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Figure S1. The maps of a) the number of NRI locations in corn/soybean rotation, b) the area-

weighted average of clay content, and c) the area-weighted average of sand content in each 

sub-region. Maps were generated using the R “ggmap” package1 (Version 2.6.1; 

http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf).  
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Figure S2. Changes in annual mean temperature and precipitation of the three GCMs (2041-

2070 relative to 1981-2010). Maps were generated using the R “ggmap” package1 (Version 

2.6.1; http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf). 

  



 

 

Figure S3. Crop grain yield of climate change scenarios (ensemble mean of three GCMs) 

compared with the baseline scenario (2041-2070). Maps were generated using the R “ggmap” 

package1 (Version 2.6.1; http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf). 

  



 

 

Figure S4. Predicted carbon input and decomposition factor (combined temperature and 

moisture effect) averaged for 3 GCMs for the baseline scenario (top row), the difference 

between no adaptation scenario and the baseline (second row), and the difference between 

the adaptation scenario and the baseline (third row). Maps were generated using the R 

“ggmap” package1 (Version 2.6.1; http://journal.r-project.org/archive/2013-1/kahle-

wickham.pdf). 

 

  



 

 

 

 

 

Figure S5. Correlation between the initial prediction of planting dates (DOY) using temperature 

and NASS reported average DOY for corn and soybean. 
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Figure S6. The predicted maturity groups for corn and soybean for the 2061-2070 decade. Gray 

boundaries represent crop maturity distributions reported by the seed companies and the 

notation numbers were the group numbers in Supplementary Table 1. Maps were generated 

using the R “ggmap” package1 (Version 2.6.1; http://journal.r-project.org/archive/2013-

1/kahle-wickham.pdf).  



Table S1. Parameters used for each maturity group. The spatial distribution of maturity groups can be found in Figure S4.  Growing 

degree days (GDD) and biological days (BD)2 were used for corn and soybean, respectively. 

 
Corn 

 
Soybean 

Maturity group 1 2 3 4 5 6 7 
 

0 1 2 3 4 5 6 7 

Corn CRM/Soybean 
Maturity Group 

68-77 78-87 88-97 98-105 106-115 116-125 125+  00-0 I II III IV V VI VII 

GDD/BD to maturity 1050 1150 1250 1350 1500 1600 1700  34 37 39 41 44 46 49 51 

GDD/BD to maximum 
GLAI 

600 600 700 700 800 850 900  18 18 19 20 20 21 22 22 

Critical photoperiod 
(hour) 

-------------------------------------- NA -------------------------------------- 14.1 13.8 13.6 13.4 13.1 12.8 12.8 12.3 

Photoperiod sensitivity --------------------------------------- NA --------------------------------------  0.171 0.203 0.249 0.285 0.294 0.303 0.311 0.32 

Green leaf weight ratio 
at emergence 

-------------------------------------- 0.90 --------------------------------------  -----------------------0.95---------------------- ----------0.85---------- 

Green leaf weight ratio 
at maximum GLAI 

-------------------------------------- 0.25 --------------------------------------  -------------------------------------- 0.35 -------------------------------------- 

Specific leaf area (m2 g-1) -------------------------------------- 0.02 --------------------------------------  -----------------------0.025--------------------- ----------0.03---------- 

Extinction coefficient -------------------------------------- 0.55 --------------------------------------  ------------------------0.50--------------------- ----------0.45---------- 

Radiation use efficiency 
for total biomass 
production (g m-2 langley-

1 PAR)  

-------------------------------------- 0.18 --------------------------------------  -------------------------------------- 0.95 -------------------------------------- 

Initial biomass at 
emergence (g m-2) 

-------------------------------------- 0.30 --------------------------------------  -----------------------1.00---------------------- ----------2.00---------- 

CO2 effect on plant 
production 

-------------------------------------- 1.00 --------------------------------------  -------------------------------------- 1.12 -------------------------------------- 

CO2 effect on 
transpiration 

-------------------------------------- 0.82 --------------------------------------  -------------------------------------- 0.58 -------------------------------------- 

 



Table S2. Experimental sites used for calibration.  

State City Latitude Longitude Recordsa 

of corn 

Records of 

soybean 

Data Source 

CO Fort Collins 40.7 -105.0 15 0 GRACEnet 

databaseb 

IA Ames 42.0 -93.8 4 0 GRACEnet 

database 

KY Bowling Green 36.9 -86.5 6 0 GRACEnet 

database 

MN Morris 45.7 -95.8 8 8 GRACEnet 

database 

NE Mead 41.2 -96.4 17 0 GRACEnet 

database 

SD Brookings 44.4 -96.8 5 5 GRACEnet 

database 

AL Shorter 32.4 -85.9 3 0 Causarano et al.3 

IL Bondville  40.0 -88.3 3 2 Zhang et al. 4 

NE Mead 41.2 -96.5 26 10 Zhang et al. 4 

CO Akron 40.2 -103.1 3 0 Zhang et al. 5 

CO Fort Collins 40.7 -105.0 5 0 Zhang et al. 5 

CO Greeley 40.5 -104.6 4 0 Zhang et al. 5 

MI Hickory 

Corners 

42.2 -85.24 8 9 Grandy et al. 6 

PA Kutztown 40.6 -75.8 20 16 Hepperly et al. 7 

FL Gainesville 29.6 -82.4 0 12 DSSAT databasec 

IW Ames 42.0 -93.5 0 4 DSSAT database 

MN Morris 45.6 -95.7 0 1 DSSAT database 

OH Wooster 40.8 -81.9 0 2 DSSAT database 

MO Centralia 39.2 -92.2 0 3 Wang et al. 8 

        

a Records are year and treatment combinations.   

b GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) is a USDA-ARS 

research program9. 

c DSSAT database is within DSSAT crop model package  10 

  



Simulation Details 

Regional Simulation Setup 

The crop field locations were obtained from the National Resources Inventory (NRI) survey, which is a 

comprehensive long-term survey conducted by the U.S. Department of Agriculture’s Natural Resources 

Conservation Service (NRCS) 11. Management data such as crop rotation and irrigation are available in 

the survey. A total of 54,912 point locations were selected and corn/soybean rotation was modeled at 

each location. Locations were classified as predominantly corn-soybean if at least one-third of the years 

were cropped in corn and one third in soybeans over the recent history in the NRI survey. 

In our simulation, we applied automatic irrigation in the DayCent simulations, if the fields were irrigated 

according to the survey. Tillage practices were modeled by grouping them into three categories: full 

tillage (FT; less than 15% residue remaining), reduced tillage (RT; 15-30% residue remaining), and no 

tillage (NT; above 30% residue remaining) using the data from the 2008 Crop Residue Management 

Survey conducted by the Conservation Technology Information Center (CTIC)12.  

Nitrogen fertilizer application rates were calculated in two steps. We first simulated the C dynamics 

using a routine that automatically adds adequate fertilizer to avoid nitrogen limitations. The fertilizer 

rates for the second simulation were calculated using the potential crop yield for each decade from the 

first simulation and recommended application rates from DuPont Pioneer to meet the targeted yield 

(1.2 lb/bu or 0.021 kg/kg for corn and 1.5 lb/bu or 0.025 kg/kg for yield above 60 bu or 1633 kg for 

soybean; https://www.pioneer.com/home/site/us/agronomy/library/nitrogen-fertilizer-for-soybean/). 

Simulations were executed with customized scripts in R to automatically build DayCent input files, 

simulate the histories and projections, and analyze the outputs. Simulations were performed using a 

computer cluster with 440 processors. Simulation results were aggregated to the county level for 

analysis by weighting NRI points using the expansion factors from the NRI survey, which are based on 

the two-stage sampling design.   

DayCent model 

The DayCent model13 is a widely used biogeochemical model for simulations of soil carbon, soil nitrogen, 

and crop growth5,14,15. The model was used to simulate corn and soybean yields for the contiguous U.S. 

and found to compare well with NASS reported yield values16. Two methods are available for modeling 

crop phenology. One is the growing degree day (GDD) method which is commonly used by seed 

companies for corn development (base temperature of 10 C˚ and ceiling temperature of 30 C˚). Another 

newly added method is the biological days (BD) method2 which simulates the photoperiod effect on 

soybean phenology. The model simulates the elevated CO2 effect on crop production, transpiration, 

root/shoot ratio, and carbon/nitrogen ratio17-20.  

Maturity groups, planting dates and maturity dates.  

Our study region was the U.S. Corn Belt.  We analyzed the current crop management for the entire U.S. 

in order to determine the adaptation of crops under climate change. To simulate the varieties, we 



divided the crops into groups (Supplemental Table 1). The comparative relative maturity (CRM) is a 

common method of labeling the length of time to maturity for corn. Dupont Pioneer Seed Company 

grouped CRMs spatially (https://www.pioneer.com/home/site/us/agronomy/library/compare-maturity-

corn-products/; accessed 05/06/2016). We adapted the map and associated the CRM with GDD21. For 

soybeans, we used the maturity group map from Monsanto 

(https://www.aganytime.com/asgrow/mgt/planting/Pages/Soybean-Maturity.aspx; accessed 

05/06/2016); each maturity group was represented by the difference in their BD to maturity according 

to the sensitivity of the variety to temperature and photoperiod2.   

In the adaptation scenario, planting dates and maturity groups were set to change every decade in our 

simulation. We created a simple regression model to predict the planting dates by analyzing the 

relationship between air temperature and the NASS reported survey data for corn as corn planting dates 

are affected by temperature22. We first estimated the dates when temperature was not a restriction for 

planting based on the average weekly air temperature (threshold of 15.4 C) and the average last day of 

frost (daily minimum temperature below 0 C)22 for all the major corn-growing counties in U.S. Note that 

counties south of the Corn Belt were also included in the development of regression as the climate in 

these areas are similar to the projected climate in the study region. These dates were compared to state 

average planting dates from NASS23 to derive the regression equations (Supplementary Fig. 5a).  A 

similar calculation was conducted for soybean planting dates. Even though the correlation for soybean 

was lower (Supplementary Fig. 5b), the RMSE of 10.2 days based on the regression model predictions 

demonstrated that the effect on grain yields were small for regional simulations. Soybean planting dates 

are not as strongly correlated with temperature as corn because soybean growth also depends on day 

length. 

We also used different methods for corn and soybean to predict maturity groups. i.e., length of the 

growing season, for the climate change projections in the adaptation scenario. For corn, which is not 

affected by day length, we used the first day of frost in the fall/winter (decadal average) to approximate 

the maturity date. To avoid heat stress at critical development stages, farmers use hybrids that mature 

long before the first frost dates in regions that are south of the Corn Belt24. Therefore, we matched the 

maximum GDDs from planting to frost date to the reported GDDs across the US (Supplementary Tab. 1) 

and then applied these regression relationships for future predictions (Supplementary Fig. 6).    

For soybeans, we developed a regression model to predict the physiological maturity (PM) dates. We 

used NASS reported planting dates and historical distribution of maturity group from data compiled by 

seed companies to calculate the PM dates for each weather grid cell (Supplementary Tab.1). These PM 

estimates were treated as observations and were compared to the predicted first day of frost in the 

fall/winter to develop the linear regression model for predicting PM dates (RMSE 9.3 days). For both the 

baseline and climate change scenarios, the BD values were calculated using the planting and PM dates. 

The suitable maturity group for a weather grid was determined for each decade by selecting the 

maturity group with BD (Supplementary Tab. 1) closest to the predicted BD in that weather grid 

(Supplementary Fig. 6).  

Model Calibration and Verification 



Details of model calibration and verification can be found in our earlier study25. Based on our previous 

sensitivity analysis26, crop parameters were either derived from literature or calibrated using 

experimental sites located in different regions of the U.S. (Supplementary Tab. 2). Growing degree days 

for corn were calculated from a regression in a previous study27. Soybean photoperiod related 

parameters were taken directly from the work of Soltani and Sinclair2. The parameters associated with 

the effect of elevated CO2 on production and water use were from our research28. The SOC 

decomposition parameters were from the U.S. greenhouse gas (GHG) inventory29. DayCent simulated 

corn and soybean yields in the contiguous U.S. with more accuracy than most other published studies 

using process-based models, with an overall R2 of 0.54 and 0.54 for corn and soybean, respectively25. 

We did not assume any yield potential increase in the scenario simulations. Yields are likely to increase 

further due to technology development and other factors in the future33. However, it was beyond the 

scope of our study to predict the potential for future crop breeding and genetic improvements to 

increase the yield potentials for corn and soybeans. Our objective was to determine the role of crop 

adaptation alone on SOC dynamics with future climate change by parameterizing the model to use 

current crop varieties. Therefore, this analysis addresses the potential for adaptation through selection 

of varieties that currently exist in the United States.  There may be even greater opportunity to enhance 

C input and increases in SOC in the future with crop breeding and other genetic improvementsin 

combination with evolving technologies and management strategies to maintain soil health and meet 

food security goals.   
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