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Solar Energetic Particles (SEPs) and Solar Proton Events (SPEs)
Ø Solar Energetic Particle (SEP) events can be defined as significant enhancements of the 

particle flux coming from the Sun with respect to the stable background
Ø Solar Proton Events (SPEs) represent a major subclass of SEPs
Ø The terms “SEP event” and “SPE” are equivalent for this presentation and represent 

enhancements of energetic proton fluxes as measured by near-Earth satellites (GOES)

An example of 
> 10 MeV proton 
flux measurements 
by the GOES-13 
and GOES-15 
satellites

> 10 MeV proton flux
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Why is predicting solar proton events challenging?

Ø Severe class-imbalance ratio. The ratio
of SPE-active to SPE-quiet days is:
Ø 1/34 for > 10 MeV > 10 pfu events

Ø 1/155 for > 100 MeV > 1 pfu events

Ø SPE onset may occur significantly later
than the initiating flare.

Ø The locations of SPE initiations on the
Sun are not known precisely. Some
events are initiated on the far side of the
solar disk.

Statistics of SPE days (June 2010 - December 2019)

SEP-quiet days
Days with > 10 MeV > 10 pfu flux
Days with > 100 MeV > 1 pfu flux



Year 1 Milestones of the Proposed Research
Two milestones were planned to be accomplished for Year 1:
Ø Complete the Task 1 and create a fully functional online-accessible database of

SPE-related data, metadata, and data products. The database will be available
online for broader research community from the NJIT web servers and NASA
Helioportal.

Ø Perform initial development of the parameter-dependent “all-clear” SPE forecasts
for different timescales, particle flux and energy thresholds, and subject to
availability of different data sources. The priority will be given to development of
daily forecasts of SPEs, and comparison with the operational forecasts from
SWPC NOAA.

This presentation reports the accomplishment of
the 2nd Milestone of Year 1. 



Progress Report: 
development of “all-

clear” forecasts of SPEs



What does it mean to predict an SPE event? 
Ø In the framework of this study, to predict an SPE event means, for example:
- To predict at 12 AM UT whether the measured peak flux of > 10 MeV protons will exceed
10 particle flux units during the next day. Timeframe: June 2010 – December 2019.
ØDefined in this way, the predictions can be compared directly with the SWPC NOAA

operational daily forecasts.

An example of 
> 10 MeV proton 
flux measurements 
by the GOES-15 
satellite

> 10 MeV proton flux
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Machine learning perspective on the problem
Ø The problem is a classic binary classification problem.
Ø To solve this problem, we employ neural networks and minimize the cross-entropy loss function
during training. Given the true label y (1 or 0) and the predicted probability of the event p:

𝐿𝑜𝑠𝑠 = −(𝑦 ( 𝑙𝑜𝑔 𝑝 + 1 − 𝑦 ( log 1 − 𝑝 )
Ø The binary classification results may be represented as a confusion table:

Ø The binary outcomes can be combined to form metrics like True Skill Statistics (TSS)

𝑇𝑆𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
−

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

Confusion Matrix Prediction: SPE event Prediction: no SPE event

Reality: SPE event True Positives (TP) False Negatives (FN)

Reality: no SPE event False Positives (FP) True Negatives (TN)



About the SWPC NOAA operational SPE forecasts
Ø Issued at 22:00 PM UT for the next day
Ø Mainly statistics-based (utilize lookup tables and event prehistory)
Ø Data utilized for SPE forecasts: integrated SXR flux, AR locations, presence of

type-II and type-IV radio bursts
Ø 1% is the smallest probability level issued.
Ø The calculated probabilities can be corrected by forecasters based on their

experience.
Ø The daily forecasts for the whole Sun are available online

Ø Major problem: during 2010-2020, 14 out of 101 SPE days happened when a 1%
chance of the event was predicted. It is problematic to build all-clear forecasts
based on that data.



Working with AR information
Ø The energy released during transient

events is (in most cases) initially stored
in non-potential configurations of
magnetic fields in active regions (ARs).

Ø SHARP features represent the properties
of the vector magnetic field extracted for
AR patches (Bobra et al. 2014).

Ø We utilize the last reliable daily median
values of the SHARP AR parameters and
assume the AR to have these parameters
while traveling behind the limb.

Earth

Sun

Interplanetary magnetic field lines

Zone of reliable 
measurements of 

magnetic fields



Extracted features
Ø Median values of SHARP properties for 10 ARs with the largest unsigned

magnetic fluxes present on the Sun (including ARs behind the limb)
Ø Daily properties of SEP flux (mean, median, min, max, and last values, calculated

for >10 MeV flux only)
Ø Daily properties of SXR flux (mean, median, min, max values, for fluxes in both

the 0.5 – 4 Å and 1 – 8 Å channels)
Ø Statistics of Radio Bursts (number of type-II and type-IV bursts)

Ø Comparison with: SWPC NOAA daily operational forecasts



Neural network architecture for whole-Sun SEP prediction
Ø The architecture is implemented 

with Python PyTorch 
ØAR features are processed in 

“AR Blocks”. The weights are 
shared between the blocks.

Ø The number of AR Blocks 
remains the same for each day. 
The ARs with the highest 
magnetic fluxes serve as input.

Ø Whole-Sun features do not need 
to be linked to the ARs.

Ø The presented architecture 
allows us to address the problem 
of undefined-origin ARs for 
some SEP events.



Train-test separation and learning strategy
Ø Time periods in the training data set: 2010-

2013, 2016, end of 2018-2019 (66 SPE days)
Ø Test data set: 2014-2015, 2017-beginning of

2018 (35 SPE days)
Ø An early stopping criterion is implemented on

the test data set to prevent overfitting.
Ø The developed architecture is much more

stable with respect to the fully-connected
implementation.

Ø The procedure was performed 5 times for
each investigated setup.

Important note: our goal is not to evaluate our
predictor on the unknown data but to investigate
how much we can learn from the available data
in principle.

An example of cross-entropy loss for 
train and test data sets during the 

training progress



Inclusion/exclusion of parameters during the testing phase
Ø We would like to investigate how inclusion/exclusion of various parameters affects

the prediction:
Ø Instead of adapting the network architecture to variable input, we “erase” the information for
excluded descriptors (i.e., set the corresponding input to a constant unchanging value)

Ø Questions to be investigated:
Ø Comparison of the neural network
prediction with SWPC NOAA forecast

Ø Exploration of the prediction solely
based on SHARP properties

Ø Understanding the role of SHARP and
proton flux properties in the prediction

Ø Exploration of the Receiver Operating
Characteristic (ROC) curves

False positive rate, FP/(FP+TN)
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ROC curve obtained by 
varying the neural network 
output decision threshold



Comparison of ML prediction with SWPC NOAA 
and persistence forecasts

Cross-entropy 
loss TSS

Best testing example

TP TN FP FN

ML prediction 0.271±0.005 0.775±0.004 31 1054 124 4

SWPC NOAA forecast 0.317 0.772 29 1111 67 6

Persistence model - 0.647 23 1166 12 12

Ø Both the ML prediction and SWPC NOAA forecast are better than the persistence
model (in terms of TSS).

Ø The ML prediction has the same TSS score as the SWPC NOAA forecast but has a
lower cross-entropy loss.

Ø Let us now look at Receiver Operating Characteristic (ROC) curves for the network



ROC curves for the 
forecasts

ØAlthough the TSS scores of both 
forecasts were the same, the ROC 
curves show a difference.

Ø The ML-based forecast clearly 
outperforms the SWPC NOAA 
forecast at the higher true positive 
rates relevant to all-clear forecasts.

Ø 4 SPE events were totally missed 
by SWPC NOAA forecasts: the 
corresponding issued probabilities 
were 1% (lowest-issued 
probability).



Understanding: ML prediction based on SHARP AR 
parameters only

ØThe neural network learns almost nothing if no behind-the-limb extension of
active regions is implemented.

Ø The benefits from including AR coordinates are doubtful. Let’s look at ROC
curves for these forecasts.

Cross-entropy 
loss TSS

Best testing example

TP TN FP FN

SHARP characteristics 0.477±0.003 0.574±0.006 32 787 391 3

Coordinates excluded 0.480±0.001 0.553±0.003 32 758 420 3

No behind-the-limb 
extension 0.589±0.018 0.473±0.013 30 742 436 5



ROC curves (AR-based 
predictions)
Ø Inclusion of AR coordinates does 

not improve the prediction 
(although it has a higher TSS 
score).

Ø AR-based predictions are worse 
than the SWPC NOAA 
operational forecasts in the region 
of low false positive rates.

Ø However, there are certain 
advantages of AR-based forecasts: 
it is possible to predict all events 
and have the false positive rate 
never equal 1.



Understanding: inclusion/exclusion of features for 
ML prediction of SEPs

Cross-entropy 
loss TSS

Best testing example

TP TN FP FN

All properties 
included 0.271±0.005 0.775±0.004 31 1054 124 4

AR information 
excluded 0.265±0.001 0.772±0.001 31 1046 132 4

SEP information 
excluded 0.497±0.008 0.499±0.007 31 734 444 4

SXR information 
excluded 0.282±0.015 0.765±0.015 31 1049 129 4

Radio burst 
information excluded 0.269±0.003 0.777±0.001 31 1054 124 4

SEP descriptors only 0.312±0.003 0.788±0.001 29 1131 47 6



ROC curves (SEP 
characteristics)

Ø Inclusion of SEP characteristics 
is the most critical for network 
performance.

Ø The predictions behave very 
similarly to SWPC NOAA 
forecasts if trained on SEP 
characteristics only.



Ø Exclusion of AR characteristics 
does not significantly affect the 
predictions

Ø There are two possible 
explanations:
ØAll the necessary information is 

already contained in the SXR 
activity of the Sun.

ØInclusion of AR dynamics is 
necessary for prediction 
capabilities.

ROC curves (SEP 
characteristics)



Weighted TSS (WTSS) score
There is one more way to approach the “all-clear” forecast:
ØTrue Skill Statistics score is defined as:

𝑇𝑆𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 −
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 = 1 −
𝐹𝑁
𝑃 −

𝐹𝑃
𝑁

ØLet’s apply weights to the missed event rate and the false alarm rate:

𝑊𝑇𝑆𝑆(𝛼) = 1 −
2

𝛼 + 1 𝛼
𝐹𝑁
𝑃 +

𝐹𝑃
𝑁

ØThe parameter α indicates how much stronger our preference is for making the missed
event rate lower with respect to the false alarm rate

ØThe WTSS(α) score has the same properties as the TSS score:
Ø It ranges from -1 (totally wrong forecasts) to 1 (fully correct forecasts), where 0 corresponds to
random guess forecasts.

Ø It is not sensitive to the class-imbalance ratio.
Ø𝑊𝑇𝑆𝑆(1) = 𝑇𝑆𝑆



WTSS results
Ø The SWPC NOAA operational 

forecast and ML-based prediction 
are almost the same for α < 1.

Ø The ML-based prediction 
outperforms the SWPC NOAA 
operational forecast for α ≥ 1.

Ø Predictions based on AR 
parameters only have 
significantly lower scores than 
the other two predictions (SWPC 
NOAA and using all parameters) 
for small α.



Summary of the results

Ø Even a feature-based binary classification is an interesting problem!
Ø Inclusion of the western limb and far-side ARs is necessary if the AR features are

considered in the forecast.
Ø Inclusion of SEP characteristics is the most critical for prediction.
Ø Exclusion of AR characteristics (in the form used in this study) does not seem to 

affect the predictions.
Ø Machine learning-based forecast seems to be very promising in situations when

missed events are very undesirable (α > 1 for WTSS). This is a good sign for “all-
clear” forecast development!



Proposed Year 2 Milestones (ML-related)

Ø Complete the development and analysis of the parameter-dependent binary and
probabilistic “all-clear” SPE forecasts for different timescales, different particle flux
and energy thresholds, and subject to availability of different data sources.

Ø Perform initial investigation of the enhancement of “all-clear” forecasts by
predicting AR descriptors using Recurrent Neural Networks.



Year 2 Milestone 1: Details

Ø Continue the development and analysis of the parameter-dependent binary and
probabilistic “all-clear” SPE forecasts for different timescales, different particle flux
and energy thresholds, and subject to availability of different data sources.
Ø Investigate how inclusion/exclusion of features from various data sources (soft X-ray

properties of solar flares, identified CME records, neutron monitor data, etc) affect the
SPE prediction

Ø Complete the development and deploy the operational binary and probabilistic SPE
forecasts with SWPC NOAA-comparable settings (daily-based prediction of > 10 MeV
> 10 pfu proton events) relying on a longer-term data set (since 1996).

Ø Investigate the possibility to forecast SPE events for other energy and flux thresholds
(with the particular interest on forecasting > 100 MeV > 1 pfu events) and timescales
(longer-term all-clear forecasts and shorter-term warnings).



Year 2 Milestone 2: Details
Ø Perform initial investigation of the enhancement of “all-clear” forecasts by

predicting AR descriptors using Recurrent Neural Networks and by analyzing time
series history of the descriptors.
Ø Our preliminary study indicates importance of ARs at and behind the Western limb. The

RNN-based approach will allow us to estimate more correctly the parameters of extended
ARs.

Ø Another way to enhance SPE forecasts (and a possible alternative to RNN-based model
for AR extension) is to utilize the time series history of the descriptors. The following
models will be considered:
Ø RNN-based models *
Ø Convolutional Neural Networks (CNNs) *
Ø Temporal Attention Models (TAMs)
* The model is tested on the proton flux prediction problem



Thank You for 
Your Attention!


