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Adaptation in U.S. Corn Belt 
increases resistance to soil carbon 
loss with climate change
Yao Zhang1*, Ernie Marx1, Stephen Williams1, Ram Gurung1, Stephen Ogle1,2, 
Radley Horton3, Daniel Bader3 & Keith Paustian1,4

Increasing the amount of soil organic carbon (SOC) has agronomic benefits and the potential to 
mitigate climate change. Previous regional predictions of SOC trends under climate change often 
ignore or do not explicitly consider the effect of crop adaptation (i.e., changing planting dates and 
varieties). We used the DayCent biogeochemical model to examine the effect of adaptation on SOC 
for corn and soybean production in the U.S. Corn Belt using climate data from three models. Without 
adaptation, yields of both corn and soybean tended to decrease and the decomposition of SOC tended 
to increase leading to a loss of SOC with climate change compared to a baseline scenario with no 
climate change. With adaptation, the model predicted a substantially higher crop yield. The increase 
in yields and associated carbon input to the SOC pool counteracted the increased decomposition in 
the adaptation scenarios, leading to similar SOC stocks under different climate change scenarios. 
Consequently, we found that crop management adaptation to changing climatic conditions 
strengthen agroecosystem resistance to SOC loss. However, there are differences spatially in SOC 
trends. The northern part of the region is likely to gain SOC while the southern part of the region is 
predicted to lose SOC.

Soil organic matter is essential for maintaining soil health and sustaining plant growth. Loss of soil organic mat-
ter often leads to degradation of soil quality1. It also constitutes the largest terrestrial organic carbon (C) pool 
(~ 2,400 Pg C in top 2 m soil). This soil organic C (SOC) pool is three times greater than the amount of C in 
the atmosphere2. An increase or decrease of C in soils by only a small percent represents a substantial C sink or 
source for atmospheric CO2. Studies have been conducted to predict SOC of croplands under climate change3–5. 
However, crop management changes with adaptation to future climate6–9 (such as changes in varieties and plant-
ing dates) were ignored in most studies. Thus, we carried out a regional study to assess the impact of projected 
climate change and elevated CO2 on SOC in agricultural systems with management adaptation.

A change in SOC is a result of the net effect of the changes in SOC decomposition rates (the main C out-
flow) and C inputs from plants10 (main C inflow). In a warmer climate, the higher temperature could increase 
the decomposition rate in both the short and long term11. Decomposition will also be sensitive to increases or 
decreases in precipitation10 predicted by climate models8. Carbon input is mainly from root and surface resi-
due litter that is not removed from the system through harvest, grazing or burning. Changes in temperature, 
precipitation, and atmospheric CO2 all affect this input through plant growth and production6. These climatic 
changes are also likely to affect management practices in the future7. Although systemic management changes 
are possible that can limit the impact of climate change, such as moving from dryland to irrigated systems, 
smaller adjustments including changes in varieties and planting dates have less barriers for adoption. These 
adjustments to management have been found to affect both crop production (C input) and decomposition7,12, 
with potentially larger effects on crop production7. These interactions are complex, and the overall change to 
SOC pools in agricultural lands remains uncertain.

Here we present the results from a simulation of SOC dynamics for more than 54,000 locations, covering 
34,600,000 ha of cropland in the U.S. Corn Belt (Supplementary Fig. 1a). These locations have historically been 
managed with a corn (Zea mays L.) and soybean (Glycine max L.) rotation, which is the most common crop 
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rotation in this region. Corn and soybean yields in this region account for about 85% of US crop production13. 
In our simulation, the widely used biogeochemical model DayCent14,15 was driven by weather data from the 
Representative Concentration Pathway 4.5 (RCP 4.5) climate change scenario8. Predictions from three General 
Circulation Models (GCMs; GFDL-CM3, MIROC-ESM, and MRI-CGCM3) were downscaled to generate daily 
weather (32 km grid) and used to assess the uncertainty. The main goal was to quantify the change in surface soil 
C (0–20 cm) under management adaptation with the selection of alternative crop varieties and planting dates to 
maintain high levels of crop production in future climate scenarios from 2041 to 2071. Alternative crop varieties 
were based on those currently available in the United States without consideration of additional crop breeding 
or genetic modifications that could further enhance production in the future. A no climate change scenario 
(historical weather with current CO2 level) was used as the baseline for comparisons.

Crop production trends.  We found that, without adaptation, the average corn yield during the 2041–2071 
period in the Corn Belt would drop in all three GCM climate scenarios in comparison with the baseline with no 
climate change (Fig. 1). Yield decreased by 17% (GFDL-CM3), 34% (MIROC-ESM), and 2% (MRI-CGCM3) 
under the respective scenarios. The difference between GCMs can be attributed to differences in the projected 
temperature and precipitation (Supplementary Fig. 2). Similar yield decreases were seen for soybean as found 
for corn if there is no adaptation (decreased by 13% for GFDL-CM3, 28% for MIROC-ESM, and increased by 
8% for MRI-CGCM3).

With adaptation, both corn and soybean yields increased compared with no adaptation: an increase of 5% 
for corn and 19% for soybean (average of the three GCMs) compared with the baseline. The larger increase in 
soybean yield was due to the C3 crop being more responsive to the CO2 fertilization than C4 crops16. The standard 
deviation of yields across the three GCMs in the adaptation scenarios was lower than that of the no adaptation 
scenarios (15% and 39% lower for corn and soybean respectively). Simulated crop yields were more stable 
under climate change with adaptation management compared to without adaptation. The stability in yields is 
because, without crop adaptation associated with the selection of alternative crop varieties, an increase in tem-
perature shortens the growing period of the crop17,18. Each GCM predicts a longer growing season with warmer 
temperatures. When a longer-season maturity variety was simulated as an adaptation pathway, the extended 
growing period allows the crop to use the full window of optimal solar radiation. This leads to similar amounts 
of production from year to year between GCM climate scenarios. The spatial pattern of the yield changes was 
very different for the two crops (Supplementary Fig. 3) due to the difference in crop response to temperature, 
day length (photoperiod), and elevated CO2. Our overall predictions of crop yield change were generally in 
agreement with other studies9,17,19,20.

Carbon input trends.  Crop yields are good indicators of total net primary production and are found to be 
proportional to the total C input to soils in the U.S. Corn Belt21 (i.e., crop yield to total biomass does not vary 
much geographically). Our simulations predicted the average input to be 3.7 Mg C ha−1 year−1 under the no 
climate change scenario for the 2041–2070 period (Supplementary Fig. 4). With climate change but no adapta-
tion, all counties (an administrative subdivision of a state in the U.S.) had lower C input (GCMs ensemble mean) 
compared with the baseline. However, with adaptation, more than half of the counties (most counties in the 
northern part of the region) had higher C input than those of the baseline. Compared with the no adaptation 
scenario, all counties in the Corn Belt maintained higher C input with adaptation. The average C input across 
climate scenarios in the Corn Belt region was predicted to be 3.0 and 3.9 Mg C ha−1 (a change of − 19% and 
5% from the baseline) with no adaptation and adaptation scenarios, respectively. The standard deviation of the 
adaptation scenarios across the three GCMs was 47% lower than without adaptation, suggesting a counteracting 
effect of adaptation to climate change.

Figure 1.   Predicted grain yield of (a) corn and (b) soybean in the 2041 to 2070 period.
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Decomposition factor trend.  In contrast to C input, the decomposition factor, which reflected the rela-
tive change in decomposition rate due to temperature and moisture effect (ranges from 0 to 1, with higher rates 
associated with values closer to 1), increased in all counties regardless of the adaptation (Supplementary Fig. 4). 
Larger decomposition factors can be explained by an increase in soil temperature and wetter soil conditions 
associated with climate change projections. Wetter soil conditions were a result of a reduced transpiration rate 
under high levels of atmospheric CO2 and increased precipitation projected by the three GCMs. The average 
decomposition factor (across three GCMs) was predicted to be 0.41, 0.49, and 0.47 for baseline, without adapta-
tion, and with adaptation scenarios. The standard deviations were 27% lower with adaptation for the decomposi-
tion factor across the three GCMs than without adaptation. If adaptation does not occur under the GCM scenar-
ios, the growing period of the crops was reduced due to global warming and resulted in less total transpiration 
and wetter soil conditions, which increased decomposition. With adaptation, the longer-season maturity variety 
continued to grow over a longer period and consumed more water, reducing soil moisture to lower levels, thus 
lowering decomposition (average annual evapotranspiration was 2.0–5.1% higher in the adaptation scenario 
compared with no adaptation). The soil moisture differences among GCMs were lower with crop adaptation.

Soil organic C trends.  Without climate change (baseline scenario), the predicted sub-region SOC in the 
top soil ranged from less than 30 Mg C ha−1 to more than 80 Mg C ha−1(Fig. 2a). The highest levels of SOC were 
found in the western part of the region where soil clay content is high (Supplementary Fig. 1). The low levels of 
SOC found in Michigan and northern Indiana can be attributed to the soils with high sand content. In addition, 
tillage intensity varies among the counties22, contributing to differences in SOC levels among counties. With 
climate change, there were losses of SOC in almost all counties if there was no adaptation (Fig. 2b). This was 
the net result of decreased C inputs and increased decomposition rates (Supplementary Fig. 4). With adapta-
tion, the northern part of the Corn Belt tended to gain SOC (Fig. 2c) due to increased C inputs (Supplementary 
Fig. 4), while the other areas tended to lose SOC. Compared with no adaptation, the adaptation scenario resulted 

Figure 2.   Predicted soil organic carbon (SOC) in the top soil (0–20 cm) averaged for the three GCMs in the 
U.S. Corn Belt, including (a) the baseline scenario and (b) the difference between the no adaptation scenario 
and baseline, and (c) the difference between the adaptation scenario and baseline. Maps were generated using 
the R “ggmap” package39 (Version 2.6.1; https​://journ​al.r-proje​ct.org/archi​ve/2013-1/kahle​-wickh​am.pdf).

https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
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in higher SOC stocks in all counties of the Corn Belt, which was also found in a modeling study of a site in 
Michigan9.

Over the period from 2041 to 2070, the average SOC in the Corn Belt reached a new equilibrium state in 
the baseline scenario with no climate change (Fig. 3). Without adaptation in the climate change scenarios, SOC 
decreased over time. Rapid loss of C was predicted for the 2041–2050 period with the rate decreasing gradually 
over the 2051–2070 period. With adaptation, two GCMs (GFDL-CM3 and MRI-CGCM3) predicted similar 
changes over time as the baseline, while the SOC values for the other GCM (MIROC-ESM) were slightly lower 
than the baseline.

These results show that adaptation with the selection of longer-season varieties can lead to a similar SOC 
level as the baseline and GCM scenarios under a moderate climate change projection (RCP 4.5). Although the 
predicted climate was very different for the three GCMs, the SOC levels with adaptation were similar and not 
very different from the baseline with no climate change. In contrast, without adaptation, SOC storage levels were 
farther apart from each other and the baseline. This indicates a strong resistance to the effects of climate change 
in agricultural systems in the Corn Belt region if there is the selection for alternative varieties and planting dates 
that are better adapted to the changing climatic conditions.

We found the variation (CV 2.89%) of the predicted total SOC stock across the GCMs in the adaptation 
scenarios was much smaller than the variation (CV 5.88%) in the no adaptation scenarios. This corresponds to 
reduced variation in C input and decomposition factors. Because the increased decomposition rate was com-
pensated by the higher overall C input, the SOC stock maintained similar levels as the baseline without climate 
change.

Limitations.  In this study, we did not evaluate the possibility of new technologies that could be developed 
in the future and influence production, decomposition and other variables influencing SOC levels, as these 
changes are difficult to predict. For example, new technologies associated with crop breeding and other genetic 
improvements, pest control, and other developments could increase C input and result in higher SOC stocks 
than our predictions. Management practices such as adding cover crops, which increases C input, may also 
further enhance SOC stocks23. In contrast, large areas of removal of corn stover for biofuel production (not 
considered in our simulation) could reduce the total SOC stock24. Although most SOC is concentrated in the 
surface soil, subsoil C has been found to respond to warming climates and affects SOC stocks25. Future research 
should also address subsoil C dynamics.

Conclusions
The Corn Belt is the core area of U.S. crop production, and we found that management adaptation, which is 
often ignored in SOC studies, results in strong resistance to SOC losses that would otherwise occur with climate 
change. This resistance could enhance food security through its impact on soil health, fertility, and water holding 
capacity26. It also indicates a very low risk of losing SOC in this region, which will limit future carbon emissions 
to the atmosphere and further carbon debt from anthropogenic management of these lands27. However, there 
are counties in the southern part of the Corn Belt that are predicted to lose carbon even with adaptation. With 
future technology advancements and other management changes that are not considered in our study, it may 
be possible to reduce losses of SOC throughout the entire Corn Belt and potentially create a net carbon sink for 
atmospheric CO2 in the future28.

Methods
The region of our simulation included 12 states in the U.S. Corn Belt (IA, IL, IN, KS, MI, MN, MO, ND, NE, 
OH, SD, and WI) (Supplementary Fig. 1).

Figure 3.   Area-weighted average soil organic carbon stocks for simulations with and without adaptation for 
corn/soybean rotations between 2041 and 2070. These projections are based on the same historical data and 
initial values for SOC pools.
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Climate change scenarios and climate data.  Future weather data were generated using three General 
Circulation Models (GCMs) simulating the Representative Concentration Pathway (RCP) 4.5 greenhouse gas 
concentration trajectory8. Historical weather data used in the baseline scenario were derived from the 1980–2010 
AgMERRA historical daily weather data29 (resampled at 32 km spatial resolution). GCM projections were down-
scaled to the AgMERRA spatial resolution and daily temporal resolution using the statistical method referred as 
“delta approach”30. The three GCMs used are MRI-CGM331, MIROC-ESM32, and GFDL-CM333. Supplementary 
Fig. 2 showed the characteristics of the three GCMs of the 2041–2070 period.

DayCent model, data and model implementation.  The biogeochemical DayCent model was used in 
our study. We simulated 7 scenarios of corn/soybean rotation for the period of 2011–2070, which were combina-
tions of three climate change scenarios (three GCMs of RCP 4.5) and two adaptation scenarios. Additionally, we 
simulated a baseline with no climate change. In the adaptation scenario, crop planting dates and crop maturity 
groups for each location were changed every decade to optimize production given the climate change condi-
tions from the GCMs. In the baseline scenario, we used historic weather data and a stable CO2 concentration 
of 389 ppm. In the adaptation scenario, CO2 concentration increased from 389 in 2010 to 524 by 20708. The 
DayCent model was used to project SOC dynamics for 54,912 survey point locations that were in a corn/soybean 
rotation across the Corn Belt between 1990 and 2010. U.S. county boundaries were used to represent counties 
and all the data were summarized at the sub-region scale. Soil information was derived from the Soil Survey 
Geographic Database (SSURGO)34. More detailed information about the model and the regional simulation can 
be found in the Supplementary Materials.

Management data were derived from various sources or predicted. U.S. county-level tillage data (grouped 
into full, reduced, and no-tillage) were from the 2008 Crop Residue Management Survey conducted by the 
Conservation Technology Information Center (CTIC)22. Nitrogen fertilization rates were calculated using the 
predicted crop yield potential from DayCent for each scenario and recommended application rates to meet the 
targeted yields.

Planting dates for the baseline and no adaptation scenario were from the U.S. Department of Agriculture 
National Agricultural Statistics Service (NASS)35. To simulate the varieties of crops, we divided the crops into 
maturity groups (Supplemental Table 1). The spatial distributions of the maturity groups were derived from 
information provided by seed companies. The planting dates and maturity group distributions for each crop in 
the adaptation scenario were calculated based on a regression with temperature and estimated frost dates. Grain 
harvests were scheduled at the end of the growing season after maturity for corn and soybeans.

To establish a base SOC level (initial values for SOC pools) for each location, we conducted a model 
intialization36 using cropping histories from a variety of literature and historical databases developed for the US 
national greenhouse gas inventory37. In the pre-2011 historical simulation period, the radiation use efficiency 
(RUE) parameter was adjusted every 10 years from 1950 through 2010 to fit the simulated regional yield to the 
NASS reported historical yield trends for corn and soybean to represent crop breeding effects on production. 
Fertilizer rate was assumed to linearly increase from 1950 to 1980. Reduced till and no-till management was 
assumed to start in 1981 and only full tillage was used before 1981 in the historical simulations. The same initial 
values for SOC were used in each of the projections.

Model parameterization and verification.  The crop parameters used for each maturity group are 
shown in Supplementary Table S1. The parameters were either from published data or model calibration using 
the experimental sites (Supplementary Table 2). We evaluated the DayCent simulated crop yields with NASS 
reported data13,38. More information about model parameterization and verification can be found in the Sup-
plementary Materials.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on request. However, the NRI survey data and location information are not publicly accessible because 
the data contain confidential information as mandated by law, 7 USC 2276, and interpretive policy delineated 
in NRCS General Manual Title 290, Part 400.11, B(4).
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