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Abstract

The Advanced Energetic Pair Telescope (AdEPT) gamma-ray polarimeter uses a Time Projection Chamber (TPC) for measuring
pair production events and is expected to generate a raw instrument data rate four orders of magnitude greater than is transmittable
with typical satellite data communications. GammaNet, a Convolutional Neural Network (CNN), proposes to solve this problem by
performing event classification on-board for pair production and background events, reducing the data rate to a level that can be
accommodated by typical satellite communication systems. In order to train GammaNet, a set of 1.1x106 pair production events and
106 background events were simulated for AdEPT using the Geant4 Monte Carlo code. An additional set of 103 pair production and
105 background events were simulated to test GammaNet’s capability for background discrimination. With optimization, GammaNet
has achieved the proposed background rejection requirements for Galactic Cosmic Ray (GCR) proton events. Given the best case
assumption for downlink speeds, signal sensitivity for pair production ranged between 1.1±0.5% to 69±2% for 5 and 250 MeV
incident gamma rays. This range became 0.1±0.1% to 17±2% for the worst case scenario of downlink speeds. The application of
a feature visualization algorithm to GammaNet demonstrated decreased response to electronic noise and events exiting or entering
the frame and increased response to parallel tracks that are close in proximity. GammaNet has been successfully implemented and
shows promising results.
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1. Introduction1

Recent advances in machine learning and computer vision2

have led to astonishing improvements in image classification3

performance [1–3], where algorithms estimate the likelihood4

that an input image belongs to a set of labels that describe fea-5

tures contained within the image. Current state of the art al-6

gorithms perform with around 4% top-5 error 1 [2]. These re-7

sults were demonstrated on test sets of images from the Ima-8

geNet Large Scale Visual Recognition Competition (ILSVRC)9

[4] which contain images belonging to 103 different classes.10

The application of machine learning to event classification11

in radiation detection is a natural progression of the field given12

that radiation detectors produce highly structured signals. These13

signals are often dependent on the nature of interacting radia-14

tion, and the type of interaction undergone. High energy physics15

projects such as the Large Hadron Collider have utilized ma-16

chine learning applications for event classification [5, 6]. There17

has also been implementations of machine vision for image18
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1Where the top-5 error is determined by the fraction of test images for which
the correct label is not among the five labels considered most probable by the
algorithm.

classification in radiation imaging detectors using Convolutional19

Neural Networks (CNNs) to classify neutrino interactions at20

Fermilab and the Ash River Laboratory [7].21

The CNN application explored in this work has been de-22

veloped for the event classification of images generated from a23

large (8 m3) Time Projection Chamber (TPC) being designed24

for the Advanced Energetic Pair Telescope (AdEPT) [8], a mis-25

sion to measure medium-energy gamma-ray polarimetry. The26

design details of AdEPT are discussed in detail in [8], and briefly27

summarized in Section 1.1.28

1.1. The AdEPT Instrument29

Astrophysical gamma rays are a means to probe the most30

extreme non-thermal processes in the Universe and their study31

provides valuable insight into the fundamental physics and struc-32

ture of the most powerful particle accelerators. Most studies33

of astrophysical gamma rays have been in the ∼20 MeV to34

300 GeV energy range, using measurements from the AGILE35

[9] and Fermi [10] space telescopes. However, neither instru-36

ment was optimized for polarization sensitivity or observations37

in the medium energy (∼0.1–200 MeV) band, where many as-38

trophysical objects exhibit unique behavior. The medium en-39

ergy gamma-ray band has so far proven difficult to study due40

to competing photon interactions, namely Compton scatter and41
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pair production. Each of these interactions generate different42

signatures, and the manner in which polarization information is43

gathered consequently requires differing algorithms and instru-44

mentation [8, 11, 12]. The optimization of a detector for both45

pair production and Compton scatter interactions on-board a46

satellite is prohibitive. The challenge is further exacerbated by47

the Galactic Cosmic Ray (GCR) background, which is an ex-48

tragalactic source of charged atomic nuclei at extremely high49

kinetic energy. The GCR background cannot be effectively50

shielded for on satellites given their high kinetic energy, which51

can extend to several TeV per nucleon. In addition, the fluence52

of GCR particles exceeds the astrophysical gamma-ray flux by53

approximately four orders of magnitude.54

Next-generation telescopes are being developed with the55

goal of characterizing the complete signature of gamma rays56

including their direction, energy, arrival time, and polarization.57

The most promising space missions (AdEPT [8], HARPO [13],58

and SMILE-I/II [14, 15]) proposed to explore the gamma-ray59

sky in the medium energy range are based on low-density gaseous60

TPC technologies that enable precise, three-dimensional track-61

ing of particle interactions.62

The AdEPT mission, for which GammaNet is being devel-63

oped as a proposed event classifier, is one such medium en-64

ergy gamma-ray polarimeter. The science data for AdEPT will65

consist of pair production interactions, with a background com-66

posed primarily of GCR and Compton scatter interactions. Comp-67

ton scatter, though a photon interaction of interest for charac-68

terizing the medium energy gamma-ray spectra, is considered69

background for the AdEPT mission. Compton scatter is con-70

sidered background because the AdEPT instrument is not de-71

signed to measure polarization for this interaction. The AdEPT72

TPCs takes advantage of the Micro-Well Detector (MWD) tech-73

nology augmented with the negative ion drift technique [16] to74

construct an instrument with the largest volume that can be ac-75

commodated in the rocket fairings currently available to MIDEX76

missions, 8 m3. The active gas volume of the TPC is bounded77

on the top and bottom faces by an array of MWDs defining the78

400 µm X- and Y-coordinate spatial resolution of the TPC [8].79

The uniform electric field in the active volume provides a con-80

stant ionization charge drift velocity. Measurement of a relative81

arrival time of the signals on the detector strips provides the82

third, Z-coordinate. The use of the negative ion drift technique83

in the AdEPT TPC design [8] effectively reduces electron drift84

diffusion in the gas, making possible drift distances up to 1 m.85

With the applied electric field, ionization charge can traverse86

the Z dimension of the detector within a maximum of 50 ms.87

The use of the negative ion drift technique precludes the88

use of an anti-coincidence system, as used in HARPO [13], re-89

sulting in large raw data rates. This requires an alternative on-90

board processing approach for discrimination of GCR tracks91

and gamma-ray interactions. The 8 m3 version of AdEPT is es-92

timated to produce an uncompressed data rate of ∼16 Gbps,93

far too large for current satellite communication. Currently94

the Fermi Large Area Telescope mission [10, 17, 18] achieves95

an average science data downlink of 1.5 Mbps, while planned96

communications methods aim to achieve an average 50 Mbps97

downlink [19]. The range of possible average downlinks leaves98

two to four orders of magnitude difference between the raw data99

rate and communications data rate for the AdEPT mission. Our100

proposed solution is to use computer vision feature recognition101

algorithms running on-board the spacecraft in real time to dis-102

criminate gamma-ray interactions of interest from the abundant103

GCR background. The desired outcome for the algorithm is to104

perform event classification within 50 ms with a background re-105

jection rate between 99.99% and 99.69%, which would reduce106

the raw data rate to one which can be accommodated by satel-107

lite downlink. The hardware to be used for AdEPT has not yet108

been chosen, though commercial solutions are available that of-109

fer enough computing power for GammaNet. One such solution110

is Innoflight’s Compact Flight Computer 500, which is radia-111

tion tolerant up to 30 krad, and is space rated. Additionally,112

National Aeronautics and Space Administration (NASA) is in-113

vestigating the suitability of System on a Chip (SoC) solutions114

available from NVIDIA [20].115

In this paper we explore GammaNet, a CNN trained on sim-116

ulated images from a high resolution gaseous TPC, and its per-117

formance in classifying gamma-ray events on images contam-118

inated with a GCR background. To evaluate the performance119

of GammaNet, we performed a Receiver Operating Characteris-120

tic (ROC) analysis [21] to assess how the background rejection121

threshold influences the specificity and sensitivity of the clas-122

sifier. Specificity is determined as the rate at which negative123

events are correctly classified as negative. Sensitivity is deter-124

mined as the rate at which positive events are correctly clas-125

sified as positive. The result of our ROC study demonstrated126

that GammaNet can reliably achieve the proposed background127

rejection rates of between 99.99% and 99.69%. At these rates128

of background rejection, GammaNet correctly classifies between129

10±1% and 52±2% of pair production images over the energy130

range of interest. The simulation used for generating training131

and testing data, as well as the architecture and training pro-132

tocol for GammaNet, are described thoroughly in Sections 2133

and 3. An analysis of GammaNet’s performance and failures is134

presented in Section 4. Observations are presented in Section 5135

for the features utilized by GammaNet classifying the simulation136

images of AdEPT.137

2. Monte Carlo Simulations of AdEPT138

The AdEPT raw TPC data consists of two orthogonal pro-139

jections, XZ and YZ, of the tracks in the active gas volume.140

The simulation of the response and readout of the AdEPT in-141

strument was carried out using the Geant4 Monte Carlo toolkit142

[22, 23]. The application, which is named G4AdEPTSim [24],143

simulates the passage of GCR protons and gamma rays through144

an active volume filled with 1.5 atmospheres of Ar and CS2 at a145

temperature of 293 degrees K with a sub-scale size of 25x25x25146

cm3, and full-scale size of 8 m3. The use of the sub-scale vol-147

ume was to determine what level of downscaling was viable for148

use in GammaNet, and subsequently the full-scale volume was149

used. Downscaling of the simulation results is necessary be-150

cause the time to train and run classification for any CNN is151

strongly correlated to the image size passed to it. The full size152

AdEPT TPC will produce images of 5000 x 5000 pixels, which153
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would be prohibitively slow in terms of both training and time154

to classification during operation.155

The physics included in the simulation account for the dif-156

ferent types of interactions between source particles and the Ar157

gas. These include hadronic physics for the interaction of GCR158

protons, electromagnetic physics for the interaction of gamma159

rays and electrons, and photo-absorption ionization model to160

accurately model the primary ionization and energy loss of rel-161

ativistic charged particles in low density media. G4AdEPTSim162

produces the ideal response of AdEPT, reporting the number163

of ionization electrons, their X-, Y-, and Z-coordinates, and the164

energy deposited in the active volume by a single incident par-165

ticle.166

AdEPT is proposed for launch into a low-Earth orbit with a167

550 km altitude and a 28 degree inclination. The background168

environment in such an orbit is well-known and consists pre-169

dominantly of cosmic diffuse radiation, atmospheric gamma-170

ray emissions, reactions induced by albedo neutrons, and back-171

ground produced by satellite materials activated by fast protons172

and alpha particles [25–29]. In the 0.1 to 200 MeV energy173

range, the instrument background is dominated by charged par-174

ticles in the Van Allen belt impinging on the spacecraft, cosmic175

diffuse radiation, and atmospheric gamma-ray emissions.176

G4AdEPTSim models the simulated events using a spheri-177

cal volume source of radius 22 cm for the sub-scale version,178

and 1.73 m for the full-scale version, which is concentric with179

the active volume. The arrival direction of the simulated par-180

ticles is isotropically distributed on a sphere, producing a uni-181

form distribution of the source particles within the sphere. For182

this work, the background component consisted of only GCR183

protons with the energy spectrum from the Space Environment184

Information System for the expected AdEPT orbital conditions.185

GCR protons were selected as the background because they186

comprise the majority of the GCR fluence. Astrophysical sources187

of gamma rays simulated with mono-energetic energies ranging188

from 5–250 MeV were generated using the same source geom-189

etry as background.190

Each simulation run of the full-scale AdEPT instrument in-191

cluded 375 incident GCR protons or two incident gamma rays,192

for background and signal respectively. The sub-scale simula-193

tion runs consisted of five incident GCR protons or two incident194

gamma rays to account for the reduced surface area relative195

to the full-scale instrument. The number of incident particles196

were chosen in each case to fit the expected number of primary197

tracks, given the AdEPT instrument parameters [8], within the198

50 ms collection window. There are two incident gamma rays199

for both simulations because the anticipated pair production200

rate in the full size simulation is less than one, although there201

is still the probability of two pair production events occurring202

within one collection window. The source geometry allowed for203

the possibility of particles to miss the active volume, but results204

were only recorded if at least one particle interacted with the205

active volume. The source geometry used allows for a varying206

number of tracks to be recorded from each simulation run, al-207

though the number of simulated particles was constant between208

runs.209

Per simulation run the number of ionization electrons in 400210

x 400 x 400 µm3 voxels was recorded, corresponding to the211

nominal resolution of the AdEPT instrument. The number of212

ionization electrons in each voxel is then projected onto the XZ213

and YZ planes to generate images. To emulate the response214

of the AdEPT detector, electronic noise was added to the sig-215

nal output for each set of images. The addition of electronic216

noise was performed by adding a randomly generated number217

of electrons, from a normal distribution with standard deviation218

of two and a mean of zero, to each pixel of an image. In addi-219

tion to electronic noise, background events were added to every220

gamma-ray image in the form of GCR protons. To do the back-221

ground event addition, GCR proton images were generated with222

electronic noise and gamma-ray images without. Each gamma-223

(a) (b) (c)

Fig. 1. XZ projection of the sensitive volume of the AdEPT simulation. a) GCR background image containing several proton tracks with added
electronic noise. b) gamma-ray image, containing two pair production events with the vertices outlined in red for illustrative purposes. c)

Combination image that would be used for training and testing GammaNet. These simulation images have had their contrast adjusted for better
viewing in this paper.
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ray image then had a unique GCR image added to it. Gamma-224

ray images were generated without addition of electronic noise225

to ensure GCR images and the composite gamma-ray images226

would have a constant amount of electronic noise. Figure 1227

shows an example of the process used for generating the pair228

production data set, where an image containing two pair pro-229

duction events is added to a background GCR image with two230

tracks.231

Correctly labeled image sets were generated from these sim-232

ulations for both training and testing of GammaNet. The train-233

ing image sets contained 1.1x106 pair production images and234

106 background GCR proton images. The testing image sets235

contained 1.5x103 pair production images, 1.5x103 Compton236

scatter images, and 106 background GCR images. The Comp-237

ton scatter images were included in testing, but not training, as238

an additional source of background. GammaNet was found to239

be less sensitive to the Compton scatter images than pair pro-240

duction. The initial intuition when applying a CNN to this clas-241

sification problem was that the CNN would be able to pick up242

on the discerning characteristic of pair production events com-243

pared to GCR proton tracks. The key signature of pair pro-244

duction being the vertex created by the electron-positron pair at245

the interaction site shown in Figure 1b. These pair production246

signatures are further discussed in the results, Sections 4 and 5.247

3. GammaNet248

GammaNetwas inspired by the successes of a CNN designed249

for classification of neutrino interaction events in the NOvA250

experiment at Fermilab [30]. The CNN showed an increased251

performance compared to the state-of-the-art algorithms cur-252

rently deployed for classification of neutrino events at Fermi-253

lab. Specifically, there was a relative increase of 40% sensitiv-254

ity for electron neutrino signals, going from 35% to 49% [7].255

However, the implementation for GammaNet is more generic256

than that used for the NOvA detector in that GammaNet only257

classifies to two classes, as opposed to the 13 classes used for258

the NOvA experiment. GammaNet produces a probability that259

the input image from AdEPT contains a pair production event,260

which, above a certain threshold, will result in a positive sig-261

nal, and below will produce a negative signal. This simplicity262

allows for faster classification with an unsophisticated architec-263

ture.264

3.1. GammaNet Architecture265

The XZ and YZ projection images that the AdEPT TPC pro-266

duce are used as the input of two identical instances of GammaNet267

for classification. The classifications of the two projections are268

then compared using a boolean operation, where if either pro-269

jection produced a positive signal, the event was determined to270

be positive. Comparing both projections helps reduce errors as-271

sociated with the positron and electron tracks overlapping in a272

projection, which would appear as a singular track. Having the273

two orthogonal projections ensures that this overlap is avoided274

in at least one of the images provided to GammaNet, avoiding275

misclassification of pair production events. An example of this276

issue is shown in Figure 2, where in the first projection, the two277

tracks from the pair production are well separated, and the al-278

ternative projection shows them overlapping to an extent. The279

architecture of GammaNet is presented in Section 7.1.280

GammaNet’s architecture is an adaptation of GoogLeNet [31]281

with modifications needed for reduced time to classification and282

the stringent background rejection requirements of AdEPT. To283

reduce time to classification, the overall network size was trun-284

cated by utilizing only one inception module, where an incep-285

tion module is a network in network design created by Google286

[31]. Table 1 lists the results from GammaNet when operating287

with a threshold of 0.5 for classification of background and pair288

production when differing the number of inception modules.289

From these results it is shown that the highest GCR background290

rejection rate was achieved with a single inception module. It291

was required to implement mixed precision math in GammaNet292

in order to attain the rejection rate necessary for AdEPT. Mixed293

precision math was implemented by using double precision in294

the inner product layer and the softmax layer shown in Figure 8295

m) and l).296

Number of
Inception
Modules

Pair Production
Sensitivity (%)

Background
GCR Rejection

Rate (%)
1 93.17 96.30
2 94.28 93.91
3 93.47 96.10

Table 1. Tabulated results of GammaNet pair production sensitivity and
background rejection rate for differing numbers of inception modules.
Pair Production sensitivity reported as highest of the 5–250 MeV en-
ergy sets whereas background rejection rate was calculated from only
one set.

(a) (b)

Fig. 2. XZ and YZ projections of the same event generated in the
sub-scale simulation, with a downsampling rate of 3. In a), the XZ
projection, a well separated pair production track is shown in the

lower half of the image. In b), the YZ projection, an overlapping pair
production track is shown in the lower left of the image.
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3.2. Training297

The training process for GammaNet involves passing a sim-298

ulation image through it, after which the parameters of each299

layer in the network are updated based on the negative gradi-300

ent of that output with respect to each parameter. Training is301

continued until the network converges on a steady state of ac-302

curacy with respect to a testing data set that is separate from the303

training data. The training procedure is governed by a handful304

of parameters, called hyperparameters, used by NVCaffe to de-305

termine how training is carried out [32]. The hyperparameters306

used for training GammaNet can be seen in Section 7.2. The re-307

sults of training are shown in Figure 3, and demonstrates that308

GammaNet converges upon a solution quickly while training.309

Training was continued for 5 million iterations for each version310

of GammaNet, and to 2 million iterations for the VGG16 [33] ar-311

chitecture. The training graphs of subsequent networks were312

omitted for the sake of brevity, though each network reached313

similar results to Figure 3.314

Fig. 3. Graph of the training results for GammaNet with 1 inception
module. This training data was generated with the sub-scale

simulation, with a downsampling rate of 3x. The left axis contains the
accuracy of GammaNet on the validation data set, and the right axis
contains the loss value averaged over every 50k training iterations.

4. Results315

The final layer of GammaNet, Figure 8 m, outputs the prob-316

ability that a given input image contains a gamma-ray pair pro-317

duction signal or is purely background. To analyze the per-318

formance of GammaNet as a binary classifier a ROC analysis319

[21], which determines a classifier’s specificity and sensitivity320

at different threshold values, was conducted. In the ROC algo-321

rithm, the list of classification outputs produced by GammaNet322

for the image set is sorted by decreasing value of probability323

for the pair production event class. The threshold value is then324

iterated through the list of pair production class probabilities.325

For each iteration the classification probability for pair produc-326

tion produced by GammaNet in response to the input image is327

compared to the threshold. If the classification probability for328

pair production is lower than the threshold, the image is clas-329

sified as background. If the classification probability for pair330

production is above threshold, the image is classified as pair331

production. Utilizing the threshold for classification allows for332

an event classified as pair production to be either a true positive333

or false positive event. The number of true positive and false334

positive events is then tallied and normalized to the number of335

images in the set to generate the true and false positive rates for336

each threshold value.337

The ROC plot provides a graphic representation of the clas-338

sifier’s response to threshold levels for true positive and false339

positive rates. The ROC curve generated for GammaNet is shown340

in Figure 4. Area Under the ROC Curve (AUC) in Figure 4341

ranges from 0.807 to 0.988 depending on incident gamma-ray342

energy, demonstrating the general level of performance of GammaNet343

as a binary classifier. The individual points on Figure 4 show344

the sensitivity to pair production of GammaNet at a given back-345

ground rejection rate, which can be used to determine what346

threshold to run GammaNet at to satisfy the requirements of347

AdEPT for background rejection rates.348

(a)

(b)

Fig. 4. a) The ROC curves generated using the described algorithm
for each pair production data set as classified by GammaNet, using 11x

downsampled images. The AUC is provided in the legend for each
incident gamma-ray energy, with an area of 1 being a perfect
classifier, and 0.5 being random selection. b) A subsection of

Figure 4a is presented to display the nuanced features of the plot.
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Using the ROC analysis, it is possible to investigate the per-349

formance of GammaNet with respect to the rate of downsam-350

pling used on the simulation data. To perform downsampling351

the output of the simulation had the spatial extent for each di-352

mension of a voxel increased by a given multiple, N, wherein353

all values contained within the original voxels were summed354

into the new voxel. Downsampling results in the projection im-355

ages being reduced by a factor of N2, which significantly re-356

duces the time taken to train and perform classification with357

GammaNet. The impacts of downsampling on signal sensitivity358

are displayed in Table 3, where downsampling rates between359

1–11 were investigated using the sub-scale simulation. When360

downsampling by 1 the voxel size is maintained at 400 x 400361

x 400 µm3, and when downsampling by 11 the voxel size is362

reduced to 4.4 x 4.4 x 4.4 mm3.363

From the results in Table 3, it is shown that any amount364

of downsampling outperforms the alternative of no downsam-365

pling, with a decrease in signal sensitivity for increasing down-366

sampling rates. This increase in sensitivity for any amount of367

downsampling is expected to be due to the original images con-368

taining discontinuities in the ionization tracks from the pair pro-369

duction events, this is reduced or entirely removed when down-370

sampling the image. This gain of sensitivity is then diminished371

with greater degrees of downsampling as the higher rates of372

downsampling reduce the ability to distinguish both arms of the373

pair production tracks. Given the large image size generated374

by the full-scale simulation, a downsampling value of 11 was375

used for the remainder of the work when utilizing the full-scale376

simulation. Training of GammaNet on the full-scale simulation377

data at a downsampling rate of 11 took 30 days of compute378

time, proving investigating GammaNet’s performance on lower379

downsampling rates with the full-scale simulation data to be380

prohibitively time consuming.381

Background
Rejection Rate

(%)

GammaNet Pair
Production

Sensitivity (%)

VGG16 Pair
Production

Sensitivity (%)
99.990±0.002 65±2 28±2
99.97±0.003 73±2 38±2
99.94±0.005 78±2 46±2
99.87±0.007 84±2 57±2
99.81±0.009 87±2 61±2
99.75±0.01 89±2 64±2
99.69±0.01 90±1 66±2

Table 2. Pair Production sensitivity for GammaNet and VGG16 at vary-
ing background rejection rates corresponding to anticipated downlink
speeds. Performance comparison results were generated using the sub-
scale simulation data, with a downsampling rate of 3.

A cursory investigation between the performance of GammaNet382

relative to other neural network architectures was performed.383

In this investigation another neural network architecture was384

chosen, VGG16 [33], given it outperformed GoogLeNet in the385

ILSVRC. VGG16 was trained in the exact same manner as386

GammaNet and the performance of the two networks were com-387

pared. The performance comparison between GammaNet and388

VGG16 was carried out with a downsampling rate of 3, and389

with data produced from the sub-scale simulation. Table 2 pro-390

vides the results from each network when classifying the sub-391

scale simulation data, with GammaNet shown to largely out-392

perform VGG16 over the entire range of background rejection393

rates investigated. This result is not what would be anticipated394

given that VGG16 outperformed GoogLeNet in the ILSVRC395

competition, but the task of event classification for AdEPT uti-396

lizes more sparse images. These results imply that GammaNet397

is more well suited for classifying background images than is398

VGG16, which ultimately is the primary task of GammaNet for399

AdEPT.400

The performance of GammaNet when classifying Compton401

scatter events was of interest as well given that it is the main402

gamma-ray interaction contributing to background in the AdEPT403

instrument, and the similarity in track structure compared to404

pair production. The rate of misclassification for Compton scat-405

ter events as pair production events provides information about406

the features that GammaNet uses for classifying the input. The407

main differentiation between the pair production and Compton408

scatter tracks is the presence of only a singular track for Comp-409

ton scatter and the absence of the vertex from pair production.410

Support for the importance of these features for classification411

is shown in Figure 5. As the incident gamma-ray energy in-412

creases, so too does the signal sensitivity for pair production.413

The increase in signal sensitivity is due to the increased en-414

ergy of the positron-electron pair producing more linear tracks,415

closer in proximity, and with more distinct vertices. This is sup-416

ported by the negligible increase in signal sensitivity for Comp-417

ton scatter events.418

Fig. 5. Plot of the sensitivity for Compton scatter and pair produc-
tion image sets as the energy of the incident gamma ray varies, us-
ing a downsampling rate of 11 on the full-scale simulation. These
sensitivities were calculated using a threshold value that generated a
99.990±0.002% background rejection rate. Errors were calculated us-
ing binomial statistics with a 95% confidence interval.

Due to the large raw data rate and the limits of satellite com-419

munications, it is required to achieve a background rejection420

rate of 99.99% to 99.69% in order for the data to be trans-421

mitted. To achieve this background rejection rate, the thresh-422

old for a pair production event classification has to be set quite423
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Downsampling Rate
1 3 5 7 9 11

Data Rate Limit
(Mbps avg.)

Background Rejection
Rate (%) Signal Sensitivity (%)

1.5 99.99±0.002 43±2 65±2 50±2 41±2 40±2 28±2
5 99.97±0.003 47±3 73±2 65±2 54±2 49±2 45±2

10 99.94±0.005 54±3 78±2 73±2 62±2 56±2 56±2
20 99.87±0.007 64±2 84±2 81±2 74±2 67±2 66±2
30 99.81±0.009 68±2 87±2 84±2 78±2 72±2 71±2
40 99.75±0.01 71±2 89±2 86±2 81±2 75±2 74±2
50 99.69±0.01 74±2 90±1 87±2 83±2 78±2 77±2

Table 3. Pair production sensitivity of GammaNet, for sub-scale simulation images, given the desired background rejection rate with differing
factors of downsampling. The data rate limits are sampled between the proposed minimum and maximum as described in Section 1. The
background rejection rates listed are calculated by using the ratio of the raw data rate and the data rate limit, assuming the signal is approximately
entirely background. Each data set was generated from the sub-scale simulation, using the given downsampling rate. GammaNet was then trained
and tested on those data sets. The reported pair production signal sensitivities are the average sensitivity for the energies simulated. Error was
calculated using binomial statistics with a 95% confidence interval.

high, which results in a number of pair production events being424

misclassified as background events. Table 4 shows the average425

rate at which GammaNet classifies pair production and Compton426

scatter events as a positive event, given different background re-427

jection rates. These results were generated using the full-scale428

simulation with a downsampling rate of 11. The classification429

accuracies were averaged over the energies simulated for pair430

production and Compton scatter. It is shown in Table 4 and431

Figure 5 that at the proposed 99.99% background rejection rate,432

we obtain a pair production sensitivity between 0.1±0.1% and433

17±2%, depending on incident photon energy, with an average434

of 10±1%. For the best case scenario of 99.69% background re-435

jection, the signal sensitivity increases to a range of 1.1±0.5%436

to 69±2%, again depending on incident photon energy, with an437

average of 52±2%. In both cases, the sensitivity to Compton438

scatter is quite small, which is beneficial for the mission due to439

Compton scatter representing background for the AdEPT mis-440

sion. The relatively low sensitivity to pair production events441

at low energy will reduce the effectiveness of the instrument,442

but this impact can be mitigated during mission design by im-443

plementing image compression, where these calculations were444

done assuming no compression.445

In this study, the test set of GCR protons contained 106
446

events, with twice as many images. Operating at 99.99% back-447

ground rejection resulted in 100 GCR proton events being clas-448

sified as positive, considered false positives events. False posi-449

tives occur when at least one of two projections is classified as450

positive by GammaNet. Figure 6a-j shows 10 of the GCR proton451

events that resulted in false positive classifications. Figure 6k-t452

shows 10 pair production events that resulted in GammaNet pro-453

ducing the lowest response for pair production classification.454

The projection shown for the GCR proton events are the pro-455

jection resulting in a positive classification, and the projections456

shown for the pair production events are the most representative457

of the characteristics resulting in false negative classification. In458

the false positive images, Figure 6a-j, extended delta tracks are459

observed with at least one point of track crossing. This obser-460

Background
Rejection Rate

(%)

Pair Production
Sensitivity (%)

Compton
Scatter

Sensitivity (%)
99.990±0.002 10±1 0.3±0.3
99.97±0.003 16±2 0.4±0.3
99.94±0.005 26±2 0.7±0.4
99.87±0.007 37±2 1.3±0.6
99.81±0.009 44±2 1.7±0.6
99.75±0.01 47±2 1.9±0.7
99.69±0.01 52±2 2.2±0.7

Table 4. Pair production and Compton scatter sensitivity at vary-
ing background rejection rates corresponding to anticipated downlink
speeds. The GCR proton background rejection rate was calculated for
one set of background images. Each data point for Compton scatter
and pair production sensitivity were generated by averaging the sen-
sitivity over all simulated gamma-ray energies. All data here were
generated using the full-scale simulation with a downsampling rate of
11.

vation demonstrates that GammaNet responds to extended con-461

tiguous tracks, and track crossings, as signals of pair production462

events. In addition, Figure 6a contains a pair production event463

occurring from a GCR proton track which results in a false pos-464

itive classification, showing GammaNet responds significantly465

to the vertex of a pair production event. In the false negative466

images, Figure 6k-t, three features can be observed in the pair467

production images: short track length in Figure 6k-q, overlap-468

ping of the two tracks making it appear as a singular track in469

Figure 6i-o, and deep inelastic scattering events in Figure 6r-t.470

5. GammaNet Visualization471

As the use of CNNs becomes more prevalent in research, it472

is of increasing interest how the CNN performs the classifica-473

tion and what features of the input it uses to do so. Grad-CAM[34]474

is a recent algorithm developed to answer these questions by475

7



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 6. a)-j) Projection images of simulated GCR proton events that resulted in false positive classifications. Only the projection image resulting
in a false positive is shown, the alternate projection is not included because no event produced a false positive in both projections. k)-t)

Projection images of pair production events that produced the lowest response in GammaNet for the pair production event class. The projection
shown is most representative of the cause for false negative classification.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. a-c) Images generated by the Grad-CAM algorithm that demonstrate the features that GammaNet utilizes for classifying images as
background or signal. d-f) The simulation images used to generate the respective Grad-CAM images, with d) and f) being signal events and e)

being a background event.

providing an activation map for input images that shows the476

regions the CNN used most within the image during classifica-477

tion. Figure 7 shows the Grad-CAM images generated for Gam-478

maNet with one background image, Figure 7d, and two signal479

images, Figures 7e and 7f. These images were generated using480

the sub-scale simulation of AdEPT because the lower track den-481

sity provides interpretable results. Figure 7a shows that for the482

background class, GammaNet utilized sparsely ionizing tracks483

and delta rays present in Figure 7d, resulting correctly in a back-484

ground classification. Figure 7b demonstrates that for the signal485

class, GammaNet utilizes the separate, nearly parallel, tracks of486

the pair production event preferentially over the overlapped pair487

production event at the bottom of Figure 7e, resulting in an ac-488

curate positive classification. Lastly, Figure 7c results in a false489

background classification of the pair production image, Fig-490

ure 7f, with GammaNet using the sparsely ionized GCR tracks491

and the delta generated from the pair production track.492

6. Conclusion493

The event classification requirements of the AdEPT mis-494

sion dictate a background rejection rate between 99.99% and495

99.69% which must be achieved within a 50 ms time window496

determined by the instrument collection rate. GammaNet, us-497

ing mixed precision enabled by NVCaffe, was able to achieve498

a background rejection rate of 99.990±0.004%. These results499

were achieved using the full-scale simulation, classifying on500

images downsampled at 11x. The time for inference was found501

to be on average 6.8 ms utilizing a NVIDIA GTX 1080 Graph-502

ics Processing Unit (GPU), which has 8.2 TFLOPS of single503

precision compute performance. This implies that, as is, GammaNet504

would require 1.1 TFLOPS of single precision compute avail-505

able to it from the on-board flight computer. The AdEPT mis-506

sion is still in the development stages, and thus the flight com-507

puter has not been chosen. Commercially available flight com-508

puters are capable of meeting this demand. Additionally NASA509

is investigating the use of commercial SoC solutions that pos-510

sess greater than 1 TFLOPS performance [20]. In its current511

iteration, GammaNet is not prohibitively compute intensive for512

use as an on-board event classifier.513

These background rejection requirements have limited the514

sensitivity to pair production images to a range of 0.1±0.1%515

to 17±2% for 99.99% background rejection and 1.1±0.5% to516

69±2% for 99.69% background rejection, for incident photon517

energies from 5–250 MeV. The low sensitivity lowers the effec-518

tiveness of the AdEPT instrument, however these values were519

generated using conservative estimates. These results show that520

GammaNet achieves the desired background rejections of AdEPT,521

making it a serious consideration for use on-board the satellite522

for event classification.523

These performance estimates include no image compres-524

sion, and downlink bandwidth afforded by current and near525

9



future satellite communication [10, 17–19]. No image com-526

pression was used as a conservative assumption due to the data527

handling system for the AdEPT satellite not yet being decided.528

Simple lossless compression afforded by the PNG format pro-529

duces compression ratios nearing 2 for the simulation images530

used in this study. As more systems aboard the AdEPT satellite531

are designed and implemented, more precise determination of532

the operational parameters of GammaNet can be achieved. Re-533

ductions in the raw data rate will allow GammaNet to operate534

at a lower background rejection rate, affording increased pair535

production sensitivity.536

Grad-CAM was implemented for GammaNet in order to dis-537

cern the features that GammaNet uses during classification of the538

simulation images. The results from this application support the539

supposition that GammaNet utilizes features that are characteris-540

tic of background for the respective classification, such as lower541

ionization density relative to the pair production tracks and the542

presence of delta rays. For the positive class of pair produc-543

tion the network responds strongly to semi-parallel tracks that544

are close in proximity, indicative of energetic pair production545

events.546

7. Appendix547

7.1. GammaNet Architecture548

The architecture used for GammaNet is shown schematically549

in Figure 8 and is comprised of convolution, Rectified Linear550

Unit (ReLU) [35], maximum or average pooling, Local Re-551

sponse Normalization (LRN) [36, 37], dropout [38], concate-552

nation, inner product, and softmax [36, 39] operations. All of553

these operations come preprogrammed in NVCaffe, a platform554

for developing and programming CNNs [32], which was used555

for the development of GammaNet.556

7.2. GammaNet Hyperparameters557

The hyperparameters used in training GammaNet are as fol-558

lows:559

test iter: 1000560

test interval: 50000561

base lr: 0.0001562

display: 1000563

max iter: 10000000564

lr policy: ”step”565

gamma: 0.96566

momentum: 0.9567

weight decay: 0.0002568

stepsize: 320000569

snapshot: 49000570

snapshot prefix: ”/path/to/your prefered directory”571

solver mode: GPU572

net: ”/path/to/your network.prototxt”573

test initialization: false574

average loss: 40575

iter size: 1576

577
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Fig. 8. Diagram depicting the architecture and layers used for GammaNet. All
functions depicted in this diagram are from the preprogrammed operations
included in the NVCaffe library.

a) input to the network of an AdEPT simulation image.

b) first convolution layer made of a 7x7 convolution with a stride of 2,
where stride is the spacing between the center of successive convolutions
performed on the previous layer. The convolution is followed by a ReLU
operation, where all negative values are made to be 0.

c) 3x3 max pooling layer with a stride of 2, where max pooling takes a
subset of the previous layer and outputs the maximum value from that subset.
The 3x3 max pooling is followed by a LRN operation, where the values of the
max pooling output are normalized along the depth of the output.

d) 1x1 convolution with stride of 1 followed by a ReLU.

e) 3x3 convolution with a stride of 1 followed by a ReLU and LRN op-
eration.

f) 3x3 max pooling layer with a stride of 2.

g) inception module used by GoogLeNet [31], part 1, from top to bot-
tom is: 3 1x1 convolutions of stride 1 and a 3x3 max pooling with a stride of 1.

h) inception module used by GoogLeNet [31], part 2, from top to bot-
tom is a 3x3 convolution of stride 1, a 5x5 convolution of stride 1, and a 1x1
convolution of stride 1.

i) concatenation along the depth of the previous 3 operations in h), where the
separate outputs are combined into one 3 dimensional matrix.

j) 7x7 average pooling with a stride of 1, where average pooling takes a
subset of the previous layer and provides the average value for an output. The
average pooling is followed by a dropout operation, where randomly some
values in the output are set to 0 with a programmed probability.

k) the flattening of j) into a vector.

l) inner product between vector k) and the parameters of l) where there
is a set of parameters for each class contained in the output, with two classes in
the case of GammaNet. The parameters of l) were stored in double precision
and the inner product calculated using double precision.

m) 2 values output by the softmax operation, which takes the output of
the inner product layer as an input for the softmax function. The softmax
function provides the probability that the original input image belongs to
each class of the network, pair production or background for GammaNet. The
softmax function was calculated using double precision and its results were
also produced with double precision.
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