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An adaptive method is developed to iteratively fuse the information provided by multi-
ple sensors to enable autonomous urban air mobility type operations. First, noisy and bias
corrupted IMU readings are processed as soon as they arrive using kinematic equations repre-
sented in the vehicle’s body frame. To correct the systems drift resulting from the integration,
an information content measure is introduced to decide on the environment. For the cluttered
environment the information provided by environmental sensors is counted as reliable and the
drift correction as accurate. For the open space, the GPS data is counted as reliable, and the
drift correction is done based on the GPS readings. The measurement noise effects are mini-
mize using Iterated Extended Kalman Filter framework. The algorithm is implemented in the
in-house developed FlightDeckz simulation environment using an IMUmodel, simulated video
recorded from a camera mounted on the vehicle (for the purpose of this study, outside scenery
was generated with XPlane), which flies in an urban environment, and GPS data generated
from the environment’s digital map.

I. Introduction
Research interests in increasingly autonomous systems have been growing in resent years along with the industry

push to make the self-driving cars [25], package delivery drones [1, 39] and air-taxis [2, 36] reality. These research
efforts span across many disciplines, which can be summarized in the following way: sensing, perception, decision
making, control technologies [20].

The focus of this paper is perception, in particular, that is fusion of information provided by the sensors to estimate
the state of an autonomous system and the environment around it. Generally, these sensors can be divided into two
groups: sensors that provide data about the autonomous system, such as accelerometers, gyroscopes, magnetometers,
altimeters, GPS, etc. and sensors that sense the environment (exteroceptive), such as radars, cameras, lidars, ultrasound,
sonars, etc. Some of these sensors include signal processing algorithms for object detection, image segmentation,
labeling, classification, feature point selection, etc. A systematic review of sensors range, accuracy, data rate, etc. can
be found in Ref. [27]. A specific survey of the capabilities and gaps in the exteroceptive sensors for autonomous urban
air mobility applications is given in Ref. [28]

To reduce the uncertainty of sensor data and to increase the system’s accuracy, fusion algorithms or techniques are
used, which can be classified according to different criteria such as relations between the input data sources, input/output
data types and their nature, abstraction level of the employed data, different data fusion levels, and architecture types [6].
Another categorization is established in [27] based on data processing methods such as Gaussian filters, probabilistic
inference approach, or machine learning algorithms.

Data fusion algorithms are also characterized based on the way information from multiple sources is processed
as tightly or fully-coupled [3, 7], partly-coupled, and loosely-coupled or decoupled [24, 38]. The tightly-coupled
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algorithms combine all sensors data into a single optimization routine. This is the most accurate, but computationally
expensive approach and is prone to delays. On the other hand, loosely-coupled methods process data separately and fuse
the results afterwards. These are computationally effective methods, but decoupling leads to information loss, which
may affect the accuracy.

The main task performed by data fusion algorithms is to map the environment and localize the vehicle with respect
to the map, which is commonly called simultaneous localization and mapping (SLAM) task. It has been in the focus of
autonomous driving research community for decades. A survey of some SLAM approaches in autonomous driving can
be found in [4]. These SLAM approaches use IMU, GPS, LIDAR and camera data all together or in some combinations
to only estimate the vehicle position or perform both mapping and localization. In [41], a modular approach is proposed
to sequentially estimate the vehicle’s motion coarse-to-fine manner, where first IMU data is used to predict the motion,
then visual and inertial data are coupled to improve the estimates, and finally laser points scan matching is used to further
refine the estimates and register laser points to build a map. In [14], Adaptive Extended Kalman Filter framework is
used to process IMU data, and LIDAR and GPS data are used to update the observation vector as they become available.
Meanwhile, error covariance matrices are adapted based on the LIDAR scan matching error and GPS precision dilution
measurements. In [32], a laser scanner itegration method with INSm is presented for navigation in GPS-denied urban
environments. Line features are extracted from the scan images and exploited for navigation, as lines are computationally
efficient to extract, and are common in man-made environments. In [29], for steady-state estimation error reduction,
GPS and IMU data are fused in the filtered innovations Kalman filter framework using classical proportional-integral
control approach. Other approaches use only LIDAR to achieve low-drift SLAM [30], conduct rigid body attitude
estimation via a descriptor system formulation using measurements from IMU and magnetometers [23], fuse data from
a stationary stereo camera and a mobile platform mounted laser range finder to track an object in a lab environment [9] ,
integrate radar and visual sensors data to improve object recognition accuracy in the vehicle surrounding [19], just to
mention few of them.

Most frequently used fusion algorithms combine IMU measurements and camera images in visual-inertial navigation
systems (VINS) because of decreasing costs and size of these sensors. VINS algorithms can be divided into two groups:
visual-inertial simultaneous localization and mapping (VSLAM), and visual-inertial odometry (VIO). Recent VSLAM
approaches are reviewed in [5] , and a nice review of VIO approaches can be found in [15]. Both group of algorithms
use estimation techniques, which employ filter-based approaches such as extended Kalman filter (EKF) [18, 24] the
unscented Kalman filter (UKF) [10, 17, 22], Information Filter [37, 40] , Particle Filter [8], batch or incremental
smoother [16], and optimization-based approaches such as window optimization [11, 13, 21, 26], Bundle adjustment
[42] and graph representation [35]. An effort to compare filter-based techniques and optimization approaches for a
SLAM applications has been proposed in [33] with the outcome that the optimization tends to give better results than
filters due to linearization issues. However, the EKF-based methods are still popular because of computational efficiency.
The drawback is that these methods may diverge when the underlying dynamic model becomes unobservable from the
provided measurements. As it is shown in [12], it can happen when the flight vehicle is not accelerating linearly and is not
rotating. Additionally, singularities in the resulting covariance matrices arise when using quaternion-based kinematics
for state propagation in the Kalman Filter framework because of additional unit constraints on the quaternions [34].
This issue is handled by using error state equations in the Kalman filter prediction stage by expressing 4D-quaternion
error through 3D-rotation angle error [15, 31].

In this paper we take a similar to [14, 31] approach and process the information as soon as it becomes available
from any sensor. While in [14] LIDAR and GPS data are used to update the observation vector in the Adaptive
Extended Kalman Filter framework as they become available, and covariance matrices are adapted based on the LIDAR
scan matching error and GPS precision dilution, here we assume that the available environmental sensor package
data is preprocessed and 3D feature points and corresponding covariances are available, which is the case in [31].
However, our approach differs by adaptively using sensors data for the state estimation correction depending on the
environment being open or cluttered, which is determined based on the analysis of acquired images. First, we process
noisy and bias corrupted IMU readings as they arrive using kinematic equations represented in the vehicle’s body frame.
Then, information content measures are introduced to decide on the environment. For the cluttered environment the
information provided by environmental sensors is counted as reliable for the drift correction. For the open space, the
GPS data is counted as reliable, and the drift correction is done based on the GPS readings. The measurement noise
effects are minimize using Iterated Extended Kalman Filter (IEKF) framework. The algorithm is implemented in the
in-house developed FlightDeckz simulation environment using an IMU model, simulated video recorded from a camera
mounted on the vehicle (for the purpose of this study, outside scenery was generated with XPlane), which flies in an
urban environment, and GPS data generated from the environment’s digital map.
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II. Problem Formulation
We assume that the flight vehicle is equipped with an inertial measurement unit (IMU), environmental sensors such

as cameras, LIDAR, radar, barometer, etc. and Global Positioning System (GPS) receivers. The information provided
by these sensors except for GPS is relative to the vehicle’s body frame denoted by �� which is assumed to be centered at
the vehicle’s center of mass. The IMU provides high-frequency measurements

a< = R> (a − g) + b0 + n0
8< = 8 + bl + nl (1)

expressed in the frame ��, where a< is the accelerometer reading (subscript m here and in what follows indicates
measured quantities), a is the vehicles inertial acceleration, g is the gravity acceleration, R is the rotation matrix from
�� to �� , b0 is the acceleration bias, n0 is the measurement noise, 8< is gyroscope reading, 8 is the vehicle’s angular
rate expressed in the frame ��, bl is the rate bias, and nl is the measurement noise. The measurement noises are
assumed to be isotropic and Gaussian in all directions with standard deviations f0 and fl respectively.

Environmental sensors are assumed to provide mid-frequency data (measured or estimated by means of some signal
processing algorithms) of noise corrupted range ': , azimuth W: and elevation _: and their first order derivatives of
: − Cℎ feature point with respect to the sensor frame

':< = ': + ='
_:< = _: + =_
W:< = W: + =W
¤':< = ¤': + = ¤'
¤_:< = ¤_: + = ¤_
¤W:< = ¤W: + = ¤W , (2)

where the measurement/estimation uncertainties =', =_, =W , = ¤', = ¤_, = ¤W are assumed to be Gaussian noises with
standard deviations f', f_, fW , f ¤', f ¤_, f ¤W respectively for all feature points. Since the orientation and the position
of origin of sensor frames are generally known in the frame ��, we assume that the equations (2) are given in ��. It is
also assumed that the environmental sensor data has been pre-processed with some algorithm to select essential/feature
points from the corresponding images or point clouds.

In some cases the aircraft may also be equipped whit an inertial navigation system (INS) that provides vehicle
orientation angles with some uncertainties

q< = q + =q
\< = \ + =\
k< = k + =k , (3)

where the uncertainties =q , =\ , =k are assumed to be Gaussian noises with standard deviations fq , f\ , fk respectively.
Finally, we assume that the GPS provides, generally at the slowest rate, the inertial coordinates of the vehicle’s center

of mass with some uncertainty as

p< = p + n? , (4)

where the uncertainty n? is assumed to be a Gaussian noise with standard deviations f? in all directions.
The objective is to estimate the vehicle state as accurately as possible for all flight conditions fusing data from given

sensor readings, assuming that the static map of the environment is available.

III. Adaptive mechanism
To correct the systems drift, exteroceptive sensors or GPS data are used depending on the reliability of the information

they provide, which depends on the flight environment. Namely, it is assumed that in the cluttered environment
exteroceptive sensors provide reliable information, whereas GPS data is reliable in the open environment. Therefore
we derive criteria to characterize the environment based on the available exteroceptive sensors data. To this end, we
first derive the criteria for visual sensor information to determine the openness of flight environment, then extend the
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approach to other exteroceptive sensors. For this purpose we use the image information content such as image intensity
and the gradient. One way to use the image intensity is to compute the entropy of one dimensional image histogram as
it is done in Ref. [43] for infrared images. However, as it was pointed out in Ref. [44], this approach is totally blind
to image spatial structure in the sense that visibly more complex images such as uniformly distributed random ones
give the same entropy value as structured images with linear gradients. To overcome this issue, the image partial
derivatives were used to define a measure of image entropy. In Ref. [45] a magnitude weighted and doubled image
gradient orientation was used for spatial information consideration in 3-D tomographic data-sets alignment. In Ref. [46]
the probability distribution in the Shannon entropy formula (see for example Ref. [47] for details) was replaced by the
spatial distribution of the image gradient itself. In Ref. [48] the directional distribution of the gradient intensity was
used for image registration. In Ref. [44], the joint probability density function of the image partial derivatives was used
to introduce a new information content measure for 2D images, where it is called delentropy and claimed that it captures
the underlying spatial image structure better. However, this approach increases the computational cost.

Here, we first determine the local horizontal plane, which passes through the optical center of the visual sensor
and consider only part of the image above that plane, taking into account the camera tilt angle with respect to vehicle
frame and the prior pitch angle from the Kalman filter. The rationale behind is that only the structures above that
horizontal plane affect the GPS signal. Hence, the less informativeness of the mentioned upper part of the visual image
corresponds to reliable GPS signal. Next, assuming a gray scale image, we derive an information content measure of the
image upper part, which comprises if three factors: normalized average intensity �=0, normalized maximum gradient
magnitude �<06 and entropy of the gradient direction distribution. For the = × < 2D gray scale image the normalized
average intensity �=0 is computed as

�=0 =
1
=<

=∑
8=1

=∑
9=1

5 (8, 9) , (5)

where 5 (8, 9) is the intensity of (i, j)-th pixel. We take it into account in the information content measure via a Gaussian
function centered at the midpoint of normalized gray spectrum as

�8=C =
1

f
√
2c
exp

(
− (�=0 − 0.5)

2

2f2

)
, (6)

which effectively washes out both black and white ends of the gray spectrum. Next, for the (i, j)-th pixel we compute the
gradient vector g(8, 9) = [6G (8, 9) 6H (8, 9)]>, its magnitude and direction

6< (8, 9) =
√
62G (8, 9) + 62H (8, 9), 6q (8, 9) = arctan

(
6H (8, 9)
6G (8, 9)

)
. (7)

The information content measure component for the normalized maximum gradient magnitude �<06 is defined as

�<06 = 2 max
8=1,..,=, 9=1,...,<

6< (8, 9) , (8)

where c is a normalization factor set to 255
√
2, and the component for the gradient direction �q is defined via a sigmoid

function

�q =
1

1 + exp(0(1 − �q))
, (9)

following Ref. [43] to compensate for too strong down-rating of low entropy values, where �q is the entropy of gradient
direction intensity defined as

�q = −
c∑

8=−c

=∑
9=1

?8 log2 (?8) , (10)

where ?8 represents 1D histogram of 6q (8, 9). The complete information content measure is

� = �8=C �<06�q . (11)

Smaller values of � indicate that the image is mainly toward the black or white end of the gray scale spectrum, and
there are not essential abrupt or gradual intensity changes. That is, if � ≤ �∗, where the threshold �∗ can be set to
1 by selecting proper values for 0, 1, 2, f, then the flight environment is considered open and GPS signal reliable,
otherwise the image has a rich enough content for the drift correction.
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IV. Application Example
This example considers a localization task in simulations using in-house developed FlightDeckZ environment. Fig.

1 shows the map and the 3D trajectory of a sample demonstration mission, flown by means of a pre-programmed flight
plan in the flight management system. The vehicle takes of vertically from the tip of pier 14 near the ferry building in
San Francisco and flies a circuit after which it lands vertically on the rooftop of the parking structure at Mission and 5th.
A more detailed discussion about the control aspects of this sample demonstration mission is given in Ref. [50].

 26'  25'  122°W 

 24.00' 

 23'  22' 
 46' 

 47' 

  37°N 

 48.00' 

 49' 

 50' 

(a) Map of flight plan (b) 3D trajectory of flight

Fig. 1 Map and 3D trajectory of flight plan, source: Ref. [50]

A. Description of simulated vehicle
For this study, a quadrotor concept aircraft is used with a payload of 6 occupants at 6480 lbs total, with a large

fuselage and very large rotors, depicted in Fig. 2. This is a battery-powered electrically driven concept aircraft. Ref.
[49] provides more information about this concept aircraft. A Quasi-Linear Parameter Varying (qLPV) model was
generated with NDARC/FlightCODE. This qLPV model is used as the simulation model in this study.

Fig. 2 6 passenger quadrotor concept vehicle, source: [49]

Standard conventional available sensor information for fixed wing aircraft is classified in three categories. First
there are the air data sensors (ADS), providing true airspeed +) �( , angle of attack U and angle of side-slip V. A second
class are the data from the inertial navigation system (INS, consisting of inertial and magnetic equipment) giving
measurement values for the specific forces �G , �H , �I , the rotational rates ?, @, A and aircraft attitude angles q, \,
k. The third and last category is a combination of INS and GPS measurements leading to data for three dimensional
position G, H, I and inertial velocity components D, E, F. However, for the vehicle in this application example, an
unconventional sensor suite is considered. Since the presence of reliable air data sensor measurements on a quadrotor
vehicle with significant downwash from the rotor blades is not guaranteed, these are omitted here. Furthermore, typical
UAM operations will be in an urban environment, where the GPS signal could become unreliable due to temporarily
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loss of satellite signal. As a complement, exteroceptive sensors are used (in this simulation study only visual camera is
used) to determine the range ': , azimuth W: and elevation _: , together with their respective time derivatives ¤': , ¤_:
and ¤W: (: = 1, . . . , #) of a static feature points with respect to the vehicle’s body frame.

Table 1 gives information about the instrumentation errors which occur for each kind of measuring equipment
mentioned above. As verification of sensor accuracy, the accelerometer and rate gyro biases have been estimated during
the state estimation procedure. By making use of the kinematic and observation model of the aircraft, it is possible to
estimate these biases, which will be discussed in more detail below.

sensor variables bias error noise error

translational accelerometer 0G , 0H , 0I 3 3

rate gyro ?, @, A 3 3

INS q, \, k 3

GPS G, H, I 3

exteroceptive sensor for feature point i '8 , _8 , W8 3

¤'8 , ¤_8 , ¤W8 3

Table 1 Instrumentation error information for measuring equipment

The research presented in this paper considers flight trajectory reconstruction with a loosely coupled flight
instrumentation system using processed observations, as opposed to the tightly coupled counterpart with rawmeasurement
data.

B. Construction of measured sensor data with respect to feature point
Since the FlightDeckZ environment does not yet include the sensor model of a visual system that tracks a feature

point, the first step for the application example was to develop this sensor model. This model generates noise perturbed
range '8 , azimuth W8 and elevation _8 readings and their first order derivatives of an observed feature point, based on its
known position and the ownship position, which is part of the state vector. As a simple test, a centrally located static
feature point is defined with respect to this typical intra-city UAM demonstration vehicle route, as shown in Fig. 3(a).
The on-board sensor detects the range, azimuth and elevation, as well as range rate, azimuth rate and elevation rate of
this centrally located static feature point, of which the position is also known. Based on the geometric information of all
positions along the trajectory, it is possible to calculate these measured variables as follows. Define the vehicle’s own
position in earth fixed coordinates as (G, H, I) and the corresponding position of the aforementioned feature point i as
(G8 , H8 , I8), then the relative distance between both in body fixed coordinates is defined as:

ΔG18

ΔH18

ΔI18

 =

1 0 0
0 cos q sin q
0 − sin q cos q



cos \ 0 − sin \
0 1 0
sin \ 0 cos \



cosk sink 0
− sink cosk 0
0 0 1



G8 − G
H8 − H
I8 − I

 (12)

And the range, azimuth and elevation of feature point i as measured from the vehicle are then defined as follows:

'8 =

√
(G8 − G)2 + (H8 − H)2 + (I8 − I)2 (13)

W8 = arctan
ΔH18

ΔG18
(14)

_8 = arctan
−ΔI18
'hor8

(15)

for which the horizontal range 'hor8 is defined as:

'hor8 =

√
(G8 − G)2 + (H8 − H)2 (16)
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Similarly, the time derivative of the relative distance between both in body fixed coordinates is calculated by means of
the chain rule:

Δ ¤G18
Δ ¤H18
Δ ¤I18

 =

1 0 0
0 cos q sin q
0 − sin q cos q



cos \ 0 − sin \
0 1 0
sin \ 0 cos \



cosk sink 0
− sink cosk 0
0 0 1



¤G8 − ¤G
¤H8 − ¤H
¤I8 − ¤I

 +
1 0 0
0 cos q sin q
0 − sin q cos q



cos \ 0 − sin \
0 1 0
sin \ 0 cos \



− sink cosk 0
− cosk − sink 0
0 0 0

 ¤k

G8 − G
H8 − H
I8 − I

 +
1 0 0
0 cos q sin q
0 − sin q cos q



− sin \ 0 − cos \
0 0 0
cos \ 0 − sin \

 ¤\

cosk sink 0
− sink cosk 0
0 0 1



G8 − G
H8 − H
I8 − I

 +
0 0 0
0 − sin q cos q
0 − cos q − sin q

 ¤q

cos \ 0 − sin \
0 1 0
sin \ 0 cos \



cosk sink 0
− sink cosk 0
0 0 1



G8 − G
H8 − H
I8 − I

 (17)

And the time derivatives of the range, azimuth and elevation of feature point i as measured from the vehicle are then
defined as follows:

¤'8 =
ΔG18Δ ¤G18 + ΔH18Δ ¤H18 + ΔI18Δ ¤I18

'8
(18)

¤W8 =
Δ ¤H18ΔG18 − ΔH18Δ ¤G18

'2hor8

(19)

¤_8 =
−Δ ¤I18'hor8 + ΔI18

(
ΔG18Δ ¤G18 + ΔH18Δ ¤H18

)
'hor8'

2
8

(20)

Based on the geometry defined in Fig. 3(a) and the flight path of the vehicle, the measured variables range ', azimuth
W, elevation _, and their time derivatives ¤', ¤W and ¤_, as calculated with Eq. (12)–(20), are shown in Fig. 3(b). These
measured variables are used in the observation model of an Extended Kalman Filter, instead of the usual GPS coordinates,
for reconstructing the vehicle position when the flight environment is determined to be clattered.
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(a) 3D trajectory of flight with centrally located feature point
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Fig. 3 3D trajectory and measured variables with respect to feature point
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C. Nonlinear Aircraft kinematics and observation models
The nonlinear kinematic observation model of the aircraft is given as follows:

¤x(C) = f [x(C), u< (C), b, C] +G[x(C)]w(C), x(C0) = x0 (21)
z< (C) = h[x(C), u< (C), b, C] + v(C), C = C8 , 8 = 1, 2, . . . (22)

where Eq. (21) is known as the kinematic state equation with input noise vector w and Eq. (22) is called the observation
equation with output noise vector v. The nonlinear vector functions f and h may depend both implicitly (via x and u<)
and explicitly on C and it will be assumed that both f and h are continuous and continuously differentiable with respect
to all elements of x and u<. The system equation variables are defined as follows:

x = [G H I D E F q \ k]) (23)

u< = u + b + w = [�G �H �I ? @ A]) + [1G 1H 1I 1? 1@ 1A ]) + w (24)

z< =

[
'8 W8 _8 ¤'8 ¤W8 ¤_8 q< \< k<

])
(25)

where the aircraft state vector x in Eq. (23) contains inertial position, body inertial velocity components and aircraft
attitude angles. The measured input vector u< in Eq. (24) consists of specific forces and angular rates, perturbed with
sensor biases and input noise, where the sensor biases are collected in vector b , which contributes for the augmented
state vector as xaug = [x, b]. Finally, there is the measured output vector z< in Eq. (??), consisting of optical sensor
measurement data of range, azimuth, elevation of feature point i, together with the respective time derivatives and
INS supplied attitude angles. Also the measured output vector is contaminated with output noise. However, sufficient
accurate information about the measurement disturbances (such as the aforementioned downwash) is lacking to construct
reasonable observation functions for the air data measurements. This is an interesting topic for future research.

Additionally, the input noise vector w(C) is a continuous time white noise process and the output noise vector v(C8)
is a discrete time white noise sequence. Both are mutually uncorrelated as well as between the different input and output
channels individually. Moreover, based upon the known on-board measurement equipment characteristics, standard
deviations are specified by the equipment manufacturers, taking into account some safety margins. Therefore, the error
model can be described as follows:

v(C8) =

[
=' =W =_ = ¤' = ¤k8 = ¤_ =q =\ =k

])
(26)

w(C) =

[
=G =H =I =? =@ =A

])
(27)

�
{
w(C)w) (g)

}
= QX(C − g); Q = diag

(
f2G , f

2
H , f

2
I , f

2
? , f

2
@ , f

2
A

)
(28)

�
{
v(C8)v) (C 9 )

}
= RX8 9 ; R = diag

(
f2', f

2
W , f

2
_ , f

2
¤', f

2
¤W , f

2
¤_ , f

2
q , f

2
\ , f

2
k

)
(29)

�
{
w(C)v) (C8)

}
= 0, for t = ti, i = 1, 2, . . . (30)

The kinematic equations can be written as follows, where the aircraft is considered as a rigid body above a flat
non-rotating earth:

¤G = [D cos \ + (E sin q + F cos q) sin \] cosk − (E cos q − F sin q) sink (31)
¤H = [D cos \ + (E sin q + F cos q) sin \] sink + (E cos q − F sin q) cosk (32)
¤I = −D sin \ + (E sin q + F cos q) cos \ (33)
¤D = �G − 6 sin \ + AE − @F (34)
¤E = �H + 6 cos \ sin q + ?F − AD (35)
¤F = �I + 6 cos \ cos q + @D − ?E (36)
¤q = ? + @ sin q tan \ + A cos q tan \ (37)
¤\ = @ cos q − A sin q (38)

¤k = @
sin q
cos \

+ A cos q
cos \

(39)
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In this system of kinematic equations, all positions and velocities are inertial. The positions are defined in an earth
fixed reference frame and the velocity components D, E and F are defined in a body fixed reference frame. Expressions
(37) till (39) are the kinematic relations for a sequential rotation along the /−,.− and -−axis respectively and constitute
as the conversions of the angular rates from body fixed reference frame towards the earth fixed reference frame (Euler
angles). The first three equations, (31) till (33) serve as the conversions of the linear velocity components from body
fixed reference frame towards earth fixed reference frame.

The specific forces and angular rates, which are available in the input vector, can be found in expressions (34) till
(39). However, since they are supplied as measurements, they are not exact, but contaminated with bias and noise.
Consequently, they must be corrected in order to rewrite the system of state equations in the form of expression (21) and
the following equalities can be substituded in expressions (34) till (39):

�G = �G< − 1G − =G (40)
�H = �H< − 1H − =H (41)
�I = �I< − 1I − =I (42)

? = ?< − 1? − =? (43)
@ = @< − 1@ − =@ (44)
A = A< − 1A − =A (45)

Moreover, the system of state equations can be extended with the following array of equations:

¤1G = 0 (46)
¤1H = 0 (47)
¤1I = 0 (48)
¤1? = 0 (49)
¤1@ = 0 (50)
¤1A = 0 (51)

As a result, this set of equations is also extended in order to comply with the augmented state, containing the
aircraft states, as well as the inertial equipment biases. Equations (46) till (51) exploit the knowledge that biases are
constant. Conventionally, wind speed components in the earth fixed reference frame, which are assumed constant,
would be added here in a similar fashion as the biases. However, air data sensors are needed in order to achieve
identifiability of wind. Since the presence of reliable air data sensor measurements on a quadrotor vehicle with
significant downwash from the rotor blades is not guaranteed, the wind speed components were omitted here, and could
be included in a separate state estimation routine where they cannot perturb the other estimates which are considered here.

This rewritten set of state equations can be split up over the nonlinear continuous function f and the noise contribution
function G, which is linear in w(C). First the nonlinear continuous f [x(C), u< (C), b] is given:

f [x(C), u< (C), b] =



[D cos \ + (E sin q + F cos q) sin \] cosk − (E cos q − F sin q) sink
[D cos \ + (E sin q + F cos q) sin \] sink + (E cos q − F sin q) cosk

−D sin \ + (E sin q + F cos q) cos \(
�G< − 1G

)
− 6 sin \ + (A< − 1A ) E −

(
@< − 1@

)
F(

�H< − 1H
)
+ 6 cos \ sin q +

(
?< − 1?

)
F − (A< − 1A ) D(

�I< − 1I
)
+ 6 cos \ cos q +

(
@< − 1@

)
D −

(
?< − 1?

)
E(

?< − 1?
)
+

(
@< − 1@

)
sin q tan \ + (A< − 1A ) cos q tan \(

@< − 1@
)
cos q − (A< − 1A ) sin q(

@< − 1@
) sin q
cos \ + (A< − 1A )

cos q
cos \

06×1



(52)
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After which the linear G[x(C)] is defined as:

G[x(C)] =



03×6
−1 0 0 0 F −E
0 −1 0 −F 0 D

0 0 −1 E −D 0
0 0 0 −1 − sin q tan \ − cos q tan \
0 0 0 0 − cos q sin q
0 0 0 0 − sin qcos \ − cos qcos \

06×6


(53)

After discussing the kinematic equations in detail, the nonlinear continuous observation equations can be considered,
including the output noise contribution v(C) from (26):

'< =

√
(G8 − G)2 + (H8 − H)2 + (I8 − I)2 + =' (54)

W<8 = arctan
ΔH18

ΔG18
+ =W (55)

_<8 = arctan
−ΔI18
'hor8

+ =_ (56)

¤'<8 =
ΔG18Δ ¤G18 + ΔH18Δ ¤H18 + ΔI18Δ ¤I18

'8
+ = ¤' (57)

¤W<8 =
Δ ¤H18ΔG18 − ΔH18Δ ¤G18

'2hor8

+ = ¤W (58)

¤_<8 =
−Δ ¤I18'2hor8 + ΔI18

(
ΔG18Δ ¤G18 + ΔH18Δ ¤H18

)
'hor8'

2
8

+ = ¤_ (59)

where ΔG18 , ΔH18 , ΔI18 , Δ ¤G18 , Δ ¤H18 , Δ ¤I18 and 'hor8 are defined in Eq. (12), (16) and (17). Consequently the nonlinear
continuous h[x(C), u< (C), b] in (22) looks as the system of equations (54) to (59) grouped in matrix form, but without
the output noise contributions. Since these observation equations make use of the attitude angles q, \ and k in Eq. (12)
and (17), it is not possible to apply this transformation as a preprocessing step outside the Kalman Filter.

D. State estimator: Iterated Extended Kalman Filter
As already announced and apparent from the structure above in this section, a Kalman Filter can be used in order to

estimate the aircraft states x and inertial sensor biases b based on the available information in u< and z<. The nonlinear
behavior of '8 , W8 , _8 , ¤'8 , ¤W8 , ¤_8 and potential large initial state errors (due to the choice of the initial state values)
necessitate the use of an Iterated Extended Kalman Filter (IEKF)[51], which contains an additional iteration loop in the
correction step, compared to a regular Extended Kalman Filter (EKF):

1) one step ahead prediction (time propagation):

(1 = x̂ (: + 1 |: ) = x̂ (: |: ) +
:+1∫
:

f (x(C), u< (C), b, C) 3C (60)

2) prediction of covariance matrix of the state prediction error vector:

P ( : + 1| :) = � (:, g) P (: |: )�) (:, g) +Q3 (:) (61)

with:

F(:) = mf (x(C), u< (C), b, C)
mx(C)

����
x=x̂: |:

�(:, g) = 4F(:)ΔC (62)
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Q3 (: + 1|:) =
∫ C:+1

C:

� (C:+1, g)G:Q:G):�
) (C:+1, g) 3g (63)

3) Kalman gain:

K (: + 1) = P (: + 1 |: )H) (: + 1) ×
[
H (: + 1) P (: + 1 |: )H) (: + 1) + R (: + 1)

]−1 (64)

where H(: + 1) = mh(x(C) ,u< (C) ,b,C)
mx(C)

���
x=(1

, which also holds for the next steps
4) measurement update step:

(2 = x̂ (: + 1 |: ) +K (: + 1)
[
z< (: + 1) − h((1) −H (: + 1)

(
x̂ (: + 1 |: ) − (1

) ]
(65)

9 =
(2 − (1

(2
(66)

as long as |9 | > |9crit |, repeat steps 3 and 4 while after each iteration (1 = (2.∗
5) update covariance matrix of state estimation error vector: as soon as |9 | ≤ |92A8C |:

x̂ (: + 1 |: + 1 ) = (2 (67)
P ( : + 1| : + 1) = K̃ (: + 1) P (: + 1 |: ) K̃) (: + 1) + K (: + 1) R (: + 1)K) (: + 1) (68)

with K̃ (: + 1) = [I −K (: + 1)H (: + 1)]

Fig. 4 Working principle of the Iterated Extended Kalman Filter

Fig. 4 illustrates the working principle of the Iterated Extended Kalman Filter, which is an augmentation of the
regular Extended Kalman Filter. The correction step is performed iteratively, until the difference between two successive
correction updates is below a predefined threshold.

E. Aircraft State Estimation results for the trajectory
The aforementioned IEKF as elaborated in Sec. IV.D and IV.C was applied to the aforementioned sample

demonstration mission as introduced in Sec. IV.B. The values for the covariance matrices Q and R are defined by the
corresponding sensor characteristics and are assumed known. These values are defined in Table 2.

The other settings for the IEKF are the maximum number of iterations =max = 50 for the correction step and the
precision criterion metric for the iterations 9crit = 10−6. Furthermore it is assumed that the static position (G8 , H8 , I8) of

∗In theory, this loop continues till the difference condition is satisfied, but in practice often a maximum number of iterations is specified in order
to prevent an infinite loop.
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input noise output noise
accelerometer rate gyro optical sensor integrating gyro
f2G = 1 · 10−4 f2? = 3 · 10−8 f2

'
= 1 f2¤' = 1 f2

q
= 3 · 10−8

f2H = 1 · 10−4 f2@ = 3 · 10−8 f2W = 1 f2¤W = 1 f2
\
= 3 · 10−8

f2I = 1 · 10−4 f2A = 3 · 10−8 f2
_
= 1 · 10−8 f2¤_ = 1 f2

k
= 3 · 10−8

Table 2 Covariance values for Q and R matrices

the feature point i is known, and that all biases for accelerometers and rate gyros are zero. The initial state covariance
matrix is defined as: P0 = diag (100). For the initial estimated state x0, the position, velocity and heading are assumed
known. Furthermore, the update rate of the correction step takes place at one fifth of the rate of the prediction step.

In order to analyze the reconstructibility of the problem, the observability matrix O was constructed:

O =
[
H HF HF2 · · · HF=−1

])
(69)

Full reconstructibility of all the states is analyzed by verifying if the observability matrix O has full rank. Another
metric is the singular value based condition number W = fmax

fmin
of the observability matrix O. A value of W of an order

less than 108 shows that this problem is well defined.
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Fig. 5 Singular values of the observability matrix

Numerical analysis has shown that rank (O) = 15, which is full rank. Besides, Fig. 5 gives more information on the
singular value decomposition of the observability matrix O. Fig. 5(a) shows how the set of singular values f evolves
over time. It is clear that by performing maneuvers, while flying the mission profile, information is flowing into the
observability matrix, which forces the singular values to converge towards each other. The problem becomes better
defined. Fig. 5(b) shows the spectrum of singular values f at the end time. The spread between the largest and smallest
singular values is not excessive. The condition number here is W = fmax

fmin
= 13.88620.0017 ≈ 8 · 10

3, which indicates that the
problem is well defined and thus all states should be relatively well identifiable given the numerical information in the
sensor measurements.

Throughout the flown mission profile, the number of iterations per time sample was recorded. The result is shown in
Fig. 6. Mostly, no iteration was needed at all. In a few time steps, one extra iteration was necessary, especially in the
beginning. This time range corresponds with the time when some estimated states were still converging. Only at one
time instant, two iterations were needed, but never more. Of course, the number of iterations depends on the threshold
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value of the precision criterion metric 9crit. In general, for lower values of this metric (higher precision), more iterations
will be needed per time sample.
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Fig. 6 Number of iterations in the IEKF correction step per time sample

Fig. 7 — 10 show the estimates for the different states and their corresponding standard deviations, namely position
(Fig. 7), velocity (Fig. 8), attitude (Fig. 9) and sensor biases (Fig. 10) respectively. Fig. 7 — 8 show that the first 50s are
needed for convergence of the position and velocity states. This is most obvious for the lateral speed component E in
Fig. 8, since this state has the narrowest magnitude range. Fig. 9 shows that the attitude states converge immediately.
These variables are directly available in the measurements, although perturbed with output noise, while the position and
velocity states are only indirectly present in the measurements through the optical sensor readings. The decreasing
trends of the standard deviations confirm the convergence. Within the first 50s, also the sensor bias estimates converge
to their true values of zero, as shown in Fig. 10.

This application example is an initial and very preliminary proof of concept of how optical sensor measurements
can fill the gap when GPS data is unreliable due to lost satellite signals in an urban environment. The intention is to
continue and scale up this work in future research up to more relevant examples in real life. However, another important
aspect in this set up is the use of an adaptive mechanism for switching between GPS-based and feature point based
state estimation that relies on a criterion that indicates the ‘information richness’ of what the optical system can see, as
explained in Sec. III. An application example of this adaptive mechanism is given in Sec. IV.F.

F. Adaptive Mechanism Performance
The complete information content measure � as defined by Eq. (11) in Sec. III was applied on the scenario described

in Sec. IV. The resulting values of the content measure � are shown in Fig. 11. In order to interpret and evaluate the
information that these values represent, a deeper analysis was performed of a series of key point values as marked and
numbered in Fig. 11.

The corresponding locations of these key point values are also marked and numbered in the vehicle’s trajectory as
shown in Fig. 12, and in addition the relevant images as seen by the optical system at these locations are shown in Fig.
13. Correlating the information from Figs. 11, 12 and 13 shows that the general trends in the values for the content
measure � have a physical meaning. The high value of � at key point 1 around the time of takeoff is caused by the rich
scenery of the skyline of San Francisco, seen from ground level, as shown in Fig. 13(a). During initial climb, there is
a sharp drop in the � value, which corresponds to much of the skyline sinking below the horizon due to the higher
elevation vantage point as shown in Fig. 13(b). Between key points 3 and 4, there appears to be an above average noise
level in the measure values. Most probably, this is caused by the specific situation where the vehicle is flying above the
water surface of the bay, which contains relatively limited information for the optical system, as shown in Figs. 13(c)
and 13(d). This can cause specific challenges for the measure calculation routine. Key points 5, 9 and 16 represent
very low measure values in Fig. 11, which correspond to straight and level flight segments at or close to cruise altitude
as shown in Fig. 12. Figs. 13(e), 13(i) and 13(p) confirm that there is barely any optical gradient information above
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Fig. 7 Estimated values and standard deviations for vehicle position states
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Fig. 8 Estimated values and standard deviations for vehicle velocity states
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Fig. 9 Estimated values and standard deviations for vehicle attitude states
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Fig. 10 Estimated values and standard deviations for sensor biases

the horizon at these key points and at this altitude. The clusters of key points 6-7-8, 10-11-12 and 13-14-15 exhibit
slightly larger measure values in Fig. 11, which correspond to level turn flight segments at cruise altitude as shown in
Fig. 12. Furthermore, Figs. 13(f)-13(g)-13(h), 13(j)-13(k)-13(l) and 13(m)-13(n)-13(o) confirm the bank angles in these
turns via the tilted horizon. This tilted horizon generates some optical gradient information at these key points and
altitude, but not significantly. Note that the information content measure � is compensated for pitch attitude angles \ as
explained in Sec. III, but not yet for bank angle q, since the resulting non-rectangular image shape causes difficulties for
calculating the �-value. As a consequence, one can also notice the slightly larger �-values at larger bank angles in the
middle of the turn, such as at key points 7, 11 and 14, as compared to the slightly lower bank angles earlier or later in the
turns, such as at key point pairs 6 and 8, 10 and 12, 13 and 15. These variations in the content measure should not have
an impact on the decision to switch to another state estimator. Only the �-values corresponding to key points 17 and 18
show a significant increase in Fig. 11. These key points are in the final descent as shown in Fig. 12, and images 13(q)
and 13(r) confirm that the high rise buildings rise above the horizon as seen from these vantage points at lower altitudes.
As illustrated in Fig. 11, it is possible to define a threshold that makes a distinction between moderate content measure
values, which reflect the irrelevant bank angles in turns, and the significantly larger content measure values, which
reflect the lower altitude portions of the flight where relevant optical gradients are caused by the scenery of the skyline.
For this specific scenario, a threshold value of 0.4 works to make this distinction.
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Fig. 11 J-values calculated throughout the sample flight with values of key images shown in Fig. 13

This adaptive mechanism allows to switch between the feature point based state estimator, as defined in Sec. IV, and
a conventionally used GPS-based state estimator. The GPS-based state estimator as used in this application example is
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(a) 3D trajectory with locations of key images (b) 2D trajectory with locations of key images

Fig. 12 Trajectory of the sample flight with locations of key images shown in Fig. 13

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8 (i) Image 9 (j) Image 10 (k) Image 11 (l) Image 12

(m) Image 13 (n) Image 14 (o) Image 15 (p) Image 16 (q) Image 17 (r) Image 18

Fig. 13 Key images corresponding to the J-values marked in Fig. 11 and locations marked in Fig. 12

discussed in detail in Ref. [52]. The switching logic works as follows. When the GPS data are valid (direct line of sight
with sufficient number of satellites), the GPS-based state estimator is preferred. When GPS data are invalid, e.g. in
an urban environment where the field of view of the sky is significantly shielded by nearby high-rise buildings, the
adaptive mechanism as described in Sec. III and as illustrated in Fig. 11 indicates if enough optical gradient information
is available in the field of view of the optical system to rely on feature point based state estimation. If this information
content measure � exceeds a certain predefined threshold �∗, the latter state estimator is preferred above the GPS-based
state estimator. In the application example shown here, state estimation starts with the feature point based Kalman Filter,

16



up to around 16s in the flight, where the field of view of the sky widens and the �-value drops below the threshold. At
that point, the GPS-based Kalman Filter takes over for the remainder of the flight, until around 270 s into the flight,
during the approach, when the vehicle enters the airspace in between the high rise buildings, blocking a wide field of
view of the sky. This is where the feature point based state estimator takes over again. The switch after takeoff involves
an initialization of the Kalman filter where the initial state is calculated with the GPS measurements at that time instant
(since the feature point based Kalman filter didn’t converge yet at that point) and the initial covariance is a diagonal
matrix with large values on the diagonal (typically in the order of magnitude 102. The switch during approach initializes
that Kalman filter with the current state values of the GPS-based Kalman filter (which are converged), and the initial
covariance is a diagonal matrix with large values on the diagonal (typically in the order of magnitude 103. The results of
the state estimation process with filter switching is shown in Figs. 14–15, presented in a similar way as in the previous
application example in Sec. IV.E. The vertical black dash-dotted lines represent the time instants when the switching
between Kalman Filters takes place. In this specific example, the short time span in the first 16s is not long enough for
the feature point based Kalman Filter to converge. As soon as the content measure allows, the GPS-data helps the state
estimator to converge quickly. Towards the end of the flight, the feature point based estimator takes over again and
converges quickly, however especially the velocity components shown in Fig. 15 experience large initial deviations.
Convergence follows relatively quickly in the next few seconds. During this short time span, the IEKF needs a significant
higher number of iterations to converge, as is shown in Fig. 16. Where one iteration per time step was sufficient during
the initial convergence phase in both previous time spans for both state estimators, the maximum number of iterations is
needed here for initial convergence, although relatively briefly. 50 is the maximum number of iterations allowed, in
order to avoid infinite loops or frame overruns. Overall, it is clear from Fig. 14–15 that GPS data should be preferred
above optical information whenever they are available, because of their accuracy and the faster convergence of its filter.
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Fig. 14 Estimated values and standard deviations for vehicle position states with combined filters and switching

V. Conclusions and recommendations
An adaptive method was developed to iteratively fuse the information provided by multiple sensors to enable

autonomous urban air mobility type operations. One state estimation strategy relies on the combination of inertial and
GPS measurements. Alternatively, another state estimator combines measurements from inertial and optical sensors
such as camera, LIDAR, etc. which provide feature points with uncertainties. The adaptive method uses an information
content measure based on optical gradients in the images provided by the optical sensors. This measure compensates for
pitch attitude angle changes of the vehicle. Outside an urban environment and at sufficient altitude, valid GPS data can
be used safely. In the airspace within an urban environment and below a critical altitude where the field of view of the
sky is limited by high-rise buildings (also called ‘urban canyon’), GPS data becomes unreliable. Initial experiments have
shown that this measure provides a useful indication that sufficiently rich information content is available in the optical
sensor measurements to allow for state estimation based on these optical sensor measurements. These experiments have
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Fig. 15 Estimated values and standard deviations for vehicle velocity states with combined filters and switching
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Fig. 16 Number of iterations in the IEKF correction step per time sample with combined filters and switching
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also demonstrated that switching between the two different aforementioned state estimators, based on this information
content measure, works satisfactorily. It was also found that whenever GPS data as well as sufficiently rich optical
sensor information content are available, GPS data should be preferred because of their higher accuracy and faster filter
convergence.

Future research will also look at compensation for bank angles in the information content measure calculation, and
on the development of a more robust and adaptive threshold to switch between both aforementioned state estimators. In
a next step, this position and velocity information, which is estimated independent of the availability of GPS data, will
be used by another set of Kalman Filters, making use of the same optical sensors, for the purpose of object tracking.
This is expected to be necessary for the purpose of detection and avoidance of uncooperative objects (objects without
ADS-B or some other form of position reporting to other traffic), which is one of the important challenges in the context
of perception within Urban Air Mobility applications.
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