
1

Creating Formal Characterizations of
Routine Contingency Management in

Commercial Aviation

Natasha Neogi1, Jon Holbrook2, Daniel Greissler3 and Sid
Bhattacharyya4

NASA Langley Research Center, Hampton, VA, 23666, USA
Florida Institute of Technology, FL

Abstract

The identification, modelling, and analysis of root causes of accidents and incidents dominate
conventional safety management approaches. However, the effect of humans’ safety-producing
behavior on the overall resilience of the system is often neglected. Additionally, emerging aviation
markets are giving rise to concepts of operation, such as urban air mobility and optionally piloted
air cargo operations, that are leading to a shift in locus of control between humans and automation.
Without an understanding of the human contribution to safety, it is difficult to assess the effects of
these novel role allocations on overall system safety. In this work, safety-producing behaviors are
identified and abstracted into resilient performance strategies. Production rules that encapsulate
these strategies are then generated and classified in the Soar cognitive architecture. The strategies
are then applied to a remotely-operated air cargo example to demonstrate how safe learning is
facilitated. The learned rules and strategies are then formally verified.

I. Introduction

Traditional approaches to safety management focus on collection of data describing unwanted
states (i.e., accidents and incidents) and analysis of undesired behaviors (i.e., faults and errors) that
precede those states. Thus, in the traditional view, safety is both defined and measured by its
absence, namely the lack of safety. In extremely high confidence systems like commercial air
transport, opportunities to measure the absence of safety are relatively rare. Ironically, a critical
barrier to measuring safety and the impact of mitigation strategies in commercial aviation is the
lack of opportunities for measurement.

While traditional approaches to safety that focus only on minimizing undesired outcomes have
proven utility, they represent an incomplete view of safety in complex sociotechnical domains
such as aviation. For example, pilots and controllers successfully manage contingencies during
routine, everyday operations that contribute to the safety of the national airspace system. However,
events that result in successful outcomes are not systematically collected or analyzed.
Characterization and measurement of routine safety-producing behaviors would create far more

1 Research Scientist, Safety Critical Avionics Systems Branch, NASA Langely, AIAA Associate Fellow.
2 Research Scientist, Crew Systems and Aviation Operations Branch, NASA Langley.
3 Undergraduate Student, Department of Computer Engineering and Sciences, Florida Institute of Technology.
4 Assistant Professor, Department of Computer Engineering and Sciences, Florida Institute of Technology.

2

opportunities for measurement of safety, potentially increasing the temporal sensitivity, utility and
forensics capability of safety assurance methods that can leverage these metrics. Additionally,
emerging commercial aviation markets may encompass novel roles and responsibilities for human
machine teams, such as optionally-piloted air cargo operations. These operations could greatly
benefit by being able to transition means and mechanisms for creating the desired safety producing
behaviors previously evinced by the pilot into the new human machine teaming paradigm.

II. Capturing Pilot and Controller Strategies to Manage Contingencies

The current study describes an initial effort to characterize how pilots and controllers manage
contingencies during routine everyday operations and specify that characterization within a
cognitive architecture that can be transformed into a formal framework for verification. Rather
than focus on rare events in which things went wrong, this study focused on frequent events in
which operators adjusted their work to ensure things went right. Namely, this study investigated
how operators responded to expected and unexpected disturbances during Area Navigation
(RNAV) arrivals into Charlotte Douglas International Airport (KCLT). Event reports submitted to
NASA’s Aviation Safety Reporting System (ASRS) that referenced one or more of the KCLT
RNAV arrivals were examined. The database search returned 29 event reports that described air
carrier operations on one of the RNAV arrivals. Those 29 event reports included 39 narratives,
which were examined to identify statements describing safety-producing performance using the
Resilience Analysis Grid (RAG) framework [1]. The RAG identifies four basic capabilities of
resilient performance: anticipating, monitoring for, responding to, and learning from disruptions.
Analysis of the 39 ASRS narratives revealed 99 statements describing resilient behaviors, which
were categorized to create a taxonomy of 19 resilient performance strategies, summarized in Table
1 [2].

Table 1. Identified resilient performance strategies employed in routine aviation contexts.

 Strategy Description

Anticipate

Anticipate procedure limits. Predict when current context inhibits normal use of a procedure,
regulation, policy, norm.

Anticipate knowledge gaps. Predict whether crew member or other actor lacks required
knowledge or information.

Anticipate resource gaps. Compare level of available resources (e.g., time, fuel, workload) to
perceived resource needs.

Prepare alternate plan and identify
triggering conditions.

Have an actionable plan ready within the time available.

Conduct pre-action briefing. Discuss planned action and identify variables that might affect that
plan.

Monitor

Monitor environment for cues signaling
change from normal operations.

Identify triggering variables that signal something has changed from
what was expected.

Monitor environment for cues signaling
need to adjust or deviate from current plan.

Identify triggering variables that signal something will not continue
to work as planned.

Monitor own internal state. Self-assess physiological state, emotional state, workload,
knowledge.

Respond

Adjust current plan to accommodate
others.

Help others in system by changing timing or other action.

Adjust or deviate from current plan based
on risk assessment.

Change plan based on monitoring of triggers associated with safety
boundaries.

3

Negotiate adjustment or deviation from
current plan.

Work with others to accommodate competing goals and come to
mutually acceptable solution.

Defer adjusting/deviating from plan to
collect information.

Continue with current plan because acting without critical
information may worsen situation.

Manage available resources. Preserve finite resources by adjusting controllable aspects of the
situation.

Recruit additional resources. Obtain resources locally or externally.
Manage priorities. Change goals, task order, task content, or pace of operation to

accommodate resource limitations.

Learn

Leverage experience and learning to
modify or deviate from plan.

Compare formal expectations and experience to current situation to
develop real-time assessment of acceptability or risk.

Understand formal expectations. Understand applicability of laws, procedures, policies, and cultural
norms.

Facilitate others’ learning. Share information with others to increase their immediate
understanding and long-term learning.

Conduct after-action debriefing. Discuss performance after mission has concluded to foster
understanding and identify opportunities for improving future
performance.

III. Modeling of Strategies in a Cognitive Framework

The strategies in this taxonomy can be classified, tagged and then formally described as
scenarios that lead to either the preservation or degradation of safety. Cognitive architectures have
traditionally been used to model aspects of human-machine interaction, specifically in a teaming
context, where both agents may be learning as the activity progresses. Formal analysis of the
previously identified strategies and their learning components generates confidence in their ability
to be modelled and implemented in increasingly autonomous systems.

Cognitive architecture-based production systems are a popular method in Artificial Intelligence
for producing intelligent behavior that is understandable to the program operator. Common rule-
based reasoning systems include the General Problem Solver (GPS) [3], the Adaptive Control of
Thought-Rational Theory (ACT-R Theory) [4] and the Soar cognitive architecture [5]. Rule-based
expert/reasoning frameworks facilitate the representation of knowledge in the form of rules.
Learning in such rule-based systems occurs by creating new rules, fine tuning the parameters in
the rule or modifying rule order. Creating new rules can occur by identifying a new set of
conditions under which an action should occur (called new rule learning) or by combining a
number of rules together to form a single rule that makes execution of the set more efficient (called
chunking). Rule order can be modified through reinforcement learning, which optimizes rule order
based on a criterion such as minimum number of rule firings to reach a goal or minimizing overall
time to execute [6].

The majority of these cognitive architecture frameworks express agent behavior in a non-formal
fashion, which does not lend itself to assurance activities. The ability of complex, increasingly
autonomous aviation systems to proliferate in the safety-critical domain of contingency
management will depend on being able to verify and validate their behavior with the correct level
of confidence. So, the design and development of assurance methods for intelligent contingency
management is a necessity for these algorithms to be deployed in safety-critical operations [7].
Thus, we focus on the formal verification of the knowledge base by explicitly identifying human-
specific strategies, then representing and investigating the change in knowledge that occurs due to
learning in human oriented settings.

4

A. Soar Cognitive Architecture
Several rule-based reasoning systems were surveyed as candidates for modeling human-

automation interactions [3, 4, 5, 8]. Soar was selected because it encompasses multiple memory
constructs (e.g., semantic, episodic, etc.) and learning mechanisms (e.g., reinforcement, chunking
etc.). Soar production rules are expressed in first-order logic, which makes them amenable to
verification. Finally, Soar is a programmable architecture with an embedded theory. This enables
the execution of Soar models on embedded system platforms and allows the study of the design
problem through rapid prototyping and simulation.

Every Soar production rule starts with the symbol sp, which stands for Soar production. The
remainder of the rule body is enclosed in braces. The body consists of the rule name, followed by
one or more conditions expressed in first-order logic (FOL), then the symbol ®, which is followed
by one or more actions (also in FOL). In Soar, a state variable (expressed as <variable>) can have
multiple features or attributes, where features or attributes are indicated by the symbol ^. An
attribute can take on a value, which is stated in the string following the attribute. So, the Soar
expression: (<s> ^superstate nil) means that the state variable s has a feature, called superstate,
whose value is nil [7]. An example Soar rule is:

sp{proposeInitialize(state <s> -^name ^superstate nil)®

(<s> ^operator <o>)(<o> ^name initialize)}

The Soar rule proposeInitialize has the condition where the state variable s has the attributes name
(whose value is unassigned) and superstate (whose value is nil). The Soar feature superstate is an
internal mechanism that Soar can use as part of its processing of goal-subgoal hierarchies. In this
case, the precondition is that no superstate exists and that there is no pre-existing name for the state
<s>. The right hand side (RHS) of the rule is the post condition or action, which indicates that
given the left hand side (LHS) is true, an operator <o> is associated with the state <s>, and that an
attribute of the operator is its name, which has a value initialize. Soar production rules are held in
Soar’s long term memory structures.

Soar production rules commonly execute in pairs of propose and apply rules. However, in Soar,
the definition of an operator is distributed across multiple rules. A propose rule is one that proposes
an operator. The propose rule creates a data structure in working memory representing the operator
along with an acceptable preference. This preference encapsulates the ordering in which the
operator is considered for selection. Similarly, an apply rule acts to apply the operator by making
changes to working memory that reflect the actions of the operator. These changes may be purely
internal or may initiate external actions in the environment. Thus, the propose rule checks which
Soar production rules are eligible to be executed, and the corresponding apply rule executes one
of the eligible rules.

At the lowest level, Soar’s processing consists of matching and firing rules. Rules provide a
flexible, context-dependent representation of knowledge, with their conditions matching the
current situation and their actions retrieving information relevant to the current situation. Most
rule-based systems choose a single rule to fire at a given time, and this serves as the locus of choice
in the system – where one action is selected instead of another. However, there is only limited
knowledge available to choose between rules, namely the conditions of the rules, the data matched
by the rules, and possibly meta-data, such as a numeric score, associated with the rules. Soar allows
additional knowledge to influence a decision by introducing operators as the locus for choice and
using rules to propose, evaluate, and apply operators. In Soar, rules are able to fire in parallel.

5

Soar currently consists of long term memory (LMT), which is encoded as production rules, and
working memory (WM), which is encoded as a symbolic graph structure so that objects can be
represented with properties and relations. Symbolic working memory holds the agent’s assessment
of the current situation derived from perception and via retrieval of knowledge from its long-term
memory. Action in an environment occurs through creation of external communication commands
(e.g., motor commands, etc.) in a buffer in short-term memory [9, 10]. The decision procedure
selects operators and detects impasses, which are described in the next section.

Figure 1: Memory Structures in Soar (modified from [9])

IV. Decision Making in Soar

A decision cycle is a fixed processing mechanism in the Soar architecture that proceeds in five
phases: input, elaboration, decision, application, and output. During input, working memory
elements are created that reflect changes in perception. During elaboration, the contents of working
memory are matched against the “if” parts of the rules in long-term memory. All rules that match
from procedural memory, fire in parallel, resulting in changes to the features and values of the
state in addition to suggestions, or preferences, for selecting the current operator. As a result of
the working memory changes, more rules may fire, which includes aspects from procedural,
semantic or episodic memory (see Figure 1). Elaboration continues in parallel waves of rule firings
until no more rules fire. Quiescence in elaboration, i.e., the absence of any further firings of LTM
rules, signals the start of the decision phase. The introduction of preferences allows the architecture
to collect all the available evidence for potential changes to the state before actually producing any
change. When the preferences added to working memory are evaluated by a fixed architectural
decision procedure, the decision procedure can be applied to the vocabulary of preferences,
independent of the semantics of the domain [10, 11, 12].

6

1. Impasses
If the preferences for the operators are insufficient to specify the selection of a single operator,

or there are insufficient rules to apply an operator, an impasse arises. An impasse is a situation
under which progress cannot be made. There are four types of impasses that can arise from the
preference scheme: (1) Tie Impasse, (2) Conflict Impasse, (3) Constraint-failure Impasse and (4)
No Change Impasse. A tie impasse arises if the preferences do not distinguish between two or
more operators that have acceptable preferences. If two operators both have best or worst
preferences, they will tie unless additional preferences distinguish between them. A conflict
impasse arises if at least two values have conflicting better or worse preferences (such as A is
better than B and B is better than A) for an operator, and neither one is rejected, prohibited, or
required. A constraint-failure impasse arises if there is more than one required value for an
operator, or if a value has both a require and a prohibit preference. These preferences represent
constraints on the allowable selections that can be made for a decision, and if they conflict, no
progress can be made from the current situation, and the impasse cannot be resolved by additional
preferences. A no-change impasse arises if a new operator is not selected during the decision
procedure. There are two types of no-change impasses: state no-change and operator no-change
[9,10].

In response to an impasse, a substate is created in working memory, with the goal being to
resolve the impasse. Additional procedural knowledge can then propose and select operators in the
substate to gain more knowledge, and either create preferences in the original state or modify that
state so the impasse is resolved. Substates provide a means for on-demand complex reasoning,
including hierarchical task decomposition, planning, and access to the declarative long-term
memories. Once the impasse is resolved, all of the structures in the substate are removed except
for any results. Soar’s chunking mechanism compiles the processing in the substate which led to
formulating these results into rules. In the future, the learned rules automatically fire in similar
situations so that no impasse arises, incrementally converting complex reasoning into
automatic/reactive processing [9, 10].
2. Chunking
 Chunking is a learning mechanism that acquires rules from goal-based experience. Chunking
converts the results of problem solving in subgoals into rules – compiling knowledge and behavior
from deliberate to reactive. Although chunking is a simple mechanism, it is extremely general and
can encompass multiple types of rule-based knowledge [13].

Chunking is a Soar learning mechanism that represents the conversion of problem-solving acts
into long-term memory. The goal when a decision-making impasse occurs is to learn the conditions
that led to the impasse, and learn rules that can reduce their occurrence. An impasse may occur
when several operators have been proposed, but no knowledge is evoked to prefer one option to
another. The decision procedure records in working memory the type of the impasse, and generates
a subgoal for resolving that impasse. The conditions of the new production (i.e., chunk) that solves
the subgoal consist of aspects of the working memory state just before the impasse, and the actions
of the production consist of the new knowledge that resolved the impasse (for example, an
assertion that one of the proposed operators is to be preferred to the other in the current situation).
Upon encountering a similar situation in the future, the production will automatically match and
retrieve the knowledge, avoiding the impasse [13].

V. Impasse Resolution and Rule Preferences

B. Preference Resolution

7

 When multiple operators are eligible to fire at once, preferences are used to determine which
operator should be selected. Soar supports the following operator preferences: (1) Required, (2)
Acceptable, (3) Prohibit, (4) Reject, (5) Better-Worse, (6) Best, (7) Worst, and (8) Indifferent.
During the decision phase, operator preferences are evaluated in a sequence of 8 steps (only 5 of
which provide termination) [9, 10, 12].

Algorithm 1: Preference Resolution in Soar

Algorithm 1: Generate Op and IT from PreferenceArray(m,n,p) and Of
REQUIRE 0<card(Of)<m
ENSURE Op Í Of
IT = Æ
Op = Æ

Required Preference Test: Checks for required candidates in preference memory and also constraint-
failure impasses involving require preferences

1. IF $ oÎOf for which PreferenceArray(o) = Required
2. Op = Op È o
3. ENDIF

Termination point 1
4. IF card(Op)=1 Ù PreferenceArray(oÎOp) = Prohibit
5. IT ={Constraint Failure} and Terminate
6. ELSE
7. RETURN Op and Terminate
8. ENDIF
9. IF card(Op)>1 Ù $ oÎOp such that PreferenceArray(o) = Prohibit
10. IT={Constraint Failure} and Terminate
11. ELSE
12. IT={Constraint Failure}
13. RETURN IT, Op and Terminate
14. ENDIF

Acceptable Preference Test: Builds a list of operators for which there is an acceptable preference in
preference memory

15. IF $ oÎOf where PreferenceArray(o) = Acceptable
16. Op = Op È o
17. ENDIF

Prohibited and Rejected Preference Test: Removes the candidates that have prohibit or reject
preferences in memory

18. IF $oÎOp where PreferenceArray(o) =Prohibited Ú Rejected
19. Op = Op \ o
20. ENDIF

Termination point 2
21. IF card(Op)<1
22. IT ={No Change} and Terminate
23. ELSIF card(Op)=1
24. RETURN Op and Terminate
25. ENDIF

Better or Worse Test: Removes any operator oj that is worse than any other operator oi
26. FOR i = 1 to card(Op)

8

27. FOR j = 1 to card(Op)
IF PreferenceArray(oj)<PreferenceArray(oi)
 Op = Op \ oj
ENDIF

28. END FOR
29. END FOR

Termination Point 3
30. IF card(Op)<1
31. IT = {Conflict}
32. RETURN IT, Op and Terminate
33. ELSEIF card(Op)=1
34. RETURN Op and Terminate
35. ENDIF

Best Test: If a candidate operator has a best preference, this test removes all other candidates that do
not have a best preference. If there are no best preferences for any of the current candidates, no changes
are made.

36. IF $ oÎOp where PreferenceArray(o) = Best
37. "oj such that PreferenceArray(oj)¹ Best
38. Op = Op \ oj
39. ENDIF

Termination Point 4
40. IF card(Op)<1
41. IT = {No Change} and Terminate
42. ELSEIF card(Op)=1
43. RETURN Op and Terminate
44. ENDIF

Worst Test: Removes any operators that have a worst preference. If all remaining candidates have
worst preferences or there are no worst preferences there is no effect.

45. IF ($ oiÎOp where PreferenceArray(o) = Worst) Ù ($ ojÎOp where PreferenceArray(o) ¹ Worst)
46. "oi such that PreferenceArray(oi) = Worst Ù (i¹j)
47. Op = Op \ oj
48. ENDIF

Termination Point 5
49. IF card(Op)<1
50. IT = {No Change} and Terminate
51. ELSEIF card(Op)=1
52. RETURN Op and Terminate
53. ENDIF

Indifference Test: Tests to see if remaining operators are mutually indifferent to one another
54. IF ($ oiÎOp where PreferenceArray(o) = Indifferent) Ù ($ ojÎOp where PreferenceArray(o) ¹

Indifferent) Ù (i¹j)
55. IT = {Tie}
56. RETURN IT, Op
57. ELSE select among set of mutually indifferent operators Op using predetermined scheme set by user in

Soar (e.g., random, epsilon greedy etc.)
58. ENDIF
59. RETURN IT, Op

9

 Input to Algorithm 1 is: (1) the set of current operators Of eligible to fire and (2) an m x n x p
preference array, where m is the number of operators eligible to fire, n is the cardinality of the set
of multi-attribute variables over all operators eligible to fire, and p is the cardinality of the set of
values those variables can take on. The output consists of: (1) a subset of the candidate operators
Op, which is either the empty set, a winning operator, or a set of operators that may be conflicting,
tied, or indifferent and (2) an impasse type IT (e.g., Constraint Failure, No Change, Conflict, Tie)
[10].

An impasse is resolved when processing in a subgoal creates results that lead to the selection
of a new operator for the state where the impasse arose. When an operator impasse is resolved,
Soar has an opportunity to learn, and the substate (and all its substructure) is removed from
working memory. For instance, a tie impasse can be resolved by productions that create
preferences that prefer one option (better, best, require), eliminate alternatives (worse, worst,
reject, prohibit), or make all of the objects indifferent (indifferent). A conflict impasse can be
resolved by productions that create preferences to require one option (require), or eliminate the
alternatives (reject, prohibit). A constraint-failure impasse cannot be resolved by additional
preferences, but may be prevented by changing productions so that they create fewer require or
prohibit preferences. A substate can resolve a constraint-failure impasse through actions that cause
all but one of the conflicting preferences to retract. A state no-change impasse can be resolved by
productions that create acceptable or require preferences for operators. Finally, an operator no-
change impasse can be resolved by productions that apply the operator, change the state so the
operator proposal no longer matches, or cause other operators to be proposed and preferred [10].

We demonstrate how strategies can be leveraged to resolve impasses in the context of an
unmanned aerial vehicle (UAV) undergoing a lost link procedure in the following section.

VI. Translating Strategies into Soar For Learning

C. UAV Lost Link Example
UAVs, including mid- to large-sized, are beginning to enter the national airspace. A primary

cause of incidents and accidents related to these operations involve lost link events. These events
include violations of assigned altitude clearances and unexpected heading changes [14]. For a
UAV, or any aircraft for that matter, changing course or altitude without clearance can greatly
increase air traffic controller workload and decrease safety. The contingency behaviors outlined in
this paper’s lost link procedures were designed following a review of existing UAV contingency
management documentation (which included an MQ-9 flight manual and the Joint Unmanned
Aircraft System Concept of Operations) and semi-structured interviews with UAV pilots [15].
These behaviors are described in Table 2 below.

Table 2: Lost Link Contingency Behavior [15]

ID Event Environment Behavior Timer
C1 Baseline N/A No Change N/A
C2 Lost Link Populous to

Lightly Populous
Return to Base 1 min

C3 Lost Link Lightly Populous Return to Base 8 min
C4 Lost Link Unpopulated Drop Altitude

Maintain Course
1 min

10

 Briefly, when the link is lost between the ground station and the UAV, a timer is set. If the
overflown area is populous to lightly populous, a 1 minute timer is set and the UAV returns to base
when it expires if the link does not return. Similarly, if the overflown area is lightly populous, an
8 minute timer is set and the UAV returns to base if the link is not re-established. Finally, if the
overflown area is unpopulated, a 1 minute timer is set and the UAV drops altitude to try and re-
establish link. After the timer expires, the UAV resumes mission altitude and continues its mission
so long as the overflown area does not change. There is an overlap in C2 and C3 that occurs when
the vehicle loses link over a lightly populated area. Since the goal state is to attempt to regain link
and continue the mission, there is an opportunity to learn new rules and enhance mission success
rates by developing multiple timers while flying over a lightly populated area under lost link
conditions. The safety constraint limiting this learning behavior comes from the governing concern
that the UAV does not overfly a populated area under lost link conditions for more than 1 minute
[13].

D. Strategies for Impasse Resolution and Learning
 Soar allows for learning when impasses are found. While Soar will create a subgoal, work to
resolve the impasse through preference resolution, and codify the means by which the resolution
was achieved in a chunk, it is also possible to provide a ‘supervisory’ framework for learning by
seeding the Soar rules with these strategies. This acts to guide the structure of the chunk to be
learned.

Figure 2: Basis of Resilient Performance [16]

The implementation of the resilient performance strategies in the Soar agent follows the
structure outlined by Hollnagel [16], namely following the cycle of anticipate, monitor, respond,
and learn (see Figure 2). There are ample instances in which the strategies identified in Table 1 are
evinced in a concretized procedural rule.

The Soar agent begins by formally implementing the rules contained in the contingency plan
(Table 2). However, through learning mechanisms employed during execution, the Soar agent has
the ability to refine or alter the plan. That is, the Soar agent can recognize that lost link is a possible
condition that it may encounter, and thus it has a baseline plan for what to do if the link is lost (as
specified by the contingency conditions in Table 2). Soar recognizes that when the link is lost over
different population densities, different actions should be taken. Thus, the Soar agent can identify
the population density of the overflown area as a potential triggering condition to execute a given
contingency. The relevant strategy can be found in Table 1, as ANTICIPATE 4 – PREPARE
ALTERNATE PLAN AND IDENTIFY TRIGGERING CONDITIONS. A Soar rule corresponding
to this strategy is shown below.

11

sp {drone*apply*outOfTimeMarkContingency
 "We are out of time so we need to pick a new contingency scenario and
mark the current one as complete"
 :o-support
 (state <s> ^name droneFlight ^startNewTimer yes ^maxTimers <mT>
^currentTimers {<cT> >= <mT>} ^addressedProblem <ap>)
 -->
 (<s> ^contingencyComplete <ap>
 ^startContingency yes)
 (write (crlf) |Marked as complete: | <ap>)
}

The Soar agent is continuously monitoring for changes in environmental conditions. The Soar
agent uses sensor data in conjunction with a population density database and a projection of the
agent’s current state to determine whether the sensor data agrees with the projected population
density of the overflown area. The relevant strategy that the Soar agent is using (from Table 1) is
MONITOR 1 – MONITOR FOR CUES SIGNALING CHANGE FROM NORMAL. The Soar rule
that encapsulates this strategy is stated below.
sp {drone*markInPopulatedArea
 "Removes timer start command and creates local willBeInPopulatedArea
wme"
 :o-support
 (state <s> ^name droneFlight ^io.output-link <out> ^io.input-
link.flightdata <fd>)
 (<fd> ^removeCommand <rc>
 ^willBeInPopulatedArea <wPA>)
 (<out> ^command <rc>)
 (<rc> ^name timerChecker)
 -->
 (<out> ^command <rc> -)
 (<s> ^willBeInPopulatedArea <wPA>)
 (<s> ^acknowledgedCommands timerChecker)
 (write (crlf) |Removing timerChecker command!|)
 (write (crlf) |Calculated WillBeInPopulatedArea as : | <wPA>)
}
The UAV receives the cue via projection that it will be overflying a populated area before the timer
expires. The above rule proposes that the Soar agent create a variable in working memory (i.e.,
^willBeInPopulatedArea) that monitors whether or not the UAV will be in a populated area
(either via sensor data or via projection of current state and population database knowledge).
Additionally, Soar uses sensor data (e.g., internal vehicle health data) to monitor whether the lost
link event has occurred. This corresponds to using the strategy MONITOR 3 – MONITOR OWN
INTERNAL STATE. If the UAV has indeed lost link with the ground control station, Soar uses
sensor data in conjunction with population database knowledge and the projection of the current
state to determine changes in the timer status (i.e., since a lost link event has occurred, a timer has
been set) and population density state (e.g., variable ^populated changes value from lightly to
fully). The relevant strategy for the Soar agent is MONITOR 2 – MONITOR FOR CUES
SIGNALING NEED TO ADJUST. It is important to note that the Soar agent is capable of
autonomously turning the vehicle around (via activation of the autonomous control agent).
Example Soar rules for MONITOR 2 and 3 are omitted for brevity.

Given knowledge of lost link status (M1), how well encountered conditions map to projected
conditions (M1), current population density state (M2), and timer status (M2), the Soar agent then

12

adjusts the length of the timer and executes a contingency behavior (e.g., no change, drop altitude
and attempt to re-establish link, return to base, etc.). The relevant strategy from Table 1 is
RESPOND 2– ADJUST BASED ON RISK ASSESSMENT. For example, a Soar rule can be
proposed that truncates the 8 minute timer if the projected overflown area is going to transition
from lightly populated to populated within the next 2 minutes. The rule corresponding to this
strategy is shown below.
sp {drone*apply*operator*C6-Lost-Link-Start-fully
 "In lightly populated area, should start a 2 minute timer and then
turn around"
 (state <s> ^name droneFlight ^startContingency yes -
^contingencyComplete C6-Start ^io.input-link.flightdata <fd>)
 (<fd> ^takeOver yes ^populated fully)
 -->
 (<s> ^operator <o> +)
 (<o> ^name C6-Start
 ^timerLength 2)
 (write (crlf) |PROPOSE C6!|)
}
It can be seen in the LHS of the rule that the variable ^populated is either sensed or projected to
take on the value ‘fully’ in the time horizon of the executing timer.

Additionally, Soar evaluates the efficacy of its responses. That is, the outcome of selecting
different timers (e.g., 1, 2, 4, and 8 minute timers) is optimized over the flight trials that are
flown. This leads to the addition of new contingency behaviors. Thus, a flight may encounter a
lost link event over a lightly populated area and start a 4 minute timer, given learned behavior.
This embodies the strategy LEARN 1- LEVERAGE EXPERIENCE TO MODIFY PLAN. Using
this strategy, the Soar agent learned to create additional timers of 2 and 4 minutes. The chunk for
the learned, 4 minute timer is shown below.
sp {chunk-1*d1471*tie*1
 :chunk
 (state <s1> ^operator <o1> +)
 (<o1> ^timerLength 4)
 (<s1> ^operator { <o2> <> <o1> } +)
 (<o2> ^timerLength 2)
 -->
 (<s1> ^operator <o2> > <o1>)
}

The Soar agent also learned to prefer shorter timers (e.g., 2 minute timer preferred above 4
minute timer, etc.). The chunk that encapsulates this preference is shown below.
sp {chunk-1*d1471*tie*1
 :chunk
 (state <s1> ^operator <o1> +)
 (<o1> ^timerLength 4)
 (<s1> ^operator { <o2> <> <o1> } +)
 (<o2> ^timerLength 2)
 -->
 (<s1> ^operator <o2> > <o1>)
}

This behavior arose due to the uncertainty in the projection of the populated area. The agent
learned to minimize the risk of overflying a populated area for over a minute under lost link
conditions by simply checking the condition of the overflown area every minute. While this seems
like a trivial solution to the impasse between contingencies C2 and C3, it is actually quite subtle.

13

The preference that was learned was not actually related to the length of the timer, but for an
inclination to check or monitor the variable that provided the cue that nominal operations could
not continue any longer.

At this point, the agent cycles back to the beginning of the process (i.e., ANTICIPATE 4 –
PREPARE ALTERNATE PLAN AND IDENTIFY TRIGGERING CONDITIONS), as the new timers
enable the Soar agent to plan for additional contingency behaviors and then continues through the
Monitor, Respond and Learn cycle (See Figure 2). This cycle repeats iteratively throughout the
mission.

Finally, the Soar agent facilitates other agents’ learning by logging its system state and
environmental conditions each time the action is taken to turn the UAV around and turn to base.
These data can be shared with other Soar agents performing similar operations, and the decision
becomes part of a database that acts to improve decision making during future flights regarding
what timers should be employed and when overflight of populated areas is imminent. These
decision points thus act to refine contingency selection among all agents. The relevant strategy
from Table 1 is LEARN 3- FACILITATE OTHERS’ LEARNING. The Soar rule illustrating this
strategy is shown below.
 sp {drone*apply*acknowledgeReverseAndSaveDecision
 "After reverse command has been served, send saved decision to be
cataloged"
 (state <s> ^name droneFlight ^io.output-link <out> ^io.input-
link.flightdata <fd> ^currentTimers <cT> ^maxTimers <mT> ^operator <o>
^addressedProblem <ap>)
 (<o> ^name saveDecision ^value <v> ^removeCommand <rc>)
 -->
 (<out> ^command <rc> -)
 (<out> ^command <com>)
 (<com> ^dref <ap>
 ^setValue <v>
 ^name saveDecision)
 (<s> ^maxTimers <mT> - ^currentTimers <cT> - ^addressedProblem <ap> -)
 (write (crlf) |Removing reverse command! Sending saved decision! |)
}

VII. Formal Verification of Chunks Learned via Strategies

The use of formal verification, including techniques such as model checking, enables the
concrete specification of desired properties, as well as mathematically rigorous means by which
to ensure them. Formal verification requires that these procedural strategies can be abstracted and
translated into (possibly temporal) logic formulae, which serve as procedural rules in a knowledge
database. We considered several formalisms such as NuSMV [17], Uppaal [18] and PVS [19]
when considering the formal verification environment. We chose Uppaal [18], due to its ability to
model temporal logic properties as well as its ability to generate and visualize counterexamples.
Uppaal also allows the execution of requirements as temporal logic queries to exhaustively check
the satisfaction of relevant safety properties. This translation procedure outlines the means by
which a set of relational rules that represent the communal knowledge of the system (e.g.,
knowledge base) are captured and analyzed. The translation procedure has been implemented (see
[7] for further technical details) and automatically translates Soar agents into Uppaal.

Because system safety is an emergent property, it is important to consider the robustness of the
verification process, specifically the effect of environmental assumptions being violated, or

14

unforeseen inputs being encountered. This relies on examining execution traces which generate
the new elements of the knowledge base, and then evaluating them with respect to the strategies
being captured. We focus our work on formally checking whether the knowledge base is consistent
and create classes and subclasses which allows for generalization of a particular strategic instance.
The verification process involves the generation of evolving traces from the timed automaton
graphs which represent the procedural (Soar) rules in Uppaal [18]. Note that the process by which
the Soar model is translated into Uppaal is detailed in [7, 14]. The evolving trace is then expanded
based on a Breadth First Search (BFS), in order to encompass potential learning behavior, and an
exhaustive search is performed, as the model is allowed to execute.

For this example, five requirements related to the contingencies were verified: (1) If the UAV
loses ground station link, the autonomous agent starts a timer until the link is reconnected; (2)
If the UAV loses ground station link in a lightly populated or populated area, the autonomous
agent should start contingency 2; (3) If the UAV loses ground station link in a lightly populated
area, the autonomous agent should start contingency 3; (4) When the autonomous agent has the
variable ‘takeover’ with value ‘yes’ and the population is null, the autonomous agent starts
contingency 4; (5) When the autonomous agent has the variable ‘takeover’ with value ‘yes’ and
it is a turnaround emergency (e.g., 1 minute timer is expired and UAV over populated area), the
UAV command is set to reverse the vehicle path. Further detail about the translation of these
queries into temporal logic formula in Uppaal and their verification times can be found in [14].

A sixth requirement for verification was added relating to the resolution of impasses.
Requirement 6 states that impasses caused by operator ties must be resolved via learned rules.
This requirement was broken into two subparts: (6a) An operator tie occurs in an impasse, and
(6b) Ties are resolved by selecting the best learned solution. In this case, learning occurred
via chunking. Requirement (6a) was verified in Uppaal over the translation of the Soar model in
an average of 1.21 seconds with a standard deviation of about 0.054. The maximally observed
worst case execution time over 100 runs was 1.33 seconds. Similarly, (6b) had an average,
standard deviation, and worst case execution time of approximately 20.85 sec, 1.19 sec, and 23.97
seconds respectively over the 100 runs. Note that the verification was performed on a MacBook
Pro with a 2.8 GHz Intel Core i7 processor, and memory of 16GB 1600MHz DDR3. The
verification was executed in the 64 bit Mac OS X version of Uppaal 4.1.24.

These results demonstrate the scalability of the approach. Since Soar agents have been used in
a multi-UAV setting for path planning operations [20], a future direction for this work would
involve extending the approach to handle multiple (potentially heterogeneous) agents
simultaneously working towards a common goal.

VIII. Conclusions and Future Work

In this work, several safety-producing behaviors were identified and abstracted into resilient
performance strategies that were applicable to a remotely-piloted air cargo operation. These
strategies aided in the classification of several pre-existing Soar rules in the example that resulted
in safety producing behavior. Additionally, several strategies were encoded into Soar rules to assist
the resolution of impasses. This resulted in learning on the behalf of the agent that was guided by
these resilient strategies. The Soar agent’s learned behaviour was not just to avoid an undesired
state, but to adapt its functioning to facilitate desired states. As a result, the Soar agent’s
performance became more resilient. The Soar agent, including the learned rules and resilient
performance strategies, was then formally verified. As future work, the creation of resilient
strategy stereotypes in Soar and their application across multiple embedded, cyber-physical

15

applications (e.g., automotive, medical, etc.) will be examined. This could facilitate novel role
allocations between humans and increasingly autonomous agents in general contexts.
Additionally, the use of resilient strategies in multi-agent settings will be examined. Specifically,
the evaluation of the effects of resilient strategies on multi-agent teaming performance are an area
of particular interest for human-machine teams.

References
[1] Hollnagel, E. “RAG – The resilience analysis grid.” In: E. Hollnagel, J. Pariès, D.D. Woods and J. Wreathall
(Eds). Resilience Engineering in Practice. A Guidebook. Farnham, UK: Ashgate (2011).
[2] Holbrook, J., Prinzel, L.J., Stewart, M.J., Kiggins, D. “How do Pilots and Controllers Manage Routine
Contingencies during RNAV Arrivals?” To appear in the Proceedings of the 11th International Conference on
Applied Human Factors and Ergonomics (2020, July).
[3] Newell, A., Shaw, J.C., Simon, H.A., “Report on a general problem-solving program”, In: Proceedings of the
International Conference on Information Processing, pp.256–264 (1959).
[4] Anderson, J.R., Matessa, M., Lebiere, C., “ACT-R: A theory of higher-level cognition and its relation to visual
attention”, Hum.-Comput. Interact. (4), 439–462 (1997).
[5] Laird, J., The SOAR Cognitive Architecture, MIT Press (2012).
[6] Barto, R.S..B., Reinforcement Learning, MIT Press (2008.
[7] Bhattacharyya, S., Neogi, N., Eskridge, T., Carvalho, M., Stafford, M., “Formal Assurance for Cooperative
Intelligent Agents”, In: NASA Formal Methods Symposium, LNCS, vol. 10811 (2018).
[8] Buchanan, B.G., Shortliffe, E.H., “Rule Based Expert Systems: The Mycin Experiments of the Stanford
Heuristic Programming Project”, In: The Addison-Wesley Series in Artificial Intelligence., Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1984).
[9] Lehman, J. F., Laird, J., Rosenbloom, P., "A gentle introduction to Soar, an architecture for human cognition",
2006 update (2006). https://web.eecs.umich.edu/~soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf
[10] Laird, J., “The Soar 9 Tutorial”, 2017 update (2017).
https://soar.eecs.umich.edu/downloads/Documentation/SoarTutorial/Soar%20Tutorial%20Part%201%20-
%20Simple%20Agents.pdf
[11] Wray, R.E., Jones, R.M. An introduction to Soar as an agent architecture. In: R. Sun (ed), Cognition and Multi-
agent Interaction: From Cognitive Modeling to Social Simulation, Cambridge University Press, pp 53--78 (2005).
[12] Laird, J. E., “Extending the Soar Cognitive Architecture”, In Proceedings of the First Conference on Artificial
General Intelligence (2008).
[13] Steier, D., Laird, J.E., Newell, A., Rosenbloom, P.S., “Varieties of Learning in Soar”, In: P. Langley (ed),
Proceedings of the Fourth International Workshop on Machine Learning, Kluwer, (1987).
[14] Neogi., N., Bhattacharyya, S., Greissler., D., Kiran, H., Carvalho., M., “Assuring Intelligent Systems:
Contingency Management for UAS”, In: Y. Wan, E. Atkins, et. al. (eds), Special Issue of IEEE Transactions on
Intelligent Transporation Systems Unmanned Aircraft System Traffic Management, In Review (2021).
[15] P. U. A. S. C. of Excellence, “Joint concept of operations for unmanned aircraft systems airspace integration.”
(2011).
[16] Hollnagel, E., Wears, R. L., Braithwaite, J., “From Safety-I to Safety-II: A White Paper”, The Resilient Health
Care Net. Published simultaneously by the University of Southern Denmark, University of Florida, USA, and
Macquarie University, Australia (2015).
[17] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,Sebastiani, R., Tacchella, A.,
“NuSMV 2: An Open Source Tool for Symbolic Model Checking”, Springer Berlin Heidelberg, pp. 359–364
(2002).
[18] Uppsala Universitet and Aalborg University, Uppaal, website: http://www.uppaal.org (2010).
[19] Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M., “PVS: Combining specification, proof checking,
and model checking”, Springer Berlin Heidelberg, pp. 411–414 (1996).
[20] Stenger A., Fernando B., Heni M. (2012), Autonomous Mission Planning for UAVs: A Cognitive Approach,
Proceedings des Deutschen Luft- und Raumfahrtkongress, Berlin, 10.09.-12.09.2012, DLRK (2012).

