Key Near-Earth Object Characteristics Measurements for Planetary Defense

Presented to the Apophis T-9 Years: Knowledge Opportunities for the Science of Planetary Defense

November 5th, 2020

Brent W. Barbee Bruno Sarli Joshua Lyzhoft Joseph A. Nuth Lloyd Purves Ruthan Lewis

NASA/Goddard Space Flight Center (GSFC)

Research Participants

- The planetary defense research efforts described herein result from ongoing collaboration between US government agencies, including:
 - NASA: GSFC, ARC
 - DOE / NNSA: LLNL, LANL, SNL
 - FEMA
 - USGS

Overview / Background (1/2)

- Knowledge of the orbital and physical properties of a potentially hazardous near-Earth object (NEO), and the associated uncertainties, is essential to the planning and execution of Planetary Defense (PD) activities, including remote observations of and spacecraft reconnaissance missions to NEOs.
- There are presently uncertainties regarding which NEO properties are most important to know for PD purposes, how best to measure them, etc.
- Research and analysis efforts are currently underway, per the National Near-Earth Object Preparedness Strategy and Action Plan, to study this and other related problems.
- Herein is a summary of some current thoughts on these topics. Discussion and further inputs from the NEO community are invited.

Overview / Background (2/2)

- Uncertainties in key NEO properties, such as orbital state and mass, may be very large during the early stages of a potentially hazardous NEO scenario.
- Decisions on reconnaissance and mitigation missions may have to be made while details of the potential threat remain uncertain.
- In situ reconnaissance of the NEO via spacecraft may be the only means of reducing key uncertainties sufficiently in a timely manner.
 - This would enable mitigation to be carried out more effectively and reliably.

National NEO Preparedness Strategy & Action Plan

- PD priorities for NEO characterization in the context of an evolving potentially hazardous NEO scenario are important to multiple actions stated in our National NEO Action Plan.
- Understanding NEO characterization priorities for PD is necessary for completing some of the actions.

https://www.whitehouse.gov/wp-content/uploads/2018/06/National-Near-Earth-Object-Preparedness-Strategy-and-Action-Plan-23-pages-1MB.pdf

NEO Characterization is Critical to Effective Planetary Defense

Notionally Prioritized High-Level NEO Characteristics To Inform Mitigation Options/Decisions (in order of decreasing notional priority):

- Orbit (i.e., heliocentric inertial orbital state (position and velocity vectors) at reference epoch(s))
 - Precise orbit of NEO
 - Impact location (sets requirements and/or informs minimum amount of deflection needed)
- Physical Properties
 - Mass: most important to know for a deflection/disruption attempt
 - **Binarity**: special considerations are required for deflecting/disrupting binary NEOs
 - Shape: with mass, we can then solve for bulk density
 - Rotation: may affect response to deflection/disruption attempt
 - **Strength**: influences NEO response to deflection/disruption attempt, cratering during Kinetic Impactor (KI) deflection, etc.
 - Internal structure including porosity: influences NEO response to deflection/disruption attempt, cratering during KI deflection, etc.
 - **Mineral composition**: particularly the iron fraction in the first few mm to cm of the NEO's surface (influences deflection/disruption method)
 - **Detailed surface topology**: relevant for predicting how the ejecta from a deflection attempt might influence the achieved deflection; may inform understanding of internal structure through boulder distribution analyses, regolith presence, etc.

NEO Characterization for PD

- Characterization may be required via both remote observations and in-space / in situ spacecraft reconnaissance (recon)
- Responds to actions called for in the National Near-Earth Object Preparedness Strategy and Action Plan
- Requires rapid-response NEO recon capabilities to enable high-fidelity estimates of mass, size, composition etc.
 - Alert the NEO observing community, to obtain observations as early as possible
 - Confirm the extent of the potential hazard as early as possible
 - Enable effective mitigation planning and spacecraft launch preparation as early as possible (making decisions earlier opens up more response options)
- Enables sufficiently accurate modeling of NEO impact consequences as soon as possible to inform:
 - Assessment of potential consequences, including uncertainties
 - In-space reconnaissance (recon) decision-making
 - Mitigation (deflection/disruption) decision-making
 - Cost/benefit analysis for in-space mitigation options vs. "accepting" the impact
 - Civil defense planning (emergency/disaster response planning, expectations for lives/infrastructure that could be affected, etc.)
- Model outcomes for in-space mitigation attempts (deflection/disruption), including uncertainties
- Perform trade studies, execute decision-making processes, design the overall response to NEO scenario
 - If/when to conduct various operations, including recon, in-space mitigation, civil defense, etc.

Flyby vs. Rendezvous (1/2)

- More data about the NEO can be gathered via a rendezvous mission than a flyby mission.
 - Flyby missions only speed by the NEO at some distance, and at a high relative velocity; this limits the types, quantities, and perspectives of gathered data.
 - Under those conditions, the mass of an NEO (of the size category relevant to planetary defense) cannot be estimated by tracking the flyby spacecraft.
 - It is possible when flying by very large objects (e.g., asteroids tens of km in size or more, mostly in the main asteroid belt), but those are not relevant here.
- Thus, flyby missions represent a stressing case from the perspective of NEO reconnaissance for planetary defense purposes.
- However, flyby missions may tend to be more responsive than rendezvous missions because:
 - there are usually more launch opportunities for flyby missions than for rendezvous missions;
 - a flyby spacecraft usually requires less propellant mass;
 - a flyby spacecraft may be simpler, smaller, and easier to launch (all else being equal) than a rendezvous spacecraft.
- Thus, we are motivated to learn the capabilities and limitations of flyby missions
 - To what extent can a flyby reconnaissance mission service the needs of PD?

Flyby vs. Rendezvous (2/2)

Y+ = Yes, Excellent Y = Yes, Good P = Partial N = No

Capability	Flyby Reconnaissance	Rendezvous Reconnaissance
Improve NEO Orbit Estimate	Y	Y+
Reduce Uncertainties in NEO Earth Impact Probability	Y	Y+
Reduce Uncertainties in NEO Earth Impact Location	Y	Y+
Estimate NEO Mass	Р	Y
Observe NEO Shape	Р	Y+
Estimate NEO Size	Р	Y+
Estimate NEO Rotation State	Р	Y+
Observe NEO Composition and Other Details	Р	Y+
Carry Along NEO Deflection Mechanism	Y	Y
Continue Monitoring NEO After Deflection Attempt	N	Y

Current Matrix of Prioritized NEO Properties for PD Recon / Characterization

	NEO Properties (in ascending order of notional priority for planetary defense analysis)	<u>Measureable</u> <u>via Remote</u> Observations	<u>Measureable</u> During Flyby	<u>Measureable</u> <u>During</u> <u>Rendezvous</u>	Measureable via Deep Space Network (DSN) Radiometric Tracking of Spacecraft	Spacecraft Instruments		
						<u>Visible</u> <u>Camera</u>	IR Camera	<u>Neutron</u> Spectrometer
1	Heliocentric Orbit State	Y-	Y	Y	Y	Y	Y	
2	Mass	N	р	Y	Y	Y	Y	
3	Binarity	р	Y	Y		Y	Y	
4	Body bounding sphere	p-	р	Y		Y	Y	
5	Best-fit triaxial ellipsoid	p-	р	Y		Y	Y	
6	Target point on asteroid surface	N	р	Y		Y	Y	
7	Topography	N	р	Y		Y	Y	
8	Surface roughness within 2 sigma targeting error around surface target point	N	N	Y		Y	Y	
9	Rotational State	Y-	р	Y		Y	Y	
10	Bulk cohesion	Y-	р	Y		Y	Y	
11	Compressive strength	N	N	Y		Y	Y	Y
12	Tensile strength	N	N	Y		Y	Y	
13	Shear strength	N	N	Y		Y	Y	
14	Bulk porosity	N	N	Y	Y	Y	Y	Y
15	Gravity field (masscons)	N	N	Y	Y	Y	Y	
16	Composition	p-	р	Y		Y	Y	Y
17	Volatile inventory and location	N	N	Y				Y

- This matrix describes direct measurements; inferences from combined information is treated separately
- Prioritization of NEO properties?
- Other NEO properties to measure?
- Appropriate instruments?
- Other instruments / techniques?
 - Technology roadmapping
- How might the matrix change for different PD scenarios?
 - E.g., 3, 5, 10, 15-year warning for an asteroid on a NEA-family orbit, vs. incoming hyperbolic comet, vs. ...

Legend	Y: Yes, usually best quality, usually sufficient.	Y-: Yes, but not necessarily best quality / sufficient	p: partial, may be incomplete / inaccurate / uncertain.	p-: partial, of less quality than "p".	N: No; asteroid property cannot b characterized.
--------	---	--	---	---	--

Required Accuracies / Tolerable Uncertainties in NEO Properties Knowledge for PD Purposes: TBD

		Desired/required accuracies/precisions w/ caveats						
	NEO Properties (in ascending order of notional priority for planetary defense analysis)	For Earth Impact Probability / Impact Location Calculations	Impact Consequence Modeling / Impact Risk Modeling	For Mission / Trajectory Design	For Kinetic Impactor Modeling	For Nuclear Deflection Modeling	For Nuclear Disruption Modeling	
1	Heliocentric Orbit State							
2	Mass							
3	Binarity							
4	Body bounding sphere							
5	Best-fit triaxial ellipsoid							
6	Target point on asteroid surface							
7	Topography							
8	Surface roughness within 2- sigma targeting error around surface target point							
9	Rotational State							
10	Bulk cohesion							
11	Compressive strength							
12	Tensile strength							
13	Shear strength	$(\Delta nd va$	riations a	cross d	liffere	nt inc	oming	
14	Bulk porosity	(······, ···					<u> </u>	
15	Gravity field (masscons)		NEO S	cenario)S?			
16	Composition							
17	Volatile inventory and location							

- What computational modeling sensitivity studies are required to understand accuracy requirements?
- What NEO properties have most leverage over scenario properties / outcomes?
- Prioritization? ... i.e., where/how should uncertainty be reduced first / most aggressively?
- How might this matrix change for different PD scenarios, as mentioned previously?
- Forthcoming risk-informed mission design process analyses---along with aforementioned sensitivity studies---will help answer these questions, and more ...

Questions?

Appendices

National Plan Actions Relevant to PD NEO Characterization Priorities (1/2)

- Action 1.2: Identify technology and data processing capabilities and opportunities in existing and new telescope programs to enhance characterization of NEO composition and dynamical and physical properties.
- Action 1.4: Establish and exercise a process for rapid characterization of a potentially hazardous NEO.
- Action 2.2: Ascertain what information each participating organization requires on what timeframe, identify gaps, and develop recommendations for modeling improvements.
- Action 2.5: Assess the sensitivities of these models to uncertainties in NEO dynamical and physical properties.

National Plan Actions Relevant to PD NEO Characterization Priorities (2/2)

- Action 3.1: Assess technologies and concepts for rapid-response NEO reconnaissance missions.
- Action 3.3: Create plans for the development, testing, and implementation of NEO reconnaissance mission systems.
- Action 5.2: Establish a procedure and timeline for conducting a threat assessment upon detection of a potential NEO impact, and for updating the threat assessment based on improved data.
- Action 5.6: Establish a procedure and timeline for conducting a risk/benefit analysis for space-based mitigation mission options following a NEO threat assessment.
- Action 5.7: Develop benchmarks for determining when to recommend NEO reconnaissance, deflection, and disruption missions.