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Abstract 

The identification, modelling, and analysis of root causes of accidents and incidents dominate 
conventional safety management approaches. However, the effect of humans’ safety-producing 
behavior on the overall resilience of the system is often neglected. Additionally, emerging aviation 
markets are giving rise to concepts of operation, such as urban air mobility and optionally piloted 
air cargo operations, that are leading to a shift in locus of control between humans and automation. 
Without an understanding of the human contribution to safety, it is difficult to assess the effects of 
these novel role allocations on overall system safety. In this work, safety-producing behaviors are 
identified and abstracted into resilient performance strategies. Production rules that encapsulate 
these strategies are then generated and classified in the Soar cognitive architecture. The strategies 
are then applied to a remotely-operated air cargo example to demonstrate how safe learning is 
facilitated. The learned rules and strategies are then formally verified.  

I. Introduction  

Traditional approaches to safety management focus on collection of data describing unwanted 
states (i.e., accidents and incidents) and analysis of undesired behaviors (i.e., faults and errors) that 
precede those states. Thus, in the traditional view, safety is both defined and measured by its 
absence, namely the lack of safety. In extremely high confidence systems like commercial air 
transport, opportunities to measure the absence of safety are relatively rare. Ironically, a critical 
barrier to measuring safety and the impact of mitigation strategies in commercial aviation is the 
lack of opportunities for measurement. 

While traditional approaches to safety that focus only on minimizing undesired outcomes have 
proven utility, they represent an incomplete view of safety in complex sociotechnical domains 
such as aviation. For example, pilots and controllers successfully manage contingencies during 
routine, everyday operations that contribute to the safety of the national airspace system. However, 
events that result in successful outcomes are not systematically collected or analyzed. 
Characterization and measurement of routine safety-producing behaviors would create far more 
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opportunities for measurement of safety, potentially increasing the temporal sensitivity, utility and 
forensics capability of safety assurance methods that can leverage these metrics. Additionally, 
emerging commercial aviation markets may encompass novel roles and responsibilities for human 
machine teams, such as optionally-piloted air cargo operations. These operations could greatly 
benefit by being able to transition means and mechanisms for creating the desired safety producing 
behaviors previously evinced by the pilot into the new human machine teaming paradigm.  

II. Capturing Pilot and Controller Strategies to Manage Contingencies 

The current study describes an initial effort to characterize how pilots and controllers manage 
contingencies during routine everyday operations and specify that characterization within a 
cognitive architecture that can be transformed into a formal framework for verification. Rather 
than focus on rare events in which things went wrong, this study focused on frequent events in 
which operators adjusted their work to ensure things went right. Namely, this study investigated 
how operators responded to expected and unexpected disturbances during Area Navigation 
(RNAV) arrivals into Charlotte Douglas International Airport (KCLT). Event reports submitted to 
NASA’s Aviation Safety Reporting System (ASRS) that referenced one or more of the KCLT 
RNAV arrivals were examined. The database search returned 29 event reports that described air 
carrier operations on one of the RNAV arrivals. Those 29 event reports included 39 narratives, 
which were examined to identify statements describing safety-producing performance using the 
Resilience Analysis Grid (RAG) framework [1]. The RAG identifies four basic capabilities of 
resilient performance: anticipating, monitoring for, responding to, and learning from disruptions. 
Analysis of the 39 ASRS narratives revealed 99 statements describing resilient behaviors, which 
were categorized to create a taxonomy of 19 resilient performance strategies, summarized in Table 
1 [2]. 

 
Table 1. Identified resilient performance strategies employed in routine aviation contexts. 

 
 Strategy Description 

Anticipate 

Anticipate procedure limits. Predict when current context inhibits normal use of a procedure, 
regulation, policy, norm. 

Anticipate knowledge gaps. Predict whether crew member or other actor lacks required 
knowledge or information. 

Anticipate resource gaps. Compare level of available resources (e.g., time, fuel, workload) to 
perceived resource needs. 

Prepare alternate plan and identify 
triggering conditions. 

Have an actionable plan ready within the time available.  

Conduct pre-action briefing. Discuss planned action and identify variables that might affect that 
plan. 

Monitor 

Monitor environment for cues signaling 
change from normal operations. 

Identify triggering variables that signal something has changed from 
what was expected. 

Monitor environment for cues signaling 
need to adjust or deviate from current plan. 

Identify triggering variables that signal something will not continue 
to work as planned. 

Monitor own internal state. Self-assess physiological state, emotional state, workload, 
knowledge. 

Respond 

Adjust current plan to accommodate 
others. 

Help others in system by changing timing or other action. 

Adjust or deviate from current plan based 
on risk assessment. 

Change plan based on monitoring of triggers associated with safety 
boundaries. 
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Negotiate adjustment or deviation from 
current plan. 

Work with others to accommodate competing goals and come to 
mutually acceptable solution. 

Defer adjusting/deviating from plan to 
collect information. 

Continue with current plan because acting without critical 
information may worsen situation. 

Manage available resources. Preserve finite resources by adjusting controllable aspects of the 
situation. 

Recruit additional resources. Obtain resources locally or externally.  
Manage priorities. Change goals, task order, task content, or pace of operation to 

accommodate resource limitations. 

Learn 

Leverage experience and learning to 
modify or deviate from plan. 

Compare formal expectations and experience to current situation to 
develop real-time assessment of acceptability or risk. 

Understand formal expectations. Understand applicability of laws, procedures, policies, and cultural 
norms.  

Facilitate others’ learning. Share information with others to increase their immediate 
understanding and long-term learning. 

Conduct after-action debriefing. Discuss performance after mission has concluded to foster 
understanding and identify opportunities for improving future 
performance. 

 

III. Modeling of Strategies in a Cognitive Framework 

The strategies in this taxonomy can be classified, tagged and then formally described as 
scenarios that lead to either the preservation or degradation of safety. Cognitive architectures have 
traditionally been used to model aspects of human-machine interaction, specifically in a teaming 
context, where both agents may be learning as the activity progresses. Formal analysis of the 
previously identified strategies and their learning components generates confidence in their ability 
to be modelled and implemented in increasingly autonomous systems. 

Cognitive architecture-based production systems are a popular method in Artificial Intelligence 
for producing intelligent behavior that is understandable to the program operator. Common rule-
based reasoning systems include the General Problem Solver (GPS) [3], the Adaptive Control of 
Thought-Rational Theory (ACT-R Theory) [4] and the Soar cognitive architecture [5]. Rule-based 
expert/reasoning frameworks facilitate the representation of knowledge in the form of rules. 
Learning in such rule-based systems occurs by creating new rules, fine tuning the parameters in 
the rule or modifying rule order. Creating new rules can occur by identifying a new set of 
conditions under which an action should occur (called new rule learning) or by combining a 
number of rules together to form a single rule that makes execution of the set more efficient (called 
chunking). Rule order can be modified through reinforcement learning, which optimizes rule order 
based on a criterion such as minimum number of rule firings to reach a goal or minimizing overall 
time to execute [6].  

The majority of these cognitive architecture frameworks express agent behavior in a non-formal 
fashion, which does not lend itself to assurance activities. The ability of complex, increasingly 
autonomous aviation systems to proliferate in the safety-critical domain of contingency 
management will depend on being able to verify and validate their behavior with the correct level 
of confidence. So, the design and development of assurance methods for intelligent contingency 
management is a necessity for these algorithms to be deployed in safety-critical operations [7]. 
Thus, we focus on the formal verification of the knowledge base by explicitly identifying human-
specific strategies, then representing and investigating the change in knowledge that occurs due to 
learning in human oriented settings.  
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A. Soar Cognitive Architecture 
Several rule-based reasoning systems were surveyed as candidates for modeling human-

automation interactions [3, 4, 5, 8]. Soar was selected because it encompasses multiple memory 
constructs (e.g., semantic, episodic, etc.) and learning mechanisms (e.g., reinforcement, chunking 
etc.). Soar production rules are expressed in first-order logic, which makes them amenable to 
verification. Finally, Soar is a programmable architecture with an embedded theory. This enables 
the execution of Soar models on embedded system platforms and allows the study of the design 
problem through rapid prototyping and simulation. 

Every Soar production rule starts with the symbol sp, which stands for Soar production. The 
remainder of the rule body is enclosed in braces. The body consists of the rule name, followed by 
one or more conditions expressed in first-order logic (FOL), then the symbol ®, which is followed 
by one or more actions (also in FOL). In Soar, a state variable (expressed as <variable>) can have 
multiple features or attributes, where features or attributes are indicated by the symbol ^. An 
attribute can take on a value, which is stated in the string following the attribute. So, the Soar 
expression: (<s> ^superstate nil) means that the state variable s has a feature, called superstate, 
whose value is nil [7]. An example Soar rule is: 

sp{proposeInitialize(state <s> -^name ^superstate nil)® 

(<s> ^operator <o>)(<o> ^name initialize)} 

The Soar rule proposeInitialize has the condition where the state variable s has the attributes name 
(whose value is unassigned) and superstate (whose value is nil). The Soar feature superstate is an 
internal mechanism that Soar can use as part of its processing of goal-subgoal hierarchies. In this 
case, the precondition is that no superstate exists and that there is no pre-existing name for the state 
<s>. The right hand side (RHS) of the rule is the post condition or action, which indicates that 
given the left hand side (LHS) is true, an operator <o> is associated with the state <s>, and that an 
attribute of the operator is its name, which has a value initialize.  Soar production rules are held in 
Soar’s long term memory structures. 

Soar production rules commonly execute in pairs of propose and apply rules. However, in Soar, 
the definition of an operator is distributed across multiple rules. A propose rule is one that proposes 
an operator. The propose rule creates a data structure in working memory representing the operator 
along with an acceptable preference. This preference encapsulates the ordering in which the 
operator is considered for selection. Similarly, an apply rule acts to apply the operator by making 
changes to working memory that reflect the actions of the operator. These changes may be purely 
internal or may initiate external actions in the environment. Thus, the propose rule checks which 
Soar production rules are eligible to be executed, and the corresponding apply rule executes one 
of the eligible rules.   

At the lowest level, Soar’s processing consists of matching and firing rules. Rules provide a 
flexible, context-dependent representation of knowledge, with their conditions matching the 
current situation and their actions retrieving information relevant to the current situation. Most 
rule-based systems choose a single rule to fire at a given time, and this serves as the locus of choice 
in the system – where one action is selected instead of another. However, there is only limited 
knowledge available to choose between rules, namely the conditions of the rules, the data matched 
by the rules, and possibly meta-data, such as a numeric score, associated with the rules. Soar allows 
additional knowledge to influence a decision by introducing operators as the locus for choice and 
using rules to propose, evaluate, and apply operators. In Soar, rules are able to fire in parallel. 
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Soar currently consists of long term memory (LMT), which is encoded as production rules, and 
working memory (WM), which is encoded as a symbolic graph structure so that objects can be 
represented with properties and relations. Symbolic working memory holds the agent’s assessment 
of the current situation derived from perception and via retrieval of knowledge from its long-term 
memory. Action in an environment occurs through creation of external communication commands 
(e.g., motor commands, etc.) in a buffer in short-term memory [9, 10]. The decision procedure 
selects operators and detects impasses, which are described in the next section.  

 
Figure 1:  Memory Structures in Soar (modified from [9]) 

IV. Decision Making in Soar  

A decision cycle is a fixed processing mechanism in the Soar architecture that proceeds in five 
phases: input, elaboration, decision, application, and output. During input, working memory 
elements are created that reflect changes in perception. During elaboration, the contents of working 
memory are matched against the “if” parts of the rules in long-term memory. All rules that match 
from procedural memory, fire in parallel, resulting in changes to the features and values of the 
state in addition to suggestions, or preferences, for selecting the current operator. As a result of 
the working memory changes, more rules may fire, which includes aspects from procedural, 
semantic or episodic memory (see Figure 1). Elaboration continues in parallel waves of rule firings 
until no more rules fire. Quiescence in elaboration, i.e., the absence of any further firings of LTM 
rules, signals the start of the decision phase. The introduction of preferences allows the architecture 
to collect all the available evidence for potential changes to the state before actually producing any 
change. When the preferences added to working memory are evaluated by a fixed architectural 
decision procedure, the decision procedure can be applied to the vocabulary of preferences, 
independent of the semantics of the domain [10, 11, 12].  
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1. Impasses 
If the preferences for the operators are insufficient to specify the selection of a single operator, 

or there are insufficient rules to apply an operator, an impasse arises. An impasse is a situation 
under which progress cannot be made. There are four types of impasses that can arise from the 
preference scheme: (1) Tie Impasse, (2) Conflict Impasse, (3) Constraint-failure Impasse and (4) 
No Change Impasse. A tie impasse arises if the preferences do not distinguish between two or 
more operators that have acceptable preferences. If two operators both have best or worst 
preferences, they will tie unless additional preferences distinguish between them. A conflict 
impasse arises if at least two values have conflicting better or worse preferences (such as A is 
better than B and B is better than A) for an operator, and neither one is rejected, prohibited, or 
required. A constraint-failure impasse arises if there is more than one required value for an 
operator, or if a value has both a require and a prohibit preference. These preferences represent 
constraints on the allowable selections that can be made for a decision, and if they conflict, no 
progress can be made from the current situation, and the impasse cannot be resolved by additional 
preferences. A no-change impasse arises if a new operator is not selected during the decision 
procedure. There are two types of no-change impasses: state no-change and operator no-change 
[9,10].   

In response to an impasse, a substate is created in working memory, with the goal being to 
resolve the impasse. Additional procedural knowledge can then propose and select operators in the 
substate to gain more knowledge, and either create preferences in the original state or modify that 
state so the impasse is resolved. Substates provide a means for on-demand complex reasoning, 
including hierarchical task decomposition, planning, and access to the declarative long-term 
memories. Once the impasse is resolved, all of the structures in the substate are removed except 
for any results. Soar’s chunking mechanism compiles the processing in the substate which led to 
formulating these results into rules. In the future, the learned rules automatically fire in similar 
situations so that no impasse arises, incrementally converting complex reasoning into 
automatic/reactive processing [9, 10]. 
2. Chunking 
 Chunking is a learning mechanism that acquires rules from goal-based experience. Chunking 
converts the results of problem solving in subgoals into rules – compiling knowledge and behavior 
from deliberate to reactive. Although chunking is a simple mechanism, it is extremely general and 
can encompass multiple types of rule-based knowledge [13].   

Chunking is a Soar learning mechanism that represents the conversion of problem-solving acts 
into long-term memory. The goal when a decision-making impasse occurs is to learn the conditions 
that led to the impasse, and learn rules that can reduce their occurrence. An impasse may occur 
when several operators have been proposed, but no knowledge is evoked to prefer one option to 
another. The decision procedure records in working memory the type of the impasse, and generates 
a subgoal for resolving that impasse. The conditions of the new production (i.e., chunk) that solves 
the subgoal consist of aspects of the working memory state just before the impasse, and the actions 
of the production consist of the new knowledge that resolved the impasse (for example, an 
assertion that one of the proposed operators is to be preferred to the other in the current situation). 
Upon encountering a similar situation in the future, the production will automatically match and 
retrieve the knowledge, avoiding the impasse [13]. 

V. Impasse Resolution and Rule Preferences 

B. Preference Resolution 
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 When multiple operators are eligible to fire at once, preferences are used to determine which 
operator should be selected. Soar supports the following operator preferences: (1) Required, (2) 
Acceptable, (3) Prohibit, (4) Reject, (5) Better-Worse, (6) Best, (7) Worst, and (8) Indifferent.  
During the decision phase, operator preferences are evaluated in a sequence of 8 steps (only 5 of 
which provide termination) [9, 10, 12].  

Algorithm 1:  Preference Resolution in Soar 

Algorithm 1: Generate Op and IT from PreferenceArray(m,n,p) and Of  
REQUIRE 0<card(Of)<m  
ENSURE Op Í Of 
IT = Æ 
Op = Æ 

Required Preference Test:  Checks for required candidates in preference memory and also constraint-
failure impasses involving require preferences 

1. IF $ oÎOf  for which PreferenceArray(o) = Required 
2.      Op = Op È o 
3. ENDIF 

Termination point 1 
4. IF card(Op)=1  Ù PreferenceArray(oÎOp) = Prohibit 
5.      IT ={Constraint Failure} and Terminate 
6. ELSE  
7.      RETURN Op and Terminate 
8. ENDIF 
9. IF card(Op)>1 Ù $ oÎOp  such that PreferenceArray(o) = Prohibit 
10.      IT={Constraint Failure} and Terminate 
11. ELSE  
12.      IT={Constraint Failure}  
13.      RETURN IT, Op and Terminate 
14. ENDIF 

Acceptable Preference Test:  Builds a list of operators for which there is an acceptable preference in 
preference memory 

15. IF  $ oÎOf   where PreferenceArray(o) = Acceptable 
16.      Op = Op È o 
17. ENDIF 

Prohibited and Rejected Preference Test:  Removes the candidates that have prohibit or reject 
preferences in memory 

18. IF $oÎOp where PreferenceArray(o) =Prohibited Ú Rejected 
19.      Op = Op \ o 
20. ENDIF 

Termination point 2 
21. IF card(Op)<1 
22.      IT ={No Change} and Terminate 
23. ELSIF card(Op)=1 
24.      RETURN Op and Terminate 
25. ENDIF 

Better or Worse Test: Removes any operator oj that is worse than any other operator oi  
26. FOR i = 1 to card(Op) 
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27.      FOR j = 1 to card(Op) 
IF PreferenceArray(oj)<PreferenceArray(oi) 
     Op = Op \ oj 
ENDIF 

28.      END FOR 
29. END FOR 

Termination Point 3 
30. IF  card(Op)<1 
31.      IT = {Conflict} 
32.      RETURN IT, Op and Terminate 
33. ELSEIF card(Op)=1 
34.      RETURN Op and Terminate 
35. ENDIF 

Best Test: If a candidate operator has a best preference, this test removes all other candidates that do 
not have a best preference. If there are no best preferences for any of the current candidates, no changes 
are made. 

36. IF  $ oÎOp   where PreferenceArray(o) = Best 
37.      "oj such that PreferenceArray(oj )¹ Best  
38.      Op = Op \ oj    
39. ENDIF 

Termination Point 4 
40. IF  card(Op)<1 
41.      IT = {No Change} and Terminate 
42. ELSEIF card(Op)=1 
43.      RETURN Op and Terminate 
44. ENDIF 

Worst Test:  Removes any operators that have a worst preference. If all remaining candidates have 
worst preferences or there are no worst preferences there is no effect. 

45. IF  ($ oiÎOp where PreferenceArray(o) = Worst) Ù  ($ ojÎOp where PreferenceArray(o) ¹ Worst) 
46.      "oi such that PreferenceArray(oi ) = Worst Ù (i¹j) 
47.      Op = Op \ oj    
48. ENDIF 

Termination Point 5 
49. IF  card(Op)<1 
50.      IT = {No Change} and Terminate 
51. ELSEIF card(Op)=1 
52.      RETURN Op and Terminate 
53. ENDIF 

Indifference Test:  Tests to see if remaining operators are mutually indifferent to one another 
54. IF  ($ oiÎOp where PreferenceArray(o) = Indifferent) Ù  ($ ojÎOp where PreferenceArray(o) ¹ 

Indifferent) Ù       (i¹j) 
55.      IT = {Tie} 
56.      RETURN IT, Op 
57. ELSE select among set of mutually indifferent operators Op using predetermined scheme set by user in 

Soar (e.g., random, epsilon greedy etc.) 
58. ENDIF 
59. RETURN IT, Op 
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 Input to Algorithm 1 is: (1) the set of current operators Of eligible to fire and (2) an m x n x p 
preference array, where m is the number of operators eligible to fire, n is the cardinality of the set 
of multi-attribute variables over all operators eligible to fire, and p is the cardinality of the set of 
values those variables can take on. The output consists of: (1) a subset of the candidate operators 
Op, which is either the empty set, a winning operator, or a set of operators that may be conflicting, 
tied, or indifferent and (2) an impasse type IT (e.g., Constraint Failure, No Change, Conflict, Tie) 
[10]. 

An impasse is resolved when processing in a subgoal creates results that lead to the selection 
of a new operator for the state where the impasse arose. When an operator impasse is resolved, 
Soar has an opportunity to learn, and the substate (and all its substructure) is removed from 
working memory. For instance, a tie impasse can be resolved by productions that create 
preferences that prefer one option (better, best, require), eliminate alternatives (worse, worst, 
reject, prohibit), or make all of the objects indifferent (indifferent). A conflict impasse can be 
resolved by productions that create preferences to require one option (require), or eliminate the 
alternatives (reject, prohibit). A constraint-failure impasse cannot be resolved by additional 
preferences, but may be prevented by changing productions so that they create fewer require or 
prohibit preferences. A substate can resolve a constraint-failure impasse through actions that cause 
all but one of the conflicting preferences to retract. A state no-change impasse can be resolved by 
productions that create acceptable or require preferences for operators. Finally, an operator no-
change impasse can be resolved by productions that apply the operator, change the state so the 
operator proposal no longer matches, or cause other operators to be proposed and preferred [10].  

We demonstrate how strategies can be leveraged to resolve impasses in the context of an 
unmanned aerial vehicle (UAV) undergoing a lost link procedure in the following section. 

VI. Translating Strategies into Soar For Learning 

C. UAV Lost Link Example 
UAVs, including mid- to large-sized, are beginning to enter the national airspace. A primary 

cause of incidents and accidents related to these operations involve lost link events.  These events 
include violations of assigned altitude clearances and unexpected heading changes [14]. For a 
UAV, or any aircraft for that matter, changing course or altitude without clearance can greatly 
increase air traffic controller workload and decrease safety. The contingency behaviors outlined in 
this paper’s lost link procedures were designed following a review of existing UAV contingency 
management documentation (which included an MQ-9 flight manual and the Joint Unmanned 
Aircraft System Concept of Operations) and semi-structured interviews with UAV pilots [15]. 
These behaviors are described in Table 2 below. 

Table 2: Lost Link Contingency Behavior [15] 

ID Event Environment Behavior Timer 
C1 Baseline N/A No Change N/A 
C2 Lost Link Populous to 

Lightly Populous 
Return to Base 1 min 

C3 Lost Link Lightly Populous Return to Base 8 min 
C4 Lost Link Unpopulated Drop Altitude 

Maintain Course 
1 min 
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 Briefly, when the link is lost between the ground station and the UAV, a timer is set. If the 
overflown area is populous to lightly populous, a 1 minute timer is set and the UAV returns to base 
when it expires if the link does not return. Similarly, if the overflown area is lightly populous, an 
8 minute timer is set and the UAV returns to base if the link is not re-established. Finally, if the 
overflown area is unpopulated, a 1 minute timer is set and the UAV drops altitude to try and re-
establish link. After the timer expires, the UAV resumes mission altitude and continues its mission 
so long as the overflown area does not change. There is an overlap in C2 and C3 that occurs when 
the vehicle loses link over a lightly populated area. Since the goal state is to attempt to regain link 
and continue the mission, there is an opportunity to learn new rules and enhance mission success 
rates by developing multiple timers while flying over a lightly populated area under lost link 
conditions. The safety constraint limiting this learning behavior comes from the governing concern 
that the UAV does not overfly a populated area under lost link conditions for more than 1 minute 
[13]. 

D. Strategies for Impasse Resolution and Learning 
 Soar allows for learning when impasses are found. While Soar will create a subgoal, work to 
resolve the impasse through preference resolution, and codify the means by which the resolution 
was achieved in a chunk, it is also possible to provide a ‘supervisory’ framework for learning by 
seeding the Soar rules with these strategies.  This acts to guide the structure of the chunk to be 
learned.   

 
Figure 2: Basis of Resilient Performance [16] 

The implementation of the resilient performance strategies in the Soar agent follows the 
structure outlined by Hollnagel [16], namely following the cycle of anticipate, monitor, respond, 
and learn (see Figure 2). There are ample instances in which the strategies identified in Table 1 are 
evinced in a concretized procedural rule.   

The Soar agent begins by formally implementing the rules contained in the contingency plan 
(Table 2). However, through learning mechanisms employed during execution, the Soar agent has 
the ability to refine or alter the plan. That is, the Soar agent can recognize that lost link is a possible 
condition that it may encounter, and thus it has a baseline plan for what to do if the link is lost (as 
specified by the contingency conditions in Table 2). Soar recognizes that when the link is lost over 
different population densities, different actions should be taken. Thus, the Soar agent can identify 
the population density of the overflown area as a potential triggering condition to execute a given 
contingency.  The relevant strategy can be found in Table 1, as ANTICIPATE 4 – PREPARE 
ALTERNATE PLAN AND IDENTIFY TRIGGERING CONDITIONS.  A Soar rule corresponding 
to this strategy is shown below. 
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sp {drone*apply*outOfTimeMarkContingency 
    "We are out of time so we need to pick a new contingency scenario and 
mark the current one as complete" 
    :o-support 
    (state <s> ^name droneFlight ^startNewTimer yes ^maxTimers <mT> 
^currentTimers {<cT> >= <mT>} ^addressedProblem <ap>) 
    --> 
    (<s> ^contingencyComplete <ap> 
         ^startContingency yes) 
    (write (crlf) |Marked as complete: | <ap>) 
} 

The Soar agent is continuously monitoring for changes in environmental conditions. The Soar 
agent uses sensor data in conjunction with a population density database and a projection of the 
agent’s current state to determine whether the sensor data agrees with the projected population 
density of the overflown area. The relevant strategy that the Soar agent is using (from Table 1) is 
MONITOR 1 – MONITOR FOR CUES SIGNALING CHANGE FROM NORMAL. The Soar rule 
that encapsulates this strategy is stated below. 
sp {drone*markInPopulatedArea 
    "Removes timer start command and creates local willBeInPopulatedArea 
wme" 
    :o-support 
    (state <s> ^name droneFlight ^io.output-link <out> ^io.input-
link.flightdata <fd>) 
    (<fd> ^removeCommand <rc> 
          ^willBeInPopulatedArea <wPA>) 
    (<out> ^command <rc>) 
    (<rc> ^name timerChecker) 
    --> 
    (<out> ^command <rc> -) 
    (<s> ^willBeInPopulatedArea <wPA>) 
    (<s> ^acknowledgedCommands timerChecker) 
    (write (crlf) |Removing timerChecker command!|) 
    (write (crlf) |Calculated WillBeInPopulatedArea as : | <wPA>) 
} 
The UAV receives the cue via projection that it will be overflying a populated area before the timer 
expires. The above rule proposes that the Soar agent create a variable in working memory (i.e., 
^willBeInPopulatedArea) that monitors whether or not the UAV will be in a populated area 
(either via sensor data or via projection of current state and population database knowledge). 
Additionally, Soar uses sensor data (e.g., internal vehicle health data) to monitor whether the lost 
link event has occurred. This corresponds to using the strategy MONITOR 3 – MONITOR OWN 
INTERNAL STATE. If the UAV has indeed lost link with the ground control station, Soar uses 
sensor data in conjunction with population database knowledge and the projection of the current 
state to determine changes in the timer status (i.e., since a lost link event has occurred, a timer has 
been set) and population density state (e.g., variable ^populated changes value from lightly to 
fully). The relevant strategy for the Soar agent is MONITOR 2 – MONITOR FOR CUES 
SIGNALING NEED TO ADJUST. It is important to note that the Soar agent is capable of 
autonomously turning the vehicle around (via activation of the autonomous control agent).  
Example Soar rules for MONITOR 2 and 3 are omitted for brevity. 

Given knowledge of lost link status (M1), how well encountered conditions map to projected 
conditions (M1), current population density state (M2), and timer status (M2), the Soar agent then 
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adjusts the length of the timer and executes a contingency behavior (e.g., no change, drop altitude 
and attempt to re-establish link, return to base, etc.). The relevant strategy from Table 1 is 
RESPOND 2– ADJUST BASED ON RISK ASSESSMENT. For example, a Soar rule can be 
proposed that truncates the 8 minute timer if the projected overflown area is going to transition 
from lightly populated to populated within the next 2 minutes. The rule corresponding to this 
strategy is shown below. 
sp {drone*apply*operator*C6-Lost-Link-Start-fully 
    "In lightly populated area, should start a 2 minute timer and then 
turn around" 
    (state <s> ^name droneFlight ^startContingency yes -
^contingencyComplete C6-Start ^io.input-link.flightdata <fd>) 
    (<fd> ^takeOver yes ^populated fully) 
    --> 
    (<s> ^operator <o> +) 
    (<o> ^name C6-Start 
         ^timerLength 2) 
    (write (crlf) |PROPOSE C6!|) 
} 
It can be seen in the LHS of the rule that the variable ^populated is either sensed or projected to 
take on the value ‘fully’ in the time horizon of the executing timer. 

Additionally, Soar evaluates the efficacy of its responses. That is, the outcome of selecting 
different timers (e.g., 1, 2, 4, and 8 minute timers) is optimized over the flight trials that are 
flown.  This leads to the addition of new contingency behaviors. Thus, a flight may encounter a 
lost link event over a lightly populated area and start a 4 minute timer, given learned behavior. 
This embodies the strategy LEARN 1- LEVERAGE EXPERIENCE TO MODIFY PLAN. Using 
this strategy, the Soar agent learned to create additional timers of 2 and 4 minutes. The chunk for 
the learned, 4 minute timer is shown below.  
sp {chunk-1*d1471*tie*1 
    :chunk 
    (state <s1> ^operator <o1> +) 
    (<o1> ^timerLength 4) 
    (<s1> ^operator { <o2> <> <o1> } +) 
    (<o2> ^timerLength 2) 
    --> 
    (<s1> ^operator <o2> > <o1>) 
} 

The Soar agent also learned to prefer shorter timers (e.g., 2 minute timer preferred above 4 
minute timer, etc.). The chunk that encapsulates this preference is shown below. 
sp {chunk-1*d1471*tie*1 
    :chunk 
    (state <s1> ^operator <o1> +) 
    (<o1> ^timerLength 4) 
    (<s1> ^operator { <o2> <> <o1> } +) 
    (<o2> ^timerLength 2) 
    --> 
    (<s1> ^operator <o2> > <o1>) 
} 

This behavior arose due to the uncertainty in the projection of the populated area. The agent 
learned to minimize the risk of overflying a populated area for over a minute under lost link 
conditions by simply checking the condition of the overflown area every minute. While this seems 
like a trivial solution to the impasse between contingencies C2 and C3, it is actually quite subtle. 



13 
 

The preference that was learned was not actually related to the length of the timer, but for an 
inclination to check or monitor the variable that provided the cue that nominal operations could 
not continue any longer. 

At this point, the agent cycles back to the beginning of the process (i.e., ANTICIPATE 4 – 
PREPARE ALTERNATE PLAN AND IDENTIFY TRIGGERING CONDITIONS), as the new timers 
enable the Soar agent to plan for additional contingency behaviors and then continues through the 
Monitor, Respond and Learn cycle (See Figure 2). This cycle repeats iteratively throughout the 
mission. 

Finally, the Soar agent facilitates other agents’ learning by logging its system state and 
environmental conditions each time the action is taken to turn the UAV around and turn to base. 
These data can be shared with other Soar agents performing similar operations, and the decision 
becomes part of a database that acts to improve decision making during future flights regarding 
what timers should be employed and when overflight of populated areas is imminent. These 
decision points thus act to refine contingency selection among all agents. The relevant strategy 
from Table 1 is LEARN 3- FACILITATE OTHERS’ LEARNING.  The Soar rule illustrating this 
strategy is shown below. 
 sp {drone*apply*acknowledgeReverseAndSaveDecision 
    "After reverse command has been served, send saved decision to be 
cataloged" 
    (state <s> ^name droneFlight ^io.output-link <out> ^io.input-
link.flightdata <fd> ^currentTimers <cT> ^maxTimers <mT> ^operator <o> 
^addressedProblem <ap>) 
    (<o> ^name saveDecision ^value <v> ^removeCommand <rc>) 
    --> 
    (<out> ^command <rc> -) 
    (<out> ^command <com>) 
    (<com> ^dref <ap> 
            ^setValue <v> 
            ^name saveDecision) 
    (<s> ^maxTimers <mT> - ^currentTimers <cT> - ^addressedProblem <ap> -) 
    (write (crlf) |Removing reverse command!  Sending saved decision! |) 
} 

VII. Formal Verification of Chunks Learned via Strategies 

The use of formal verification, including techniques such as model checking, enables the 
concrete specification of desired properties, as well as mathematically rigorous means by which 
to ensure them. Formal verification requires that these procedural strategies can be abstracted and 
translated into (possibly temporal) logic formulae, which serve as procedural rules in a knowledge 
database. We considered several formalisms such as NuSMV [17], Uppaal [18] and PVS [19] 
when considering the formal verification environment. We chose Uppaal [18], due to its ability to 
model temporal logic properties as well as its ability to generate and visualize counterexamples. 
Uppaal also allows the execution of requirements as temporal logic queries to exhaustively check 
the satisfaction of relevant safety properties. This translation procedure outlines the means by 
which a set of relational rules that represent the communal knowledge of the system (e.g., 
knowledge base) are captured and analyzed. The translation procedure has been implemented (see 
[7] for further technical details) and automatically translates Soar agents into Uppaal.  

Because system safety is an emergent property, it is important to consider the robustness of the 
verification process, specifically the effect of environmental assumptions being violated, or 
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unforeseen inputs being encountered. This relies on examining execution traces which generate 
the new elements of the knowledge base, and then evaluating them with respect to the strategies 
being captured. We focus our work on formally checking whether the knowledge base is consistent 
and create classes and subclasses which allows for generalization of a particular strategic instance. 
The verification process involves the generation of evolving traces from the timed automaton 
graphs which represent the procedural (Soar) rules in Uppaal [18]. Note that the process by which 
the Soar model is translated into Uppaal is detailed in [7, 14].  The evolving trace is then expanded 
based on a Breadth First Search (BFS), in order to encompass potential learning behavior, and an 
exhaustive search is performed, as the model is allowed to execute. 

For this example, five requirements related to the contingencies were verified: (1)  If the UAV  
loses  ground  station  link,  the autonomous agent starts a timer until the link is reconnected; (2) 
If  the UAV  loses  ground  station  link  in  a lightly populated or populated area, the autonomous 
agent should start contingency 2; (3)  If  the UAV  loses  ground  station  link  in  a lightly populated 
area, the autonomous agent should start contingency 3; (4)  When  the autonomous agent has the 
variable ‘takeover’ with value ‘yes’ and the population is null, the autonomous agent starts 
contingency 4; (5)  When  the autonomous agent has the variable ‘takeover’ with value ‘yes’ and 
it is a turnaround emergency (e.g., 1 minute timer is expired and UAV over populated area), the 
UAV command is set to reverse the vehicle path.  Further detail about the translation of these 
queries into temporal logic formula in Uppaal and their verification times can be found in [14].   

A sixth requirement for verification was added relating to the resolution of impasses.  
Requirement 6 states that impasses caused by operator ties must be resolved via learned rules.  
This requirement was broken into two subparts: (6a) An operator tie occurs in an impasse, and 
(6b) Ties  are  resolved  by  selecting  the  best learned solution.  In this case, learning occurred 
via chunking.  Requirement (6a) was verified in Uppaal over the translation of the Soar model in 
an average of 1.21 seconds with a standard deviation of about 0.054.  The maximally observed 
worst case execution time over 100 runs was 1.33 seconds.  Similarly, (6b) had an average, 
standard deviation, and worst case execution time of approximately 20.85 sec, 1.19 sec, and 23.97 
seconds respectively over the 100 runs.  Note that the verification was performed on a MacBook 
Pro with a 2.8 GHz Intel Core i7 processor, and memory of 16GB 1600MHz DDR3. The 
verification was executed in the 64 bit Mac OS X version of Uppaal 4.1.24. 

These results demonstrate the scalability of the approach.  Since Soar agents have been used in 
a multi-UAV setting for path planning operations [20], a future direction for this work would 
involve extending the approach to handle multiple (potentially heterogeneous) agents 
simultaneously working towards a common goal. 

VIII. Conclusions and Future Work 

In this work, several safety-producing behaviors were identified and abstracted into resilient 
performance strategies that were applicable to a remotely-piloted air cargo operation. These 
strategies aided in the classification of several pre-existing Soar rules in the example that resulted 
in safety producing behavior. Additionally, several strategies were encoded into Soar rules to assist 
the resolution of impasses. This resulted in learning on the behalf of the agent that was guided by 
these resilient strategies.  The Soar agent’s learned behaviour was not just to avoid an undesired 
state, but to adapt its functioning to facilitate desired states.   As a result, the Soar agent’s 
performance became more resilient.  The Soar agent, including the learned rules and resilient 
performance strategies, was then formally verified. As future work, the creation of resilient 
strategy stereotypes in Soar and their application across multiple embedded, cyber-physical 
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applications (e.g., automotive, medical, etc.) will be examined.  This could facilitate novel role 
allocations between humans and increasingly autonomous agents in general contexts.  
Additionally, the use of resilient strategies in multi-agent settings will be examined.  Specifically, 
the evaluation of the effects of resilient strategies on multi-agent teaming performance are an area 
of particular interest for human-machine teams. 
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