fault trees." Proceedings of the 8th Australian workshop on Safety critical systems and
software-Volume 33. 2003.

[44] McDermid, John A., et al. "Experience with the application of HAZOP to computer-based
systems." COMPASS'95 Proceedings of the Tenth Annual Conference on Computer
Assurance Systems Integrity, Software Safety and Process Security'. IEEE, 1995.

[45] Fenelon, Peter, and John A. McDermid. "New directions in software safety: Causal
modelling as an aid to integration." Workshop on Safety Case Construction, York (March
1994). 1992.

[46] Kaiser, Bernhard, Catharina Gramlich, and Marc Förster. "State/event fault trees—A safety
analysis model for software-controlled systems." Reliability Engineering & System
Safety 92.11 (2007): 1521-1537.

[47] Piriou, Pierre-Yves, Jean-Marc Faure, and Jean-Jacques Lesage. "Control-in-the-loop
model based safety analysis." 2014.

[48] Lisagor, Oleg, Tim Kelly, and Ru Niu. "Model-based safety assessment: Review of the
discipline and its challenges." The Proceedings of 2011 9th International Conference on
Reliability, Maintainability and Safety. IEEE, 2011.

[49] Chaudemar, Jean-Charles, et al. "Altarica and event-b models for operational safety
analysis: Unmanned aerial vehicle case study." Workshop on Integration of Model-based
Formal Methods and Tools. 2009.

[50] Chaudemar, Jean-Charles, Eric Bensana, and Christel Seguin. "Model based safety analysis
for an unmanned aerial system." (2010).

[51] Mohrle, Felix, et al. "Automated compositional safety analysis using component fault
trees." 2015 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2015.

[52] Ortmeier, Frank, Matthias Güdemann, and Wolfgang Reif. "Formal failure models." IFAC
Proceedings Volumes 40.6 (2007): 145-150.

[53] Papadopoulos, Yiannis, and John A. McDermid. "Hierarchically performed hazard origin
and propagation studies." International Conference on Computer Safety, Reliability, and
Security. Springer, Berlin, Heidelberg, 1999.

[54] Joshi, Anjali, and Mats PE Heimdahl. "Behavioral fault modeling for model-based safety
analysis." 10th IEEE High Assurance Systems Engineering Symposium (HASE'07). IEEE,
2007.

[55] Boudali, Hichem, et al. "Architectural dependability evaluation with Arcade." 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and DCC (DSN).
IEEE, 2008.

36

[56] Stewart, Danielle, et al. "Architectural modeling and analysis for safety
engineering." International Symposium on Model-Based Safety and Assessment. Springer,
Cham, 2017.

[57] Bozzano, Marco, et al. "Safety, dependability and performance analysis of extended AADL
models." The Computer Journal 54.5 (2011): 754-775.

[58] Gudemann, Matthias, and Frank Ortmeier. "A framework for qualitative and quantitative
formal model-based safety analysis." 2010 IEEE 12th International Symposium on High
Assurance Systems Engineering. IEEE, 2010.

[59] Ortmeier, Frank, Wolfgang Reif, and Gerhard Schellhorn. "Deductive cause-consequence
analysis (DCCA)." IFAC Proceedings Volumes 38.1 (2005): 62-67.

[60] Chaux, P., et al. "Qualitative analysis of a bdmp by finite automaton." Advances in Safety,
Reliability and Risk Management (2011): 329-329.

[61] Ortmeier, Frank, Wolfgang Reif, and Gerhard Schellhorn. "Formal safety analysis of a
radio-based railroad crossing using deductive cause-consequence analysis
(DCCA)." European Dependable Computing Conference. Springer, Berlin, Heidelberg,
2005.

[62] Güdemann, Matthias, and Frank Ortmeier. "Probabilistic model-based safety
analysis." arXiv preprint arXiv:1006.5101 (2010).

[63] Seguin, Christel, et al. "Formal assessment techniques for embedded safety critical
system." 2nd National Workshop on Control Architectures of Robots (CAR’2007). 2007.

[64] Gonschorek, Tim, et al. "Integrating Safety Design Artifacts into System Development
Models Using SafeDeML." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[65] Gonschorek, Tim, et al. "SafeDeML: On integrating the safety design into the system
model." International Conference on Computer Safety, Reliability, and Security. Springer,
Cham, 2019.

[66] Braman, Julia MB, and Richard M. Murray. "Probabilistic safety analysis of sensor-driven
hybrid automata." Hybrid Systems: Computation and Control (2009).

[67] Delange, Julien, and Peter Feiler. "Architecture fault modeling with the AADL error-model
annex." 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2014.

[68] Cuenot, P., et al. "Applying model based techniques for early safety evaluation of an
automotive architecture in compliance with the ISO 26262 standard." 2014.

[69] Kushal, K. S., Manju Nanda, and J. Jayanthi. "Architecture level safety analyses for safety-
critical systems." International Journal of Aerospace Engineering 2017 (2017).

[70] Delange, Julien, and Peter Feiler. "Architecture fault modeling with the AADL error-model
annex." 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2014.

[71] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "Modeling patterns for the
assessment of maintenance policies with AltaRica 3.0." International Symposium on Model-
Based Safety and Assessment. Springer, Cham, 2019.

[72] Leitner-Fischer, Florian, and Stefan Leue. "Quantitative analysis of UML
models." Proceedings of Modellbasierte Entwicklung eingebetteter Systeme (MBEES 2011).
Dagstuhl, Germany 27 (2011).

36

[73] Yakymets, Nataliya, Matthieu Perin, and Agnes Lanusse. "Model-driven multi-level safety
analysis of critical systems." 2015 Annual IEEE Systems Conference (SysCon) Proceedings.
IEEE, 2015.

[74] David, Pierre, Vincent Idasiak, and Frederic Kratz. "Reliability study of complex physical
systems using SysML." Reliability Engineering & System Safety 95.4 (2010): 431-450.

[75] HiP-HOPS. “Automated Fault Tree, FMEA and Optimisation Tool." (2013).
[76] Mokos, Konstantinos, et al. "Ontology-based model driven engineering for safety

verification." 2010 36th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 2010.

[77] Bretschneider, Matthias, et al. "Model‐based Safety Analysis of a Flap Control
System." INCOSE International Symposium. Vol. 14. No. 1. 2004.

[78] Peikenkamp, Thomas, et al. "Towards a unified model-based safety
assessment." International Conference on Computer Safety, Reliability, and Security.
Springer, Berlin, Heidelberg, 2006.

[79] Zhao, Lin, et al. "Failure Propagation Modeling and Analysis via System
Interfaces." Mathematical Problems in Engineering 2016 (2016).

[80] Liu, Jintao, et al. "Functional safety analysis method for CTCS level 3 based on hybrid
automata." 2012 IEEE 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. IEEE, 2012.

[81] Boudali, Hichem, et al. "Arcade-A formal, extensible, model-based dependability
evaluation framework." 13th IEEE International Conference on Engineering of Complex
Computer Systems (iceccs 2008). IEEE, 2008.

[82] Dickerson, Charles E., Rosmira Roslan, and Siyuan Ji. "A formal transformation method
for automated fault tree generation from a UML activity model." IEEE Transactions on
Reliability 67.3 (2018): 1219-1236.

[83] Clegg, Kester, et al. "Integrating Existing Safety Analyses into SysML." International
Symposium on Model-Based Safety and Assessment. Springer, Cham, 2019.

[84] Bozzano, Marco, Alessandro Cimatti, and Francesco Tapparo. "Symbolic fault tree
analysis for reactive systems." International Symposium on Automated Technology for
Verification and Analysis. Springer, Berlin, Heidelberg, 2007.

[85] Wallace, Malcolm. "Modular architectural representation and analysis of fault propagation
and transformation." Electronic Notes in Theoretical Computer Science 141.3 (2005): 53-71.

[86] Yang, Liu, and Antoine Rauzy. "FDS-ML: A New Modeling Formalism for Probabilistic
Risk and Safety Analyses." International Symposium on Model-Based Safety and
Assessment. Springer, Cham, 2019.

[87] Gomes, Adriano, et al. "Constructive model-based analysis for safety
assessment." International Journal on Software Tools for Technology Transfer 14.6 (2012):
673-702.

[88] Adedjouma, Morayo, and Nataliya Yakymets. "A framework for model-based
dependability analysis of cyber-physical systems." 2019 IEEE 19th International Symposium
on High Assurance Systems Engineering (HASE). IEEE, 2019.

[89] Bonfiglio, Valentina, et al. "Software faults emulation at model-level: Towards automated
software fmea." 2015 IEEE International Conference on Dependable Systems and Networks
Workshops. IEEE, 2015.

38

[90] Helle, Philipp. "Automatic SysML-based safety analysis." Proceedings of the 5th
International Workshop on Model Based Architecting and Construction of Embedded
Systems. 2012.

[91] Dong, Li, et al. "Model-based System Reliability Analysis by using Monte Carlo
Methods." 2019 Prognostics and System Health Management Conference (PHM-Qingdao).
IEEE, 2019.

[92] Joshi, Anjali, and Mats PE Heimdahl. "Model-based safety analysis of simulink models
using SCADE design verifier." International Conference on Computer Safety, Reliability,
and Security. Springer, Berlin, Heidelberg, 2005.

[93] Leitner-Fischer, Florian, and Stefan Leue. "QuantUM: Quantitative safety analysis of
UML models." arXiv preprint arXiv:1107.1198 (2011).

[94] Beer, Adrian, et al. "Analysis of an Airport Surveillance Radar using the QuantUM
approach." (2012).

[95] Fondazione Bruno Kessler. “xSAP User Manual” (2019).
[96] Bittner, Benjamin, et al. "The xSAP safety analysis platform." International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer, Berlin,
Heidelberg, 2016.

[97] Yang, Liu, Antoine Rauzy, and Cecilia Haskins. "Finite degradation structures: a formal
framework to support the interface between MBSE and MBSA." 2018 IEEE International
Systems Engineering Symposium (ISSE). IEEE, 2018.

[98] Rauzy, Antoine, and Chaire Blériot-Fabre. "Model-based safety assessment: Rational and
trends." 2014 10th France-Japan/8th Europe-Asia Congress on Mecatronics
(MECATRONICS2014-Tokyo). IEEE, 2014.

[99] Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy. "From models of structures to
structures of models." 2018 IEEE International Systems Engineering Symposium (ISSE).
IEEE, 2018.

[100] Lisagor, Oleg, Linling Sun, and Tim Kelly. "The illusion of method: Challenges of model-
based safety assessment." 28th international system safety conference (ISSC). System Safety
Society, 2010.

[101] Bozzano, Marco, et al. "Formal design and safety analysis of AIR6110 wheel brake
system." International Conference on Computer Aided Verification. Springer, Cham, 2015.

[102] Pajic, Miroslav, et al. "Model-driven safety analysis of closed-loop medical
systems." IEEE Transactions on Industrial Informatics 10.1 (2012): 3-16.

[103] Althoff, Matthias. Reachability analysis and its application to the safety assessment of
autonomous cars. Diss. Technische Universität München, 2010.

[104] Whittle, Jon, John Hutchinson, and Mark Rouncefield. "The state of practice in model-
driven engineering." IEEE software 31.3 (2013): 79-85.

[105] Scippacercola, Fabio. “A Model-Driven Methodology for Critical Systems Engineering.”
(2016).

[106] Jensen, Jeff C., Danica H. Chang, and Edward A. Lee. "A model-based design
methodology for cyber-physical systems." 2011 7th International Wireless Communications
and Mobile Computing Conference. IEEE, 2011.

[107] France, Robert, and Bernhard Rumpe. "Model-driven development of complex software:
A research roadmap." Future of Software Engineering (FOSE'07). IEEE, 2007.

39

[108] Larsen, Peter Gorm, et al. "Integrated tool chain for model-based design of Cyber-Physical
Systems: The INTO-CPS project." 2016 2nd International Workshop on Modelling, Analysis,
and Control of Complex CPS (CPS Data). IEEE, 2016.

[109] Akdur, Deniz, Vahid Garousi, and Onur Demirörs. "A survey on modeling and model-
driven engineering practices in the embedded software industry." Journal of Systems
Architecture 91 (2018): 62-82.

[110] Manjunath, T. V., and P. M. Suresh. "Structural and thermal analysis of rotor disc of disc
brake." International journal of innovative research in science, Engineering and
Technology 2.12 (2013): 2319-8753.

[111] Bhatt, Devesh, et al. "Model-based development and the implications to design assurance
and certification." 24th Digital Avionics Systems Conference. Vol. 2. IEEE, 2005.

[112] Leveson, Nancy G. Engineering a safer world: Systems thinking applied to safety. The
MIT Press, 2016.

[113] ARP4761, S. A. E. "Guidelines and Methods for Conducting the Safety Assessment
Process on Airborne Systems and Equipment." USA: The Engineering Society for Advancing
Mobility Land Sea Air and Space (1996).

[114] Liebel, Grischa, et al. "Assessing the state-of-practice of model-based engineering in the
embedded systems domain." International Conference on Model Driven Engineering
Languages and Systems. Springer, Cham, 2014.

[115] Rugina, Ana-Elena, Karama Kanoun, and Mohamed Kaâniche. "A system dependability
modeling framework using AADL and GSPNs." Architecting Dependable Systems IV.
Springer, Berlin, Heidelberg, 2007. 14-38.

[116] ISO, ISO26262. "26262: Road vehicle - Functional safety." International Standard
ISO/FDIS 26262 (2011).

[117] Ladkin, Peter B. "An overview of IEC 61508 on E/E/PE functional safety." Bielefeld,
Germany (2008).

[118] Hai, Bhuiyan Shameem Mahmood Ebna, and Markus Bause. "Finite element model-based
structural health monitoring (SHM) systems for composite material under fluid-structure
interaction (FSI) effect." 2014.

[119] Gardner, Paul. On novel approaches to model-based structural health monitoring. Diss.
University of Sheffield, 2018.

[120] Heitner, Barbara, et al. "Probabilistic modelling of bridge safety based on damage
indicators." Procedia engineering 156 (2016): 140-147.

[121] Liao, Chung-Min, Yu-Hui Chiang, and Chia-Pin Chio. "Model-based assessment for
human inhalation exposure risk to airborne nano/fine titanium dioxide particles." Science of
the total environment 407.1 (2008): 165-177.

[122] Melzner, Jürgen, et al. "Model-based construction work analysis considering process-
related hazards." 2013 Winter Simulations Conference (WSC). IEEE, 2013.

[123] Ericson, Clifton A. Hazard analysis techniques for system safety. John Wiley & Sons,
2015.

[124] DoD, U. S. "Mil-std-882e, department of defense standard practice system safety." US
Department of Defense (2012).

[125] Fleming, Cody Harrison, et al. "Safety assurance in NextGen and complex transportation
systems." Safety science 55 (2013): 173-187.

40

[126] Sinha, Purnendu. "Architectural design and reliability analysis of a fail-operational brake-
by-wire system from ISO 26262 perspectives." Reliability Engineering & System
Safety 96.10 (2011): 1349-1359.

[127] Krach, Sebastian Dieter. "Model-based architecture robustness analysis for software-
intensive autonomous systems." 2017 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 2017.

[128] Leveson, Nancy, and John Thomas. "An STPA primer." Cambridge, MA (2013).
[129] Hollnagel, Erik. FRAM, the functional resonance analysis method: modelling complex

socio-technical systems. Ashgate Publishing, Ltd., 2012.
[130] Panesar-Walawege, Rajwinder Kaur, Mehrdad Sabetzadeh, and Lionel Briand.

"Supporting the verification of compliance to safety standards via model-driven engineering:
Approach, tool-support and empirical validation." Information and Software
Technology 55.5 (2013): 836-864.

[131] Broy, Manfred, et al. "What is the benefit of a model-based design of embedded software
systems in the car industry?" Emerging Technologies for the Evolution and Maintenance of
Software Models. IGI Global, 2012. 343-369.

[132] Barbieri, Giacomo, Cesare Fantuzzi, and Roberto Borsari. "A model-based design
methodology for the development of mechatronic systems." Mechatronics 24.7 (2014): 833-
843.

[133] Jayakumar, Athira Varma. "Systematic Model-based Design Assurance and Property-
based Fault Injection for Safety Critical Digital Systems." (2020).

[134] Hutchinson, John, et al. "Empirical assessment of MDE in industry." Proceedings of the
33rd international conference on software engineering. 2011.

[135] Bozzano, Marco, et al. "Formal safety assessment via contract-based design." International
Symposium on Automated Technology for Verification and Analysis. Springer, Cham, 2014.

[136] Avizienis, Algirdas, et al. "Basic concepts and taxonomy of dependable and secure
computing." IEEE transactions on dependable and secure computing 1.1 (2004): 11-33.

[137] ARP4754A, S. A. E. "Guidelines for Development of Civil Aircraft and Systems. 2010."
(2019).

[138] Walter, Max, Markus Siegle, and Arndt Bode. "OpenSESAME—the simple but extensive,
structured availability modeling environment." Reliability Engineering & System Safety 93.6
(2008): 857-873.

[139] Jones, G., et al. "Human-Rated Automation and Robotics." Jet Propulsion Laboratory, JPL
D-66871, Pasadena, CA (2010).

[140] Cimatti, Alessandro, et al. "NuSmv: a reimplementation of smv." Proceeding of the
International Workshop on Software Tools for Technology Transfer (STTT-98). 1998.

[141] Katoen, Joost-Pieter, et al. "The ins and outs of the probabilistic model checker
MRMC." Performance evaluation 68.2 (2011): 90-104.

41

Appendix
The following sample of MBSA works is classified based on the patterns of fault effect model

discussed in section 5.3.4. Note that, some works appear in more than one cells because the fault
effects are defined at multiple level of abstraction.

Off-nominal Hybrid Nominal
Function [43], [90] [41], [46], [55] NA

Architecture
[27], [43], [45], [64],
[75], [85], [86], [87],
[135]

[1], [41], [46], [55], [57],
[63], [72], [79], [80] [89], [92], [91]

Component [64] [1], [41], [46], [57], [63],
[72], [79]

[39], [54], [56], [77],
[78]

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

3. DATES COVERED (From - To)
2016-2020

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

8. PERFORMING ORGANIZATION
REPORT NUMBER

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19b. TELEPHONE NUMBER (Include area code)

1. REPORT DATE (DD-MM-YYYY)

01-03-2021
2. REPORT TYPE

Contractor Report

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration Washington, DC
20546-0001

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA-CR-20205009755
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified
Subject Category: 62
Availability: NASA STI Program (757) 864-9658

 U U U UU

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk(email help@sti.nasa.gov)

(757) 864-9658

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: C. Michael Holloway

4. TITLE AND SUBTITLE

Defining and Reasoning about Model-based Safety Analysis: A Review

6. AUTHOR(S)

Minghui Sun; Cody H. Fleming; Milena Milich

5a. CONTRACT NUMBER

5f. WORK UNIT NUMBER

14. ABSTRACT

Model-based safety analysis (MBSA) has been around for over two decades. The benefits of MBSA have been well-documented in the
literature, such as tackling complexity, introducing Formal Methods to eliminate the ambiguity in the traditional safety analysis, using
automation to replace the error-prone manual safety modeling process, and ensuring consistency between the design model and the
safety model. However, there is still a lack of consensus on what MBSA even is. This paper provides an approach towards developing
such a consensus.

15. SUBJECT TERMS

model, model-based, safety engineering, safety, safety analysis

49

NNX16AK47A

